Pigments produced by the bacteria belonging to the genus *Arthrobacter*
Nuthathai Sutthiwong, Yanis Caro, Mireille Fouillaud, Philippe Laurent, A. Valla, Laurent Dufossé

To cite this version:
[1] Nuthathai Sutthiwong, Yanis Caro, Mireille Fouillaud, Philippe Laurent, A. Valla, et al.. Pigments produced by the bacteria belonging to the genus *Arthrobacter*. 7th International Congress of Pigments in Food – New technologies towards health, through colors, Jun 2013, Novara, Italy. 2016. hal-01397507

HAL Id: hal-01397507
https://hal.archives-ouvertes.fr/hal-01397507
Submitted on 16 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

Public Domain

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pigments produced by the bacteria belonging to the genus *Arthrobacter*

Sutthiwong N., Caro Y., Fouillaud M., Laurent P., Valla A., Dufosse L.

1 Agricultural Technology Development, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
2 Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de La Réunion, ESROJ Agroalimentaire, Sainte-C但不限, Ile de La Réunion, France
3 Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Département de Génie Biologique, IUT, Université de La Réunion, Saint-Pierre, Ile de La Réunion, France
4 École des Mines de Nantes, Département d'Ingénierie et Démarche, Rue du Réal, 44307 Nantes cedex 3, France
5 Laboratoire INRA, Université de Bretagne Occidentale, Poitou Universitaire Pierre-Jakez Hélias, Quimper, France

E-mail: laurent.dufosse@univ-reunion.fr

For several decades, pigments have been used as a taxonomic tool for the identification and classification of bacteria. Nowadays, pigment producing microorganisms attract wide interest in many scientific disciplines because of their biotechnological potential. With the growing concern in microbial pigments because of factors such as production independent from seasons and geographical conditions, novel combinations of microorganisms and pigments that can be extracted from the biomass or the culture medium are being evaluated.

Carotenoids

Two psychrophilic bacteria, *Arthrobacter glaciobacter* and *Arthrobacter flavus* sp. nov., have been discovered as yellow pigments producers. Their pigments were characterized as three *C₆₀*–carotenoids with molecular formulae *C₅₀H₇₄O₆* (Fig. 2). More recently, *Arthrobacter aralensis*, one of the major bacterial species found at the surface of smear-ringed cheeses, has been reported as a yellow pigment producer, pigments which were tentatively identified as carotenoids. Furthermore, the carotenoids excreted by this strain may also belong to the *C₅₀* subfamily.

Indigoidine

Brilliant blue in color and water-insoluble pigments produced by *Arthrobacter actrocyaneus* and *Arthrobacter polychromogenes* were identified as indigoidine and its derivatives (Fig. 3).

Another strain which produces a blue pigment related to indigoidine is *Arthrobacter crytaketoepides*, although colonies of this *Arthrobacter* appear brilliant green in color. The strain *Arthrobacter oxydans* has also been reported that it produces the blue pigment which is also related to indigoidine.

Porphyrins

Many bacteria in the genus *Arthrobacter* produce red pigment porphyrins. A compound belonging to the family of red extracellular pigments porphyrin was isolated in *A. phototrophus*, *A. phagophilus* and *A. aurinae*, and identified as coproporphyrin III, *C₅₅H₇₄N₄O₃* (Fig. 5). Another form of porphyrin was also described from pigment excreted by *A. lividus*. This pigment was identified as uroporphyrin IV, *C₅₅H₇₄N₄O₃* (Fig. 6).

Carotenoids

Red-carotenoids accumulation in *Arthrobacter agilis*, a psychrophilic bacterium isolated from Antartic sea ice, has been investigated. The pigments were identified as a series of geometrical isomers of the *C₅₀* carotenoid bacterioruberin (Fig. 7). Another *Arthrobacter*, *Arthrobacter roseniae* sp. nov., has been also reported to produce red-carotenoids.

Indochrome

Apart from indigoidine, other chromatophores of the water-soluble pigments produced by *A. atrocyaneus* and *A. polychromogenes* were identified as indochromes with chemical formulae *C₅₀H₇₄N₄O₃* (Fig. 4). These pigments were released into the culture liquid only by indigoidine-producing bacteria.

Riboflavin

Riboflavin *Arthrobacter polychromogenes* isolated from soil excreted a yellow pigment during exponential growth, pigment which was identified as riboflavin, *C₅₀H₇₄N₄O₃*, also known as vitamin B₂ (Fig. 1).

The genus Arthrobacter

The genus *Arthrobacter* is one among the most diverse microbial groups which have been found to produce pigments. Most of bacteria in this genus produce a range of pigments with orange, yellow, blue, green or red hues. At the present time, 80 species in this genus have been accepted by taxonomists. However, the purification and characterization of pigments produced by bacteria belonging to the genus *Arthrobacter* have not been frequently conducted up to the complete description of the chemical structures and the role(s) of pigments in these strains.

Conclusion

Pigments produced by microorganisms gain interest from the scientific community not only as a taxonomic tool to identify and classify the microorganisms but also for a commercial purpose. The utilization of natural pigments in manufacturing has been increasing since the nineties due to the consumer awareness to the toxicity problems linked to synthetic pigments. Microorganisms seem to be a reasonable choice for colorant production due to biotechnological advantages e.g. production regardless of season and geographical conditions; controllable and predictable yield. The genus *Arthrobacter* is one among diverse microorganisms which has been found to produce pigments with several hues. Furthermore, these bacteria have been commonly found in various environments. By these advantageous points, the study of the bacteria belonging to the genus *Arthrobacter* might lead to the discovery a novel source of natural colorants.
PIGMENTS PRODUCED BY THE BACTERIA BELONGING TO THE GENUS ARTHROBACTER

Sutthiwong N.1,2, Caro Y.2, Fouillaud M.2, Laurent P.3, Valla A.4, Dufossé L.2,5

1 Agricultural Technology Department, Thailand Institute of Scientific and Technological Research, Pathum Thani, Thailand
2 Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, ESIROI, Université de La Réunion, Sainte-Clotide, Ile de La Réunion, France
3 Département Génie Biologique, IUT, Université de La Réunion, Saint-Pierre, Ile de La Réunion, France
4 FRE 2125 CNRS, Chimie et Biologie des Substances Naturelles, Thiverval-Grignon, France
5 Laboratoire ANTiOX, Université de Bretagne Occidentale, Pôle Université Pierre-Jakez Hélias, Quimper, France
E-mail: Laurent.Dufosse@univ-reunion.fr

Abstract
Since several decades, pigments have been used as a taxonomic tool for the identification and classification of bacteria. Nowadays, pigment producing microorganisms have been also widely interested in scientific disciplines because of their biotechnological potential. With the growing interest in microbial pigments because of factors such as production regardless of season and geographical conditions, novel microorganisms which their pigments can be extracted are being evaluated. In the nature, a numerous number of microorganisms e.g. yeast, fungi, algae and bacteria produce pigments. The genus Arthrobacter is one among diverse microorganisms which has been found to produce pigments. Most of bacteria in this genus produce a range of pigments. Several previous studies show that pigments produced by bacteria belonging to the genus Arthrobacter have various hues depending on the chromophore which is present, e.g. yellow by carotenoid and riboflavin, green and blue by indigoidine and indochrome, and red by porphyrins and carotenoids. Since long time numerous strains in this genus have been reported that their colonies are colored; however, the purification and characterization of their pigments were not frequently conducted until well know chemical structures and role in these strains. Consequently, a study of pigments produced by the genus Arthrobacter may be worthy to play attention for discovering a novel source of natural colourants.

References
7th International Congress on Pigments in Food

June 18-21, 2013
Novara, Italy
Scientific Committee
Øyvind M. Andersen (Norway)
Marco Arlorio (Italy - Chair)
George Britton (United Kingdom)
Reinhold Carle (Germany)
Laurent Dufossé (Réunion Island)
José Empis (Portugal)
Vincenzo Fogliano (Italy)
Nicola Galaffu (Switzerland)
Vural Gökmen (Turkey)
Marina Heinonen (Finland)
Adriana Mercadante (Brazil)
Maria Roca Lopez Cepero (Spain)
Steven Schwartz (USA)
Livia Simon-Sarkadi (Hungary)
Carmen Socaciu (Romania)

Organizing Committee
Marco Arlorio (Chair)
Jean Daniel Coïsson
Vincenzo Fogliano
Daniele Giuffrida
Aldo Martelli
Fabiano Travaglia

Secretariat
Matteo Bordiga
Elisabetta Cereti
Cristiano Garino
Monica Locatelli

e-mail: pif2013@pif2013.org
Phone: +39 0321 375873
www.pif2013.com
18 JUNE

<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1 Chemistry and Biochemistry</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.30 - 17.00</td>
<td>Opening ceremony and welcome</td>
</tr>
</tbody>
</table>
| 17.00 - 17.40 | Plenary lecture Prof. G. BRITTON (University of Liverpool, U.K.)
 “NATURAL CAROTENOIDS: A STUDY IN OILS AND WATER COLOURS” |
| 17.40 - 18.00 | CAROTENOID ESTER PROFILES IN SOLANUM TUBEROSUM AND SOLANUM PHUREJA CULTIVARS
 Burmeister A., Bondiek S., Jerz G., Fleischmann P.
 Institute of Food Chemistry, TU Braunschweig, Braunschweig, Germany |
| 18.00 - 18.20 | INTRAMOLECULAR AND INTERMOLECULAR FACTORS AFFECTING THE DEGRADATION KINETICS OF XANTHOPHYLL ESTERS
 Jarén-Galán M., Hornero-Méndez D., Pérez-Gálvez A.
 Food Biotechnology Department, Instituto de la Grasa (CSIC), Sevilla, Spain |
| 18.20 - 18.40 | ANALYTICAL AND TECHNOLOGICAL ASPECT OF CAROTENOIDS FROM RED-BELL PEPPER
 Daood H.G., Palotas G., Palotas G., Pek Z.; Helyes L.
 Szent Istvan University & Univer Products PSI |
19 JUNE

SESSION 1 CHEMISTRY AND BIOCHEMISTRY

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 - 9.40</td>
<td>Plenary lecture Prof. Ø.M. ANDERSEN (University of Bergen, Norway) “DIFFERENCES IN ANTHOCYANIN CONTENT OF FOOD AND NATURAL SOURCES CORRELATED WITH DIFFERENCES IN ANTHOCYANIN CHEMISTRY AND PROPERTIES”</td>
</tr>
<tr>
<td>9.40 - 10.00</td>
<td>ANTHOCYANIN-SYNTHESIZING TOMATO GENOTYPE ‘SUN BLACK™’ AS PRINCIPAL INGREDIENT FOR A NEW FUNCTIONAL TOMATO SAUCE</td>
</tr>
<tr>
<td></td>
<td>Blando F.¹, Albano C.¹, Gerardi C.¹, Mita G.¹, Mazzucato A.²</td>
</tr>
<tr>
<td></td>
<td>¹ Institute of Sciences of Food Production, CNR, Lecce, Italy; ² Department of Sciences and Technologies for Agriculture, Forestry, Nature and Energy, Tuscia University, Viterbo, Italy</td>
</tr>
<tr>
<td>10.00 - 10.20</td>
<td>STUDIES ON COUPLING REACTIONS OF PROANTHOCYANIDINS AND MALVIDIN-3-O-GLUCOSIDE IN A WINE-LIKE MODEL SOLUTION SYSTEM</td>
</tr>
<tr>
<td></td>
<td>Nickolaus P., Weber F., Durner D.</td>
</tr>
<tr>
<td></td>
<td>Competence Center for Viticulture & Enology, Neustadt an der Weinstraße, Germany.</td>
</tr>
<tr>
<td>10.20 - 10.40</td>
<td>POST-HARVEST MODIFICATIONS ENHANCE THE ZEAXANTHIN CONTENT IN VEGETABLES</td>
</tr>
<tr>
<td></td>
<td>Esteban R.¹, Fleta E.¹, Buezo J.¹, Miguez F.¹, Becerril J.M.¹, García-Plazaola J.I.</td>
</tr>
<tr>
<td></td>
<td>¹ Department of Plant Biology and Ecology, University of Basque Country, UPV/EHU, Bilbao, Spain</td>
</tr>
<tr>
<td>10.40 - 11.00</td>
<td>Coffee break</td>
</tr>
<tr>
<td>11.00 - 12.00</td>
<td>TIME FOR POSTER SESSION</td>
</tr>
<tr>
<td>12.00 - 12.20</td>
<td>DESCRIPTION OF A NEW CHLOROPHYLL CATABOLITE IN RIPENED FRUITS OF QUINCE (Cydonia Oblonga, Mill.)</td>
</tr>
<tr>
<td></td>
<td>Roca M., Rios J.J., Pérez-Gálvez A.</td>
</tr>
<tr>
<td></td>
<td>Food Biotechnology Department, Instituto de la Grasa (CSIC), Sevilla, Spain.</td>
</tr>
<tr>
<td>12.20 - 12.40</td>
<td>RELATIONSHIPS AMONG FLAG LEAF CHLOROPHYLL CONTENT, AGRONOMICAL TRAITS, AND SOME PHYSIOLOGICAL TRAITS OF WINTER BREAD WHEAT GENOTYPES</td>
</tr>
<tr>
<td></td>
<td>Bahar B., Sirat A., Kilic R., Aydin I.</td>
</tr>
<tr>
<td></td>
<td>(Siran Vocational School, Gumushane University, Gumushane, Turkey)</td>
</tr>
<tr>
<td>12.40 - 13.00</td>
<td>OXIDATION ROUTES FOR BETACYANINS</td>
</tr>
<tr>
<td></td>
<td>Wybraniec S.¹, Szot D.¹, Nemzer B.², Pietrzkowski Z.³</td>
</tr>
<tr>
<td></td>
<td>¹Department of Analytical Chemistry, Cracow University of Technology, Cracow, Poland; ²Chemistry Research, FutureCeuticals Inc., Momence, IL, USA; ³Applied BioClinical Inc., Irvine, CA, USA.</td>
</tr>
</tbody>
</table>
19 JUNE

SESSION 2 (part 1) TECHNOLOGY, BIOTECHNOLOGY, AND PROCESSING

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 14.00 - 14.40 | Plenary lecture prof. Vural GÖKMEN (Hacettepe University, Ankara, Turkey)
"ARTIFICIAL INTELLIGENCE: IMPROVING THE COLOR MEASUREMENT" |
| 14.40 - 15.00 | INFLUENCE OF SOME OAK WOOD COMPONENTS ON STABILITY OF MALVIDIN-3-GLUCOSIDE AND CHROMATIC CHARACTERISTICS IN MODEL WINE SOLUTIONS
Correia A.C., Jordão A.M.
Agrarian Higher School, Polytechnic Institute of Viseu (CI&DETS), Viseu, Portugal. |
| 15.00 - 15.20 | STABILIZATION OF ANTHOCYANIN–METAL CHELATES WITH HYDROCOLLOIDS FOR THEIR APPLICATION AS BLUE FOOD COLORANTS
Buchweitz M., Kammerer D. R., Carle R.
Institute of Food Science and Biotechnology, Chair Plant Foodstuff Technology, Hohenheim University, Stuttgart, Germany. |
| 15.20 - 15.40 | STABILISATION OF BEETROOT DERIVED BETANIN THROUGH INTERACTION WITH AN EXTRACT FROM BARBADOS CHERRY
Kendrick A.
Diana Food Division, Rennes, France. |
| 15.40 - 16.20 | Plenary LECTURE Prof. G. CRAVOTTO (University of Turin, Italy)
"MICROWAVE AND ULTRASOUND ASSISTED FOOD PIGMENTS EXTRACTION: HIGHLY EFFICIENT REACTORS FOR GREEN, SUSTAINABLE PROCESSES" |
SESSION 3 PIGMENTS FROM MICROALGAE

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 - 9.40</td>
<td>Plenary lecture Prof. Eriksen N.T. (University of Aalborg, Denmark) PIGMENTS FROM MICROALGAE: A NEW PERSPECTIVE WITH EMPHASIS ON PHYCOCYANIN</td>
</tr>
<tr>
<td>9.40 - 10.00</td>
<td>Invited lecture ALGAL CAROTENOIDS AS NOVEL PIGMENTS IN NUTRITION Christaki E. Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.</td>
</tr>
<tr>
<td>10.00 - 10.20</td>
<td>FUNCTIONAL FOOD DEVELOPMENT USING AQUEOUS EXTRACT OF ARTROSPIRA (SPIRULINA) MAXIMA RICH IN PHYCOBILIPROTEINS Langellotti A.L., Buono S., Vargas I., Martello A., Fogliano V. CRIAcq Research Centre, University of Naples “Federico II”, Portici, Italy</td>
</tr>
<tr>
<td>10.40 - 11.40</td>
<td>TIME FOR POSTER SESSION</td>
</tr>
</tbody>
</table>

SESSION 2 (part 2) TECHNOLOGY, BIOTECHNOLOGY, AND PROCESSING

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.40 - 12.00</td>
<td>NATURAL HYDROXYANTHRAQUINOID PIGMENTS: CURRENT SITUATION AND FUTURE OPPORTUNITIES IN FOOD Caro Y., Fouillaud M., Laurent P., Dufossé L. Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, Université de la Réunion, Sainte-Clotilde, Ile de la Réunion, France</td>
</tr>
<tr>
<td>12.00 - 12.20</td>
<td>DEGRADATION OF ANTHOCYANINS IN PROCESSED STRAWBERRY FRUIT Kermasha S., Borgomano S. Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne de Bellevue, Canada</td>
</tr>
<tr>
<td>12.20 - 13.00</td>
<td>“Short communications“ from selected posters</td>
</tr>
</tbody>
</table>
SESSION 4 HEALTH AND NUTRITION

21 JUNE

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Description</th>
</tr>
</thead>
</table>
| 9.00 - 9.40 | Plenary lecture | Dr. Schweiggert (University of Hohenheim, Germany)
ENHANCED BIOAVAILABILITY OF CAROTENOIDS: THE INFLUENCE OF CHROMOPLAST MORPHOLOGY, DIETARY LIPID, AND THERMAL PROCESSING
Schweiggert R.M.\(^1,2\), Kopec R.E.\(^2,6\), Cooperstone J.L.\(^2\), Villalobos-Gutierrez M.G.\(^3\), Högel J.\(^4\), Young G.S.\(^5\), Francis D.M.\(^7\), Quesada S.\(^8\), Esquivel P.\(^9\), Schwartz S.J.\(^2\), Carle R.\(^1\) |
| 9.40 - 10.00 | | BIOACCESSIBILITY AND CHANGES IN THE CAROTENOID PROFILE FROM MURICI FRUIT AFTER IN VITRO GASTROINTESTINAL DIGESTION
Mariutti L., Rodrigues E., Mandelli F., Mercadante A.
Department of Food Science, University of Campinas, Campinas, Brazil. |
| 10.00 - 10.20 | | A MINI REVIEW ON THE COLOURLESS CAROTENOIDS PHYTOENE AND PHYTOFLUENE. ARE THEY INVISIBLE BIOACTIVE COMPOUNDS?
Meléndez-Martínez A. J.\(^1,2\), Mapelli Brahm P.\(^2\), Stinco C.M.\(^2\) and Wang X-D.\(^1,3\)
\(^1\)J. Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA; \(^2\)Food Colour & Quality Laboratory, Department of Nutrition and Food Science, Universidad de Sevilla, Sevilla, Spain; \(^3\)Department of Nutritional Science, Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA. |
| 10.20 - 10.40 | | DISSECTING THE PHARMACOPHORE OF CURCUMIN: TWO CASE STUDIES
Minassi A., Appendino G.
Department of Pharmaceutical Sciences, University of Piemonte Orientale “A. Avogadro”, Novara, Italy. |
<p>| 10.40 - 11.00 | | Coffee break |
| 11.00 - 12.30 | | ROUND TABLE: New natural pigments from foods: technical applicability and regulatory affairs |
| 12.30 - 13.00 | | Closure ceremony and advertisement of next PIF |</p>
<table>
<thead>
<tr>
<th>Poster Session</th>
</tr>
</thead>
</table>
| **P 01**: Synthesis of water-soluble carotenoids via click-reaction
Agócs A., Háda M., Nagy V., Deli J. |
| **P 02**: Thermal and light stability of β-cryptoxanthin esters
Bunea A., Andrei S., Rugină D., Pintea A. |
| **P 03**: Effect of esterification on thermal stability and antioxidant activity of zeaxanthin
Pintea A., Bunea A., Socaciu C. |
| **P 04**: Measurement of enzymatic hydrolysis of lutein esters from dairy products during *in vitro* digestion
Xavier A.A.O., Garrido-Fernández J., Mercadante A.Z., Pérez-Gálvez A. |
| **P 05**: Oil bodies as a potential microencapsulation carrier for astaxanthin stabilization and safe delivery
Acevedo F., Rubilar M., Villarroel M., Navarrete P., Jofré I., Romero F., Acevedo V., Shene C. |
| **P 06**: Microencapsulation of astaxanthin oleoresin from *Phaffia rhodozyma*
Villalobos-Castillejos F., Yáñez-Fernández J., Barragán-Huerta B.E. |
| **P 07**: Effect of genotype and growing conditions on lutein and β-carotene content of green leafy *Brassica* species
Arrigoni E., Reif C., Berger F., Baumgartner D., Nyström L. |
| **P 08**: Effect of processing on content of vital carotenoids in new vegetable puree
Palotás Gábor, Palotás Gábriella, Daood H., Pék Z., Helyes L. |
| **P 09**: Effect of addition of sodium erythorbate and urucum on the lipid oxidation in pork meat
Figueiredo B., Bragagnolo N. |
| **P 10**: Identification of *Cionosicyos macranthus* carotenoids
Murillo E., Watts M., Reyna G. |
| **P 11**: Bioactive compounds in supercritical CO₂-extracted pumpkin oil
Durante M., Lenucci M.S., D’Amico L., Dalessandro G., Mita G. |
| **P 12**: Evaluation of carotenoids and capsaicinoids content in powder of chilli peppers during one year of shelf-life
Giufrida D., Cavazza A., Dugo P., Torre G., Corradini C., Bignardi C., Dugo G.mo |
| **P 13**: Carotenoids in red fleshed sweet oranges
Merussi G.D., Latado R.R., Rossi E.A., Sylos C.M. |
| **P 14**: Colour changes in heat-treated orange juice during ambient storage
Wibowo S., Vervoort L., Lemmens L., Hendrickx M., Van Loey A. |
| **P 15**: Carotenoid deposition and profiles in peach palm (*Bactris gasipaes* Kunth) fruits, and their implication on its nutritional potential
Hempel J., Esquivel P., Carle R., Schweiggert R.M. |
| **P 16**: Deposition of lycopene, β-carotene, and β-cryptoxanthin in different chromoplast substructures in papaya fruits
Schweiggert R.M., Steingass C.B., Heller A., Esquivel P., Carle R. |
| **P 17**: Evaluation of quality parameters and carotenoid content of three cultivars of mango (*Mangifera indica* L.) from Réunion island
Rosalie R., Chillet M., Joas J., Lechaudel M., Payet B., Vulcain E., Dufossé L. |
| **P 18**: Genuine profiles and bioaccessibilities of carotenoids from red- and yellow-fleshed *Mamey sapote* (*Pouteria sapota*) fruits
Chacón-Ordóñez T., Jiménez V.M., Esquivel P., Carle R., Schweiggert R.M. |
| **P 19**: Transgenic tomatoes and their carotenoid and flavour profiles
Höfelmeier H., Burmeister A., Schwab W., Fleischmann P. |
| **P 20**: Study of the time-course *cis/trans* isomerisation of lycopene, phytoene and phytofluene from tomato
| **P 21**: Carotenoid composition of three Hungarian algae species
Deli J., Vásas G., Parízsa P., Hajdú G., Szabó I., Lambert N. |
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>P 22</td>
<td>HPLC method validation for the determination of fucoxanthin</td>
<td>Travaglia F., Bordiga M., Locatelli M., Colisson J.D., Arlorio M.</td>
</tr>
<tr>
<td>P 23</td>
<td>Carotenoids stabilisation for use in beverages: two different approaches</td>
<td>Mesnier X., Boukobza F., Bily A., Roller M.</td>
</tr>
<tr>
<td>P 24</td>
<td>Effect of heat processing on the profile of pigments and antioxidant capacity of Jalapeño peppers at intermediate ripening stages</td>
<td>Cervantes-Paz B., Ornelas-Paz J. de J., Yahia E.M.</td>
</tr>
<tr>
<td>P 25</td>
<td>Micellization and digestive stability of pigments from Jalapeño peppers at intermediate ripening stages</td>
<td>Victoria-Campos C.I., Ornelas-Paz J. de J.</td>
</tr>
<tr>
<td>P 26</td>
<td>Changes in lutein, chlorophylls and chlorophyll degradation products in pistachio kernels (Pistacia vera) during roasting</td>
<td>Pumilia G., Schwartz S.J., Cichon M.J., Giuffrida D., Dugo G.m.o</td>
</tr>
<tr>
<td>P 27</td>
<td>Decolouration processes under non-oxygen thermal auto-oxidation of chlorophyll and carotenoids fractions in virgin olive oils</td>
<td>Aparicio-Ruiz R., Gandul-Rojas B.</td>
</tr>
<tr>
<td>P 28</td>
<td>Pigment changes during processing of green table olive specialities treated with alkali and without fermentation</td>
<td>Gallardo-Guerrero L., Gandul-Rojas B.</td>
</tr>
<tr>
<td>P 29</td>
<td>Polyphenols and volatile compounds in Ogliarola and Cellina olive</td>
<td>Romani A., Banelli L., Fierini E., Mancuso S., Masi E., Haimler D.</td>
</tr>
<tr>
<td>P 30</td>
<td>Chlorophyllian pigments in extra virgin olive oils</td>
<td>Rovellini P., Venturini S., Fusari P.</td>
</tr>
<tr>
<td>P 31</td>
<td>Subcellular distribution in olive fruit of peroxidise activity on chlorophyll substrate</td>
<td>Vergara-Dominguez H., Roca M., Gandul-Rojas B.</td>
</tr>
<tr>
<td>P 32</td>
<td>Chlorophyll and carotenoid pigments in a survey of marketed apple varieties</td>
<td>Delgado-Pelayo R., Gallardo-Guerrero L., Hornero-Mendez D.</td>
</tr>
<tr>
<td>P 33</td>
<td>Quantitation of polyphenols in different apple varieties cultivated in Aosta valley</td>
<td>Valentini S., Sado A., Chasseur M., Thedy L., Lale Murix H., Barrel I., Chatel A.</td>
</tr>
<tr>
<td>P 34</td>
<td>Anthocyanins, phenolic acids and antioxidant activity in yellow, red and purple-fleshed potatoes after steam cooking</td>
<td>Bellumori M., Innocenti M., Cerretani L., Mulinacci N.</td>
</tr>
<tr>
<td>P 35</td>
<td>Chemical characterization and antioxidant activity of six rice cultivars grown in Piedmont (pigmented and non-pigmented)</td>
<td>Bordiga M., Colisson J.D., Locatelli M., Travaglia F., Arlorio M.</td>
</tr>
<tr>
<td>P 36</td>
<td>Effect of the use of enzymatic preparations on extraction of phenolic compounds from blue maize (Zea mays L.), from the region of Tlaxcala, Mexico</td>
<td>Martínez de Santos M.L., Conteras-Llano L.E., Lozada-Ramírez J.D., Ortega-Regules A.E.</td>
</tr>
<tr>
<td>P 37</td>
<td>Techno-functional properties of tomato sauce fortified with anthocyanin pigments</td>
<td>Blando F., Biasco M., Albano C., Gerardi C., Dal Porto L., Mita G.</td>
</tr>
<tr>
<td>P 38</td>
<td>Effect of post-harvest treatment on anthocyanin content and total phenolics in mango (Mangifera indica L.) peels</td>
<td>Geerkens C.H., Müller-Maatsch J.T.L., Geissler M., Carle R.</td>
</tr>
<tr>
<td>P 39</td>
<td>Maqui (Aristotelia chilensis (Mol.) Stuntz) – Detailed analysis of the highly pigmented “superfruit”</td>
<td>Brauch J., Buchweitz M., Carle R.</td>
</tr>
<tr>
<td>P 40</td>
<td>Prunus mahaleb L. fruit extracts: a novel source for natural food pigments</td>
<td>Gerardi C., Albano C., Blando F., Pinthus E., Rescio L., Mita G.</td>
</tr>
<tr>
<td>P 42</td>
<td>Anthocyanins extraction from mulberry by a combination of high hydrostatic pressure and enzymatic hydrolysis as emerging technology</td>
<td>Kim C.-T., Maeng J.-S., Kim C.-J., Cho Y.-J., Kim N., Oh H.-J., Kwon S.-J., Sung G.B.</td>
</tr>
<tr>
<td>P 43</td>
<td>Anthocyanins and bioactives content in healthy red fruit drinks</td>
<td>Castellar M.R., Díaz-García M.C., Obón J.M., Vicente-Castillo A.</td>
</tr>
</tbody>
</table>
P 44: Bioactive compounds and antioxidant activity in fruits from Atlantic rainforest, Southeast Brazil
Azevedo-Silva N., Rodrigues E., Mercadante A.Z., Oyama L.M., De Rosso V.V.

P 45: Phenolic composition of Nebbiolo grapes from Piedmont: changes during ripening and identification of geographic origin
Locatelli M., Travaglia F., Bordiga M., Coïsson J.D., Arlorio M.

P 46: Antioxidant pigments in red grape juices (Vitis vinifera L. cv Aglianico N.): in vitro bioaccessibility, bioavailability and plasma protein interaction
Tenore G.C., Ritieneri A., Campiglia P., Mantra M., Coppola L., Novellino E.

P 47: Stability of naturally coloured food plant extracts
Papetti A., Gazzani G.

P 48: Color diversity and antioxidant activity in cactus pear fruits from Southern Italy genotypes

P 49: Betanin stability in selected aqueous-organic solutions influenced by heavy metals
Wybraniec S., Szot D., Nemzer B., Pietrzkowski Z.

P 50: Teaching food biotechnology in secondary schools using riboflavin as example
Pietzner V., Zorn H.

P 51: Application and stability of the natural pigment neocandenatone in candy products in comparison with a commercial anthocyanin
Gutierrez Zúñiga C., Yáñez-Fernández J., Barragán-Huerta B.E.

P 52: Characterization and genetic fingerprint of saffron
Vignolini P., Pinelli P., Albertini E., Romani R.

P 53: Extraction methods of natural pigments from stamen of saffron flower
Einafshar S., Rohani R., Khorsand Beheshti H.

P 54: Effect of salt-stress on the production of pigments by Chlorella vulgaris under heterotrophic culture
Benavente-Valdés J.R., Montañez J.C., Aguilar C.N., Méndez-Zavala A.

P 55: Carotenoids profile of ultrasound-assisted extract Phormidium sp.

P 56: Microorganisms used as pigment source
Sariçoban C., Battal S.

P 57: Pigmented filamentous fungi isolated from tropical marine environments around Réunion island
Fouillaud M., Boyer E., Fel A., Caro Y., Dufossé L.

P 58: Valorisation of vinasse, a rum distillery effluent, by the production of carotenoid pigments using filamentous fungi
Dorla E., Caro Y., Fouillaud M., Dufossé L., Laurent P.

P 59: Pigments produced by the bacteria belonging to the genus Arthrobacter
Suithiwong N., Caro Y., Fouillaud M., Laurent P., Valla A., Dufossé L.

P 60: Characterization of Arthrobacter arilaitensis pigmentation using spectrocolorimetry
Suithiwong N., Caro Y., Fouillaud M., Dufossé L.

P 61: Modeling thermal stability of red pigments produced by Penicillium purpurogenum GH2

P 62: pH stability of red pigments produced by Penicillium purpurogenum GH2

P 63: Preparation of brown-coloured submicron-sized hazelnut skin fiber with high antioxidant capacity using high shear homogenization
Ozdemir K.S., Yilmaz C., Gökmen V.

P 64: Survey on occurrence of aminocarmine acid in E120 (carmine)-labeled food additives and beverages
Sabatino L., Scordino M., Gargano M., Lazzaro F., Borzl M.A., Traulo P., Gagliano G.
The Organizing Committee expresses sincere thanks to