W. A. Marrison, Apparatus for converting radiant energy to electromechanical energy, 1959.

A. Coty, Automatically switched photovoltaic motor, 2011.

D. M. Chapin, C. S. Fuller, and G. L. Pearson, Solar energy converting apparatus, 1957.

H. E. Hall, Solar motor, 1967.

H. Izawa, Solar energy motor, 1988.

Y. Nakamats, Apparatus for converting radiant energy such as light or heat directly into turning force, 1987.

B. Sepp, Rotating advertising device, 1967.

G. J. Shea, Solar energy magnetic resonance motor, 1995.

J. Bobitski and D. Iwi?ski, Investigation of photoelectric motor with stationary axial diaphragm static and dynamic characteristics, Opto - Electronics Review, vol.12, issue.1, pp.85-90, 2004.

L. Quéval, A. Coty, L. Vido, R. Gottkehaskamp, and B. Multon, Photovoltaic switched reluctance motor modeling and simulation, 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), pp.2171-2176, 2015.
DOI : 10.1109/EEEIC.2015.7165515

L. Quéval, L. Vido, A. Coty, and B. Multon, Photovoltaic motors review, comparison and switched reluctance motor prototype, 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER), pp.1-8, 2015.
DOI : 10.1109/EVER.2015.7113028

L. Spring, Larryspring School of Common Sense Physics, 2016.

F. Sass, G. G. Sotelo, R. De, A. Junior, and F. Sirois, H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors, Superconductor Science and Technology, vol.28, issue.12, p.125012, 2015.
DOI : 10.1088/0953-2048/28/12/125012

E. B. Rosa, The self and mutual inductances of linear conductors Buy strong neodymium magnets online -supermagnete.fr Available: https://www.supermagnete.fr/eng/. [Accessed: 01, 1908.

C. H. Liebert and R. E. Hart, Solar-cell performance at low temperatures and simulated solar intensities. National Aeronautics and Space Administration, 1969.

. Pveducation and . Org, Effect of Temperature on Solar Cells Available: http://www.pveducation.org/pvcdrom/solar-celloperation/effect-of-temperature . [Accessed: 16, 2016.

D. H. Dias, Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing, Superconductor Science and Technology, vol.28, issue.7, p.75005, 2015.
DOI : 10.1088/0953-2048/28/7/075005

T. Matsumura, Y. Sakurai, H. Kataza, S. Utsunomiya, and R. Yamamoto, Magnetically coupled gear based drive mechanism for contactless continuous rotation using superconducting magnetic bearing below 10??K, Physica C: Superconductivity and its Applications
DOI : 10.1016/j.physc.2016.07.003

K. Matsunaga, M. Tomita, N. Yamachi, K. Iida, J. Yoshioka et al., YBCO bulk of the superconducting bearing for a 10 kWh flywheel, Superconductor Science and Technology, vol.15, issue.5, p.842, 2002.
DOI : 10.1088/0953-2048/15/5/341

S. Sivrioglu and K. Nonami, Active permanent magnet support for a superconducting magnetic-bearing flywheel rotor, IEEE Transactions on Appiled Superconductivity, vol.10, issue.4, pp.1673-1677, 2000.
DOI : 10.1109/77.913142

M. Strasik, Design, Fabrication, and Test of a 5-kWh/100-kW Flywheel Energy Storage Utilizing a High-Temperature Superconducting Bearing, IEEE Transactions on Applied Superconductivity, vol.17, issue.2, pp.2133-2137, 2007.
DOI : 10.1109/TASC.2007.898065

N. D. Valle, A. Sanchez, E. Pardo, C. Navau, and D. Chen, Enhanced stability by field cooling in superconducting levitation with translational symmetry, Applied Physics Letters, vol.91, issue.11, p.112507, 2007.
DOI : 10.1063/1.2785169

W. M. Yang, The effect of magnet configurations on the levitation force of melt processed YBCO bulk superconductors, Physica C: Superconductivity, vol.354, issue.1-4, pp.4-5, 2001.
DOI : 10.1016/S0921-4534(01)00014-4

C. Ye, G. Ma, K. Liu, and J. Wang, Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry, Journal of Low Temperature Physics, vol.268, issue.1???2, pp.1-15, 2016.
DOI : 10.1007/s10909-016-1654-1

F. C. Moon, Superconducting Levitation: Applications to Bearing and Magnetic Transportation, 2008.
DOI : 10.1002/9783527617524

H. Teshima, M. Morita, and M. Hashimoto, Comparison of the levitation forces of melt-processed YBaCuO superconductors for different magnets, Physica C: Superconductivity, vol.269, issue.1-2, pp.15-21, 1996.
DOI : 10.1016/0921-4534(96)00428-5

M. Murakami, Large Levitation Force due to Flux Pinning in YBaCuO Superconductors Fabricated by Melt-Powder-Melt-Growth Process, Japanese Journal of Applied Physics, vol.29, issue.Part 2, No. 11, pp.1991-1994, 1990.
DOI : 10.1143/JJAP.29.L1991

K. Berger and F. Boufatah, Solar Electric Motor on Superconducting Bearings -Vertical Configuration -900 rpm, 2016.
DOI : 10.1109/tasc.2016.2642140

K. Berger and F. Boufatah, Solar Electric Motor on Superconducting Bearings -Vertical Configuration -1350 rpm, 2016.
DOI : 10.1109/tasc.2016.2642140

K. Berger and F. Boufatah, Solar Electric Motor on Superconducting Bearings -Horizontal Configuration -700 rpm, 2016.
DOI : 10.1109/tasc.2016.2642140

K. Berger and F. Boufatah, Solar Electric Motor on Superconducting Bearings in Liquid Nitrogen with Propeller -Vertical Configuration -75 rpm, 2016.

K. Berger and F. Boufatah, Solar Electric Motor on Superconducting Bearings in Liquid Nitrogen -Vertical Configuration -190 rpm, 2016.