Enhanced diffusion in finite-size simulations of a fragile diatomic glass former - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Année : 2016

Enhanced diffusion in finite-size simulations of a fragile diatomic glass former

Résumé

Using molecular dynamics simulations we investigate the finite-size dependence of the dynamical properties of a diatomic supercooled liquid. The simplicity of the molecule permits us to access the microsecond time scale. We find that the relaxation time decreases simultaneously with the strength of cooperative motions when the size of the system decreases. While the decrease of the cooperative motions is in agreement with previous studies, the decrease of the relaxation time opposes what has been reported to date in monatomic glass formers and in silica. This result suggests the presence of different competing physical mechanisms in the relaxation process. For very small box sizes the relaxation times behavior reverses itself and increases strongly when the box size decreases, thus leading to a nonmonotonic behavior. This result is in qualitative agreement with defect and facilitation theories. 

Dates et versions

hal-01398125 , version 1 (16-11-2016)

Identifiants

Citer

Sonia Taamalli, Julia Hinds, Samuel Migirditch, Victor Teboul. Enhanced diffusion in finite-size simulations of a fragile diatomic glass former. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2016, 94 (5), pp.052604. ⟨10.1103/PhysRevE.94.052604⟩. ⟨hal-01398125⟩

Collections

UNIV-ANGERS LPHIA
26 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More