The Farrell--Tate and Bredon homology for PSL_4(Z) via cell subdivisions

Abstract : We provide some new computations of Farrell–Tate and Bredon (co)homology for arithmetic groups. For calculations of Farrell–Tate or Bredon homology, one needs cell complexes wherecell stabilizers fix their cells pointwise. We provide two algorithms computing an efficient subdivision of a complex to achieve this rigidity property. Applying these algorithms to available cell complexes for PSL4(Z) provides computations of Farrell–Tate cohomology for small primes as well as the Bredon homology for the classifying spaces of proper actions with coefficients in the complex representation ring.
Type de document :
Article dans une revue
Journal of Pure and Applied Algebra, Elsevier, In press
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01398162
Contributeur : Alexander Rahm <>
Soumis le : mercredi 10 octobre 2018 - 16:16:10
Dernière modification le : vendredi 12 octobre 2018 - 01:02:29

Fichiers

BuiRahmWendt-revision2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01398162, version 4
  • ARXIV : 1611.06099

Collections

Citation

Anh Tuan Bui, Alexander Rahm, Matthias Wendt. The Farrell--Tate and Bredon homology for PSL_4(Z) via cell subdivisions. Journal of Pure and Applied Algebra, Elsevier, In press. 〈hal-01398162v4〉

Partager

Métriques

Consultations de la notice

3

Téléchargements de fichiers

2