A Block-Based Edge Partitioning for Random Walks Algorithms over Large Social Graphs

Abstract : Recent results [5, 9, 23] prove that edge partitioning approaches (also known as vertex-cut) outperform vertex partitioning (edge-cut) approaches for computations on large and skewed graphs like social networks. These vertex-cut approaches generally avoid unbalanced computation due to the power-law degree distribution problem. However, these methods, like evenly random assigning [23] or greedy assignment strategy [9], are generic and do not consider any computation pattern for specific graph algorithm. We propose in this paper a vertex-cut partitioning dedicated to random walks algorithms which takes advantage of graph topological properties. It relies on a blocks approach which captures local communities. Our split and merge algorithms allow to achieve load balancing of the workers and to maintain it dynamically. Our experiments illustrate the benefit of our partitioning since it significantly reduce the communication cost when performing random walks-based algorithms compared with existing approaches.
Type de document :
Communication dans un congrès
Web Information Systems Engineering – WISE 2016, Nov 2016, Shanghai, China. pp.275-289
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01398189
Contributeur : Yifan Li <>
Soumis le : lundi 21 novembre 2016 - 17:12:58
Dernière modification le : jeudi 13 septembre 2018 - 15:24:07
Document(s) archivé(s) le : jeudi 16 mars 2017 - 18:41:18

Fichiers

wise_2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01398189, version 1

Collections

Citation

Yifan Li, Camelia Constantin, Cedric Du Mouza. A Block-Based Edge Partitioning for Random Walks Algorithms over Large Social Graphs. Web Information Systems Engineering – WISE 2016, Nov 2016, Shanghai, China. pp.275-289. 〈hal-01398189〉

Partager

Métriques

Consultations de la notice

167

Téléchargements de fichiers

88