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We investigate experimentally the quenching of a liquid pancake, obtained through the impact
of a water drop on a cold solid substrate (0 to −60◦C). We show that, below a certain substrate
temperature, fractures appear on the frozen pancake and the crack patterns change from a 2D
fragmentation regime to a hierarchical fracture regime as the thermal shock increases. The different
regimes are discussed and the transition temperatures are estimated through classical fracture scaling
arguments. Finally, a phase diagram presents how these regimes can be controlled by the drop impact
parameters.

When molten glass drips into cold water, the outside
cools - and shrinks - faster than the inside, creating pent-
up tension in the so-called Prince Rupert’s drop, known
since before 1625 to have very striking mechanical pro-
perties [1, 2]. Indeed, while the drop’s head stays imper-
vious to even the strongest blows, flick the tail and the
whole drop shatters in a myriad of small pieces, in less
than a millisecond. In the same way, fragmentation is in
fact present in many physical processes, from jet atomi-
zation to bubble bursting in fluids [3–5], from spaghetti
breaking [6] to popping balloons [7] or broken windows
in solids [8, 9]. It is related to diverse applications such
as comminution [10], shell case bursting [11, 12], ash
generation during eruption [13, 14], cooling lava [15] or
meteoric cratering [16] for instance.

Fragmentation is thus a sudden process, where the
whole considered domain divides extremely rapidly. At
least as ubiquitous, there exists a complete different crack
morphology where space-dividing pattern shows a strong
hierarchy of slower fractures [17]. Fractures develop suc-
cessively, and each new fracture joins older fractures at
a typical angle close to ninety degrees [18, 19]. Such pat-
terns are usually observed when the shrinking of a mate-
rial layer is frustrated by its deposition on a non shrinking
substrate, such as drying-induced cracks in mud [20, 21],
coffee [22], colloidal silicas [23], industrial coating [24] or
artistic painting [25].

In this paper, we investigate experimentally the quen-
ching of a liquid pancake (Fig. 1) that is obtained through
the impact of a water drop on a cold solid substrate. We
show for the first time that, as a function of the sub-
strate temperature, the crack patterns produced by the
thermal shock, change from a 2D fragmentation regime
to a hierarchical fracture regime (Fig. 2 (a)).

The experimental setup consists in releasing a drop of
water, with a diameter D0 = 3.9 mm, on a steel sub-
strate, so as to form a liquid pancake of radius R and
typical thickness h0 (Fig. 1). At room temperature, both
are determined by the impact parameters (see e.g. [26] for
the exact expression). The impact velocity is close to the

free fall one : U0 ∼
√
gH where H is the falling height.

Throughout most of the paper, falling height will be kept
constant at H = 36 cm. Subsequent pancake radius is :
R ' 8 mm, from which pancake thickness can be estima-
ted by balancing the volume of the drop with that of the
cylindrical pancake h0 = D3

0/6R
2 ' 150µm. The tem-

perature of the substrate Ts is homogeneous, measured
by contact thermometers at different locations, and typi-
cally varied from the water freezing temperature, 0◦C, to
−60◦C. The desired temperature is reached by plunging
a large cube of stainless steel (103 cm3) into a liquid ni-
trogen. The whole experiment is made into a glove box
where humidity is controlled in order to avoid frost for-
mation. Because of the small experiment time (max. ∼ 1
s), we can consider that the substrate remains at constant
temperature during the dynamics. The drop dynamics is
visualized using a high-speed camera recording the sprea-
ding from the top.
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Figure 1. Scheme of the frozen pancake obtained after a li-
quid drop impacted a cold substrate. The pancake has a radius
R and a typical thickness h0. The substrate, at a temperature
Ts, cools the pancake, so that a layer of thickness h(t) is fro-
zen, above which the liquid is at freezing temperature T0.

Figure 2 (b) and (c) present time sequences, for dif-
ferent substrate temperatures, respectively -31◦C and -
60◦C. In both impact sequences, the drop spreads on the
substrate until it reaches its maximum diameter, cap-
tured on the second image. During this phase, the dro-
plet remains liquid but a thin layer of ice forms upon
contact with the substrate. In contrast with the situa-
tion at room temperature [26], almost no retraction of
the drop is further observed since it is pinned on the so-
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Figure 2. (a) Frieze presenting snapshots of the frozen pancakes formed after a water drop impacted, from a falling height
H = 36 cm, a cold substrate at various temperature Ts = −20.0◦, −31.1◦, −41.2◦, −50.3◦ and −59.6◦C from left to right
(with ∆T = −Ts). Depending on ∆T the frozen pancake presents different crack patterns that can be gathered into three
different regimes : I - no cracks, II - fragmentation regime, III - hierarchical fractures regime. The transition temperatures are :
∆T

(exp)
I-II ∼ 27◦C and ∆T

(exp)
II-III ∼ 42◦C. (b) Sequence showing the drop impact and solidification dynamics preceding the fracture

pattern observed on the second image of the frieze (a) : Ts = −31.1◦C. (c) Sequence preceding the fracture pattern observed
on the fifth image of the frieze (a) : Ts = −59.6◦C. On these two sequences, the time and the scale bar are on the images.

lid substrate, most probably by this ice layer. Instead,
capillary waves propagate on the spread droplet that has
now the shape of a pancake. In the mean time, the so-
lidification of the drop occurs, observed on Fig. 2 (b)
through a front that develops radially from the pancake
edge towards its center, forming eventually a donuts that
solidifies (t ∼ 500ms), and that is due to the complex
dynamics of the solidification front [27]. After that point
(t ∼ 500ms on Fig. 2 (b)), the whole pancake is frozen
and keeps cooling. It is therefore shrinking, but the adhe-
sion to the solid substrate limits this ice contraction. This
frustration causes mechanical tensions that are suddenly
relaxed by the formation of a pattern of fractures. This
remarkable dynamics, called fragmentation, is a 2D equi-
valent to the Prince Rupert’s drops shattering, described
in the introduction. This solid fragmentation seems to
propagate radially from a nucleation point. Experimental
estimation gives a high front propagation velocity, typi-
cally between 800 and 1000 m.s−1, which is a fraction of
the Rayleigh wave speed.

Figure 2 (c) presents the same drop impact experiment
but on even colder substrate (-46◦C). In this case, shortly
after the drop has pinned, while ripples are still visible,

first fractures are observed on a growing ice layer (t ∼
28 ms). Then more cracks propagate, hierarchically, by
successive division of the frozen drop. The crack pattern
is here typical of hierarchical fractures [17], with younger
crack joining the older one at an angle close to 90◦. The
domains are larger and consequently less numerous than
in the fragmentation regime. Note that, if this particular
cracking dynamics is very similar to what is observed in
the case of desiccation [22], here the time scales are much
shorter.

To summarize the qualitative description of our ex-
periment, the main different patterns are shown on
Fig. 2 (a) as a function of the temperature difference
∆T = T0 − Ts, where Ts is the substrate temperature
and T0 = 0◦C is the water freezing temperature. They
are gathered in three different regimes :
• I : at low ∆T , the solid pancake remains smooth,
no cracks are present.
• II : the fragmentation regime, at intermediate ∆T ,
the cracks appear suddenly from a nucleation point.
• III : the hierarchical regime, at high ∆T , the cracks
are formed step by step.

The two sequences described above, Fig. 2 (b) and (c),
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belong respectively to the beginning of regime II and the
end of regime III. We observe that, close to the tran-
sition between the regimes, intermediate cases appear,
with fragmentation only on the edge of the pancake or
mix between fragmentation and hierarchical fractures. It
is also worth emphasizing that while the fragmentation
occurs after the whole pancake has solidified, the hierar-
chical cracks are usually formed during the solidification
phase : if the bottom part of the pancake is solid, a li-
quid layer is still present on the top. Finally, this expe-
riment is, to our knowledge, the first example where it
is possible to pass continuously from a fragmentation to
a hierarchical regime using a simple control parameter.
Thermal shock in ceramic [28, 29] might have comparable
behavior, but this has not been observed so far.

These different regimes can be understood using clas-
sical fracture arguments [30] : indeed, since the freezing
of the liquid is at 0◦C, the new solid is submitted to
a rapid thermal contraction as substrate temperature is
below. If the ensuing deformation energy is high enough,
fractures can appear in the frozen pancake. This mecha-
nisms can be quantified using energy balance [31, 32]. :
we assume a linear isotropic elastic behavior of ice, with
a Young’s modulus E = 9.33 GPa. Its thermal contrac-
tion induces a deformation tensor field εth(x, t) = αδT I
where α = 5.3 · 10−5 K−1 is the ice thermal expansion
coefficient taken constant here [33], I the identity ten-
sor and δT = T0 − T (x, t), with T (x, t) the local time-
dependent temperature in the ice domain. The density of
elastic energy induced by this thermal contraction reads
therefore E = 3

2Eα
2δT 2.

A fracture in a brittle material consists in the forma-
tion of a new interface, associated to an energy per unit
surface, the so-called Griffith energy, Gc ' 1 kg · s−2 [34].
Balancing the elastic energy due to the thermal contrac-
tion of a cubic ice of length Lc, with homogeneous tem-
perature Ts, 3E(α∆T )2L3

c/2, with the energy of a crack
breaking the cube in two part 2GcL

2
c , leads to the intro-

duction of the Griffith length :

Lc =
4Gc

3Eα2∆T 2
. (1)

Above this typical length, breaking the shrunk solid be-
comes energetically favorable.

In our system, three regimes can therefore be identified
in the crack formation, depending on the ratio between
the Griffith length Lc and the typical height h0 of the
liquid pancake [35]. If h0 � Lc, no crack formation is
expected by the thermal shock, this first regime is obser-
ved on the first image of Fig. 2 (a). On the other hand,
for h0 � Lc one expects that the cracks appear before
the whole solidification of the pancake, when a solid ice
layer of thickness of the order of Lc is formed. This is the
behaviour observed on Fig. 2 (c) and therefore correspon-
ding to regime III. In between, for h0 ∼ Lc, one expects
the cracks to be formed when the whole pancake is solid

and we identified this latter behaviour with the regime
II (Fig. 2 (b)) where the frozen pancake fragments into a
myriad of small pieces of typical size h0 [17].

Let us start by estimating the appearance temperature
of the first cracks at the frontier between regime I and
II, ∆TI-II. Energy balance imposes that the total elastic
energy in the frozen pancake is greater than the surface
energy of all the fractures, namely :

3

2
Eα2∆T 2πR2h0 ≥ 4

πR2

h2
0

Gch
2
0,

where the ratio πR2/h2
0 is the number of pieces of typi-

cal size h0 formed by the fragmentation. It leads to the
relation :

∆T 2 ≥ ∆T 2
I-II =

8Gc
3Eα2h0

. (2)

With, for ∆T > ∆TI-II cracks are energetically favo-
rable while no cracks should be observed otherwise. At
this transition temperature the pancake thickness is then
found to be twice the Griffith length. Taking the values of
E, Gc and h0 given above, leads to ∆TI-II ∼ 26◦C, which
is in excellent agreement with the experimental transition
temperature to fragmentation ∆T

(exp)
I-II ∼ 27◦C (Fig. 2).

On the other hand, when h0 � Lc, fractures can form
before the full solidification of the liquid pancake and we
identify there the regime III, where the cracks appear
step by step. In this case, the solid layer of thickness
h(t) grows with time as the pancake freezes (see Fig. 1),
while the liquid temperature can be considered constant
and equal to T0 because of the high contrast between
water and air thermal conductivities. The diffusive heat
flux through this solid layer, Q = −λ∂zT , is then balan-
ced, at the solidification front, by the solidification rate
−ρsLḣ(t). Here, L = 333.5 kJ · kg−1 is the ice-water la-
tent heat per unit mass, ρs = 920 kg · m−3 the density
of ice and λ = 2.4 W · m−1 · K−1 its thermal conduc-
tivity [33]. This gives a time scale for the solidification
process, τs = ρsLh

2

λ∆T . Comparing this latter to the time
scale of heat diffusion τd = h2

D leads to the Stefan num-
ber :

St =
Cp∆T

L
=
τd
τs
,

where, D = λ
ρsCp

= 1.3 · 10−6 m2 · s−1 is the heat diffu-
sion coefficient of the ice. In our experiments, the Stefan
number is always smaller than one, indicating that the
diffusion process is always faster than the solidification
dynamics. Therefore, we can consider that the tempe-
rature field in the ice layer is in a quasi-stationary re-
gime, obeying to the stationary diffusion equation. Ta-
king a simple horizontal ice layer of heigh h(t) it reads
∂zzT = 0, with the boundary conditions T (0, t) = Ts and
T (h(t), t) = T0 since the temperature at the solidification
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front z = h(t) is the freezing temperature. It leads to the
linear temperature field :

T (z, t) = Ts + ∆T
z

h(t)
. (3)

Now, balancing the time dependent diffusive heat flux
through the ice Q = −λ∂zT = −λ∆T/h(t) with the soli-
dification rate −ρsLḣ(t), gives the following time evolu-
tion for the ice layer

h2(t) =
2λ∆T

ρsL
t = 2StD t,

with h(0) = 0. Considering that the formation of the first
crack happens when h(tc) ∝ Lc (Eq. 1), it gives for the
time of cracks appearance in regime III :

tc ∝
8ρsLG

2
c

9λE2α4∆T 5
. (4)

This first crack time tc has been measured for all our
experiments, varying both the impact velocity and the
substrate temperature and is shown on figure 3. The clo-
sed triangles correspond to the appearance of the first
crack in regime III, in reasonable agreement with the
∆T−5 variation predicted by the relation (4), plotted
with a dashed line. This confirms our model where quasi
stationary heat diffusion in the ice layer drives the soli-
dification rate and the first crack appears when the thi-
ckness of the ice layer is close to the Griffith length. On
the contrary, the open diamonds corresponding to the
fragmentation time in regime II do not follow the same
scaling since the solidification dynamics and temperature
fields in the solid are different.

Finally, the transition between regimes II and III is
expected when h0 ∼ Lc. Then, the elastic energy in the
ice block has to be estimated at the time when the soli-
dification ends, namely when h(t) = h0. Integrating the
elastic energy density E on the pancake volume, with the
corresponding temperature field (Eq. 3) yields :

3Eα2

2
∆T 2

II-IIIπR
2

∫ h0

0

(1− z

h0
)2dz =

Eα2

2
∆T 2

II-IIIπR
2h0.

Balancing this energy with the minimal elastic energy
needed to fragment (3

2Eα
2∆T 2

I-IIπR
2h0), allows us to ob-

tain the transition temperature ∆TII-III separating the
two fracture regimes :

∆TII-III =
√

3∆TI-II. (5)

Taking ∆TI-II ∼ 26◦ computed above leads to
∆TII-III ∼ 45◦, which is in very good agreement with the
experimental transition temperature T (exp)

II-III = 42◦. Note
that this gives a pancake thickness six times larger than
the Griffith length at the transition.

Finally, until now only one falling height H has been
considered for the drop, which signifies that the shape
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Figure 3. Appearance time of the first crack, tc, plotted as
function of ∆T = T0−Ts = −Ts with Ts the substrate tempe-
rature, for five different falling heights of the impacting drop.
tc is determined considering initial time when drop reached
its maximum spreading diameter after impact. The open dia-
monds correspond to the fragmentation regime (II) while the
closed triangles correspond to the hierarchical fracture regime
(III). The dashed line, representing tc ∝ ∆T−5, follows rea-
sonably well the points in the regime III.

of the pancake has been kept almost constant. However,
drop impact enables a control of the pancake aspect ra-
tio and further on of the cracks patterns of thin struc-
tures. Indeed, by varying the impact parameters and the
substrate temperature, our experimental set-up allows us
to span a large range of spreading dynamics, leading to
a broad variety of frozen drop shapes [26, 36, 37]. Fi-
gure 4 displays the phase diagram as both H and ∆T
vary, where the three main domains of Fig. 2 are retained,
proving their universality. However, we observe that the
transition temperatures vary non monotonically with the
drop falling height : since increasingH decreases the pan-
cake thickness (h0), we would expect the transition tem-
peratures ∆TI-II ∝ h−1/2

0 (Eq. 2) and ∆TII-III =
√

3∆TI-II
(Eq. 5) to increase with H, which is only compatible in
our experiment for H greater than 25-30 cm. Below this
height, the transition temperature decreases which is not
predicted by our model, probably because the frozen drop
does not have the pancake cylindrical shape of Fig. 1 any-
more.

In conclusion, in this paper the different crack regimes
of a frozen water pancake shrunk by cooling and pinned
on a non shrinking substrate, are investigated using clas-
sical fracture scaling arguments. By increasing the ther-
mal shock, the pancake undergoes two regimes : from
fragmentation to hierarchical fracture. The appearance
temperature of both regimes are determined, along with
the scaling of the first crack time in the hierarchical frac-
ture regime. This original experiment therefore consti-
tutes a model system enabling to easily investigate a
broad range of fracture mechanisms and to progress in
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Figure 4. Phase diagram for the cracks pattern as the sub-
strate temperature (-∆T ) and the drop impact velocity (here
noted by H the height of drop fall) vary. The three regimes
observed are represented with the same symbols and same co-
lor as on Fig. 2 : white square for regime I, red diamond for
regime II and blue triangle for regime III.

the understanding of the multi-physic aspects of crack
patterns due to thermal shocks.
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