Addressing factors fixing setting from given data: A comparison of different methods

Abstract : This paper deals with global sensitivity analysis of computer model output. Given a set of independent input sample and associated model output vector with possibly the vector of output derivatives with respect to the input variables , we show that it is possible to evaluate the following global sensitivity measures: (i) the Sobol' indices, (ii) the Borgonovo's density-based sensitivity measure, and (iii) the derivative-based global sensitivity measure of Sobol' and Kucherenko. We compare the efficiency of the different methods to address factors fixing setting, an important issue in global sensitivity analysis. First, global sensitivity analysis of the Ishigami function is performed with the different methods. Then, they are applied to two different responses of a soil drainage model. The results show that the polynomial chaos expansion for estimating Sobol' indices is the most efficient approach.
Type de document :
Article dans une revue
Environmental modelling & software, Elsevier, 2017, 87, pp.29 - 38. <10.1016/j.envsoft.2016.10.004>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01398207
Contributeur : Thierry Mara <>
Soumis le : mercredi 16 novembre 2016 - 20:19:15
Dernière modification le : samedi 19 novembre 2016 - 01:09:53

Fichier

EMS2016MARA_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Thierry Mara, Benjamin Belfort, Vincent Fontaine, Anis Younes. Addressing factors fixing setting from given data: A comparison of different methods. Environmental modelling & software, Elsevier, 2017, 87, pp.29 - 38. <10.1016/j.envsoft.2016.10.004>. <hal-01398207>

Partager

Métriques

Consultations de
la notice

91

Téléchargements du document

87