Sparse Jurdjevic–Quinn stabilization of dissipative systems

Abstract : For control-affine systems with a proper Lyapunov function, the classical Jurdjevic-Quinn procedure gives a well-known and widely used method for the design of feedback controls that asymptotically stabilize the system to some invariant set. In this procedure, all controls are in general required to be activated, i.e. nonzero, at the same time. In this paper we give sufficient conditions under which this stabilization can be achieved by means of sparse feedback controls, i.e., feedback controls having the smallest possible number of nonzero components. We thus obtain a sparse version of the classical Jurdjevic-Quinn theorem. We propose three different explicit stabilizing control strategies, depending on the method used to handle possible discontinuities arising from the definition of the feedback: a time-varying periodic feedback, a sampled feedback, and a hybrid hysteresis. We illustrate our results by applying them to opinion formation models, thus recovering and generalizing former results for such models.
Type de document :
Article dans une revue
Automatica, Elsevier, 2017, 86, pp.110--120. 〈10.1016/j.automatica.2017.08.012〉
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger
Contributeur : Marco Caponigro <>
Soumis le : mercredi 24 mai 2017 - 15:57:06
Dernière modification le : lundi 30 avril 2018 - 15:16:01
Document(s) archivé(s) le : lundi 28 août 2017 - 16:49:49


Fichiers produits par l'(les) auteur(s)




Marco Caponigro, Benedetto Piccoli, Francesco Rossi, Emmanuel Trélat. Sparse Jurdjevic–Quinn stabilization of dissipative systems. Automatica, Elsevier, 2017, 86, pp.110--120. 〈10.1016/j.automatica.2017.08.012〉. 〈hal-01397843v3〉



Consultations de la notice


Téléchargements de fichiers