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Abstract: In this paper, we propose an approximation method based

on Picard iterations deduced from the Doléans–Dade exponential for-

mula. Our method allows to approximate trajectories of Markov pro-

cesses in a large class, e.g. solutions to non-Lipchitz SDEs. An applica-

tion to the pricing of Asian-style contingent claims in the CEV model is

presented and compared to other methods of the literature.
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1. Introduction

In frictionless models without arbitrage opportunities, it is possible to define

the price of a contingent claim as the initial value of the unique portfolio

process whose terminal value coincides with the payoff, see [4, Section 3.2.2].

The price of a replicable contingent claim may be deduced as an expecta-

tion as soon as the price process is a local martingale and the replicating

portfolio is a martingale under some equivalent probability measure. If the
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price dynamics is simple enough, e.g. in the Black and Scholes model, it is

possible to obtain an explicit expression for the Call or Put option prices.

When sophisticated models are considered for a sake of realism [3, 7, 11], one

can not expect to compute easily option prices which do not admit pricing

formulas in closed form. For this purpose, Monte-Carlo methods have been

widely developed to simulate trajectories of diffusion processes and deduce

approximations of European option prices [2, 17].

An alternative way is to study the density function of the terminal price

value as in the Black and Scholes model [1]. This is also possible for the

CEV model [18] where analytic expressions of European Call and Put op-

tion prices are deduced. Nevertheless, it is not possible to evaluate the price

of an Asian option since a knowledge of the whole trajectory is required.

Moreover, the Monte Carlo discretization method seems to be useless as the

diffusion coefficient is not Lipschitz so that the Euler scheme should explode.

In [9, 16], the asset price process is alternatively approximated through a

Picard iteration scheme followed by approximations based on Wiener–Ito

chaos expansions. Only the first three terms in the expansions are consid-

ered as significative and the associated density functions are approximated.

The accuracy of the suggested numerical method illustrated by numerical

implementations is highlighted even if it is not confirmed by mathematical

arguments. A direct discretization scheme based on Doléans-Dade formula is

also used (without mathematical proof of the convergence) in [20] to simulate

trajectories in the CEV model. Inspired by these works, our goal is to study

the method based on Picard iterations to approximate Asian option prices

when the risky asset dynamics is a stochastic differential equation with non

Lipschitz-coefficients.

The outline of our work is as follows. By a truncation, we first approximate

the stochastic process of interest by a diffusion process with Lipschitz coeffi-

cients. Second, we introduce a Picard iteration technique that approximates

the process as a Doléans-Dade exponential. Finally, a Monte Carlo discretiza-

tion scheme is implemented. Comparatively to the classical Euler scheme, we

obtain a convergence order n instead of
√
n where n is the number of discrete
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dates. The method may be applied to the pricing of a large class of Euro-

pean and Asian options. We illustrate it by computing prices of average Put

options in the CEV model where the diffusion coefficient is not Lipschitz.

Comparing with the exact formulas and other techniques, our method ap-

pears to provide accurate results. Moreover, as soon as we consider an average

Put option with more than three dates, our method is less time-consuming

than the method combining Monte Carlo simulations and analytic expres-

sions. Nevertheless, in some cases, a simple truncated Euler scheme appears

to be rather efficient whereas the direct discretization scheme based on the

Doléans-Dade formula without truncation does not converge. For some other

cases, e.g. the CEV model with β > 1, we clearly observe that the simple Eu-

ler scheme explodes but, in that case the backward Euler–Maruyama scheme

is the most efficient.

2. Model

2.1. Notations

We denote by R the set of all real numbers.

The smallest σ-algebra containing a family of subsets A is denoted by σ(A).

The set of all bounded real-valued functions on [0, T ] is denoted by B([0, T ]).

Let (Ω,F , P ) be a stochastic basis with a complete filtration F = (Ft)t∈[0,T ]
satisfying the usual hypothesis and T > 0 is fixed. We consider a standard

Brownian motion W adapted to F . For any predictable process H, we con-

sider the stochastic integral of H with respect to W denoted by

H ·Wt :=

∫ t

0

HudWu, t ∈ [0, T ],

when existence holds. The Doleans-Dade exponential is denoted by

Et(H) = exp

(
H ·Wt −

1

2

∫ t

0

H2
udu

)
, t ∈ [0, T ].

In the following, S0 is the deterministic initial value at time 0 of a process

S modelling an asset price in a financial market model. In the following,
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we consider uniform partitions (τn)n≥0 of the interval [0, T ]. The grid τn is

composed of n + 1 dates where n is called the order of the discretization

scheme. It is defined by

τn = {t0 = 0, t1 = T/n, t2 = 2T/n, · · · tn = T}.

We use the abuse of notation tni = ti = (T/n)i, i = 0, · · · , n, for a sake of

simplicity. If X is a stochastic process defined on [0, T ], we denote by X(n)

the piecewise constant process defined by

X
(n)
t = Xti , t ∈ [ti, ti+1), X

(n)
T = XT .

2.2. The stochastic differential equation

Let (Ω,F ,F = (Ft)t∈[0,T ],P) be a continuous-time stochastic basis satisfying

the usual assumptions and supporting a standard Brownian motion W , i.e.

Ft := σ(Ws : s ≤ t)∨N where N designates the P-negligible sets. In the case

of a financial market model, there is a risk-free bond given by the interest

rate r0 and a risky asset price stochastic process S.

By [8, Theorem 2.2 p 104], recall that we have the following.

Proposition 2.1. Let σ : [0, T ]×R 7→ R and r : [0, T ]×R 7→ R be Lipschitz

functions. The stochastic differential equation (s.d.e.)

dS(t) = S(t)σ(t, S(t))dWt + S(t)r(t, S(t))dt, S(0) = S0 > 0, (2.1)

admits a unique strong solution S. Moreover, it is positive.

In the sequel, we shall consider locally Lipschitz coefficients r and σ and

we assume that r is bounded. We suppose that S = 0 on [τ ∧ T, T ] where

τ := inf{t : St = 0}, meaning that 0 is an absorbing point. The s.d.e. (2.1)

admits a unique non negative solution under the conditions of the proposition

above but we only suppose one of the following Conditions 2.2 or 2.3.
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Condition 2.2. There exists constants Cκ > for every κ > 0, such that

|σ(t, x ∧ κ)− σ(u, x ∧ κ)| ≤ Cκ|t− u|, (t, u, x) ∈ (R+)2 × (0,∞),

|r(t, x ∧ κ)− r(u, x ∧ κ)| ≤ Cκ|t− u|, (t, u, x) ∈ (R+)2 × (0,∞),

|σ(t, x ∧ κ)− σ(t, y ∧ κ)| ≤ Cκ|x− y|, (t, x, y) ∈ R+ × (0,∞)2,

|r(t, x ∧ κ)− r(t, y ∧ κ)| ≤ Cκ|x− y|, (t, x, y) ∈ R+ × (0,∞)2,

|r(t, x ∧ κ)|+ |σ(t, x ∧ κ)| ≤ Cκ, (t, x, y) ∈ R+ × (0,∞)2.

Condition 2.3. There exists constants Cκ > for every κ > 0, such that

|σ(t, x ∨ κ)− σ(u, x ∨ κ)| ≤ Cκ|t− u|, (t, u, x) ∈ (R+)2 × (0,∞),

|r(t, x ∨ κ)− r(u, x ∨ κ)| ≤ Cκ|t− u|, (t, u, Y ) ∈ (R+)2 × (0,∞),

|σ(t, eX ∨ κ−1)− σ(t, eY ∨ κ−1)| ≤ Cκ|X − Y |, (t,X, Y ) ∈ R×R2,

|r(t, eX ∨ κ−1)− r(t, eY ∨ κ−1)| ≤ Cκ|X − Y |, (t,X, Y ) ∈ R×R2,

|r(t, x ∨ κ)|+ |σ(t, y ∨ κ)| ≤ Cκ, (t, x, y) ∈ R+ × (0,∞)2.

Moreover, when P (τ < T ) > 0, we suppose that the mappings x 7→ σ(t, x)

and x 7→ r(t, x) are differentiable on (0,∞) for all t ∈ [0, T ] and x∇xσ(t, x),

x∇xr(t, x) are bounded on [κ−1,∞) by Cκ.

Remark 2.4. Under Condition 2.2, S admits moments at any order, see

the proof in Section 8. Notice that this assumption is satisfied by the CEV

model dSt = σSβt dWt and, more generally, when σ is of the form σ(t, x) =

ν(t)xβ(t)−1, x > 0, where ν and β ≥ 1 are bounded functions and ν is Lips-

chitz.

Condition 2.3 is satisfied by the CEV model, e.g. when σ is of the form

σ(t, x) = ν(t)xβ(t)−1 where ν is Lipschitz and bounded and 1 − α ≤ β ≤ 1,

α ∈ R+. This also includes the CIR model and more generally mean-reverting

SDEs as used in finance, see numerical simulations below.

In finance, under a risk-neutral probability measure for S, e.g. when the mar-

ket is complete, we are interested in approximating the price of a contingent

claim whose payoff G(S)1τ>T depends on the whole trajectory S = (St)t∈[0,T ].
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Note that the delivered payoff G(S)1τ>T is 0 when ST = 0, i.e. when the firm

having issued the risky asset failed.

We suppose that the functional G : B([0, T ]) → R+ satisfies the Lipschitz

condition:

|G(α)−G(β)| ≤ C||α− β||, α, β ∈ B([0, T ]), (2.2)

where C > 0 and ‖.‖ is the norm of uniform convergence on [0, T ], i.e.

‖f‖ := sup
t∈[0,T ]

|f(t)|, f ∈ B([0, T ]).

If we assume that P is the unique risk-neutral probability measure in a com-

plete market, the smallest price v of the contingent claim G(S)1τ>T is eval-

uated under P by v = Ee−r
0TG(S)1τ>T where E is the expectation under P

and r0 is the constant risk-free interest rate.

In the following, a stochastic process r : u 7→ ru models an interest rate of

the market. The price of the associated bond with initial value 1 is

Ft(r) := exp

(∫ t

0

rudu

)
, t ∈ [0, T ]. (2.3)

We consider a class of payoff functions G adapted to the numerical scheme we

propose. For a sake of simplicity, we make the abuse of notation ru = r(u, Su)

as well as σu = σ(u, Su) so that the notations F (r) and E(σ) make sense.

Definition 2.5. We say that the payoff function G is adapted to the dis-

cretization scheme defined by the partition τn if there exists α(n) ≥ 1, p, q ∈ N
such that, for all Lipschitz functions σ and r satisfying∫ T

0

EF 2p
u (r)E2pu (σ)du <∞,

we have, for some function f ,

|EG(Sr,σ)− EG(S(n)
r,σ )| ≤ f(G, σ, r, p, q)

α(n)

(∫ T

0

[1 + ES2p
r,σ(u)du

)1/q

,

where Sr,σ = F (r)E(σ) and f depends on σ, r, p through the quantities

maxx |σ(t, x)x|p/(1 + |x|2p) <∞ and maxx |r(t, x)x|p/(1 + |x|2p) <∞.
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Recall that F (r) is given by (2.3) and, in the definition above, the process

Sr,σ = F (r)E(σ) is interpreted as a price. Observe that the European call

payoff function is adapted to the discretization whatever α(n) is. Indeed,

the payoff function of the European call option with strike K is G(S) where

G(α) = (α(T )−K)+, α ∈ B([0, T ]) and, since G only depends on the terminal

value of α, we have G(Sr,σ) = G(S
(n)
r,σ ).

The payoff of the average strike Asian call option with strike K is G(S) where

G(α) =

(
1

T

∫ T

0

α(t)dt−K
)+

, α isB([0, T ])−measurable.

Lemma 2.6. The average strike Asian call option function G with strike K

is adapted to the discretization with α(n) = n.

All the proofs are postponed to Section 8.

3. Approximation of the stochastic process

The approximation scheme we propose is obtained in three steps. By a trun-

cation, we first approximate the price process by a diffusion process Sκ,

κ > 0, with bounded and Lipschitz volatility. By Picard iterations, a recursive

scheme is introduced to approximate Sκ by Sκ,m, m ≥ 1, Doléans–Dade so-

lutions to stochastic differential equations defined by iterated and uniformly

bounded volatilities. At last, we discretize Sκ,m in time.

3.1. Volatility truncation

Let κ ∈ R+ be such that κ ≥ sup(t,x)∈R2 r(t, x) and κ > S0 ∨ 1 when

Condition 2.2 holds and κ−1 < min(max r, S0 ∨ 1) when Condition 2.3 is

satisfied. Consider Yκ the unique solution to the s.d.e.

Yκ(0) = 0, (3.4)

dYκ(t) = σκ(t, S0e
Yκ(t))dWt + γκ(t, S0e

Yκ(t))dt,
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where σκ(u, x) := σ(u, x ∧ κ) and rκ(u, x) := r(u, x ∧ κ) when Condition

2.2 holds. If Condition 2.3 holds, we define σκ(u, x) := σ(u, x ∨ κ−1) and

rκ(u, x) := r(u, x ∨ κ−1). At last, we define γκ(t, x) = rκ(t, x) − 1
2
σ2
κ(t, x).

Observe that Sκ := S0e
Yκ satisfies, for all t ∈ [0, T ],

Sκ(0) = S0,

Sκ(t) := S0 exp

[∫ t

0

σκ(u, Sκ(u))dWu +

∫ t

0

γκ(u, Sκ(u))du

]
.

Lemma 3.1. Suppose that Conditions 2.2 and 2.3 hold respectively. Then,

Sκ converges pointwise to S as κ→∞ on the interval [0, T ] ( on the interval

[0, τ) respectively).

In the following, we use the following assumption:

Condition 3.2. There exists p > 0 and a constant Cp such that

E sup
t∈[0,T ]

S2p
t + sup

κ
E sup
t∈[0,T ]

S2p
κ (t) ≤ Cp, ∀κ > 0. (3.5)

By the Lemmas 3.4 and 3.5 proven in appendix, we deduce that Condition

3.2 is satisfied for the large class of models satisfying the following Condition

3.3 above even if the coefficients of (2.1) are unbounded.

Condition 3.3. There exists L > 0 and α ∈ (0, 1] such that the following

conditions are satisfied under Conditions 2.2 and 2.3 respectively:

(I): 0 < σ2(t, x) ≤ L(1 + | ln(ln(x))|1x>1), (t, x) ∈ R×R,

|r(t, x)| ≤ L, (t, x) ∈ R×R,

(II): |σ(t, x)|+ |r(t, x)| ≤ L
|x|α + L, x > 0.

Lemma 3.4. Assume that Condition 3.3 is satisfied. Then, for all p ≥ 0,

there exists a constant Cp independent of κ such that E supu≤T (Sκ(u))p ≤ Cp.

Lemma 3.5. Assume that Condition 3.3 is satisfied. Then, for all p ≥ 0,

there exists a constant C such that E supu≤T (Su)
p ≤ Cp.

Lemma 3.6. Suppose that Condition 3.2 is satisfied for some p > 0. More-

over, assume that Condition 3.3 (II) holds if σκ = σ(·, · ∨κ−1). Then, for all
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l ≥ 1, l ∈ N, there exists a constant Cl,p such that

σκ = σ(·, · ∧ κ)⇒ E sup
t∈[0,T ]

|Sκ(t)− St|p ≤
Cl,p
κl
,

σκ = σ(·, · ∨ κ−1)⇒ E sup
t∈[0,τ∧T ]

|Sκ(t)− St|p ≤ Cpα(τ, κ),

where α(τ, κ)→ 0, as κ→∞.

This result shows that S may be approximated by Sκ in the Lp sense, p > 0,

as κ→∞.

3.2. Picard iterations

In this section, we construct iterated Doleans-Dade processes Sκ,m, m ∈ N,

such that Sκ,m converge to Sκ when m → ∞. To do so, we introduce the

following scheme:

Sκ,0 := S0,

Sκ,m+1(t) := Ft(rκ,m+1)Et(σκ,m+1), t ∈ [0, T ],

where

σκ,m+1(t) := σκ
(
t, Sκ,m(t)

)
, m ≥ 0, t ∈ [0, T ],

rκ,m+1(t) := rκ
(
t, Sκ,m(t)

)
, m ≥ 0, t ∈ [0, T ].

Notice that we have

Sκ,m+1(t) = S0 exp

[∫ t

0

σκ
(
u, Sκ,m(u)

)
dWu +

∫ t

0

γκ
(
u, Sκ,m(u)

)
du

]
.

Let us introduce

Yκ,m(t) := log Sκ,m(t)− logS0, t ∈ [0, T ].

This process satisfies the following s.d.e.

dYκ,m+1(t) = σκ
(
t, Sκ,m(t)

)
dWt + γκ

(
t, Sκ,m(t)

)
dt.

We shall prove the convergence of Sκ,m to Sκ in L2 as m→∞.
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Lemma 3.7. The sequence Yκ,m converges in L4 to Yκ,∞ and∥∥∥∥sup
u≤T

∣∣Yκ,m+1(u)− Yκ,m(u)
∣∣∥∥∥∥

2

≤ C(1 + S0)(Cκ)
m+1

√
T
m+1√

(m+ 1)!
, (3.6)∥∥∥∥sup

u≤T

∣∣Yκ,m+1(u)− Yκ,m(u)
∣∣∥∥∥∥

4

≤ C(1 + S0)(Cκ)
m+1 (T 1/4)m+1

(m+ 1)!)1/4
, (3.7)

where C is a constant which does not depend on κ and Cκ is a constant which

depends on κ.

Corollary 3.8. There exists constants C,Cκ independent of m such that

E sup
u≤t

∣∣Yκ,∞(u)− Yκ,m(u)
∣∣2 ≤ C(1 + S2

0)
∞∑

j=m+1

(Cκ)
j

j!
,

E sup
u≤t

∣∣Yκ,∞(u)− Yκ,m(u)
∣∣4 ≤ C(1 + S4

0)
∞∑

j=m+1

(Cκ)
j

j!
.

Lemma 3.9. For every κ, there exists constants C,Cκ such that

E sup
t∈[0,T ]

(
Sκ,m+1(t)− Sκ,m(t)

)2 ≤ Cκ
√

E sup
t∈[0,T ]

(Yκ,m(t)− Yκ,m−1(t))4

≤ Cκ
(Cκ)

m

√
m!

.

By the lemma above, we deduce that Sκ,m converges to Sκ,∞ in L2 with

respect to the uniform convergence.

Lemma 3.10. For every κ, there exists a constant Cκ such that

E sup
t∈[0,T ]

(
Sκ,∞(t)− Sκ,m(t)

)2 ≤ Cκ

∞∑
j=m

(Cκ)
j

√
j!
.

Note that the limit processes satisfy

dYκ,∞(t) = σκ
(
t, Sκ,∞(t)

)
dWt + γκ(t, Sκ,∞(t))dt, (3.8)

dSκ,∞(t) = Sκ,∞(t)σκ
(
t, Sκ,∞(t)

)
dWt + Sκ,∞(t)rκ

(
t, Sκ,∞(t)

)
dt. (3.9)

It follows that Sκ,∞ = Sκ and Yκ,∞ = Yκ since uniqueness holds.
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3.3. Volatility discretization based on Picard iterations.

In the following, we suppose without loss of generality that T/n ≤ 1 if n

is large enough. We recursively define the processes Sκ,m,n, σκ,m+1,n, m ≥ 0,

as follows:

Sκ,0,n := S0,

σκ,1,n(t) := σκ(ti, S0), rκ,1,n(t) := rκ(ti, S0), ti ≤ t < ti+1,

Sκ,m,n(t) := Ft(rκ,m,n)Et(σκ,m,n), m ≥ 1, t ∈ [0, T ],

σκ,m+1,n(t) = σκ
(
t(n), S(n)

κ,m,n(t)
)
, m ≥ 1, , t ∈ [0, T ],

rκ,m+1,n(t) = rκ
(
t(n), S(n)

κ,m,n(t)
)
, m ≥ 1, t ∈ [0, T ].

where we use the notation t(n) = ti if ti ≤ t < ti+1 and we recall that

Et(σκ,m,n) = exp

[∫ t

0

σκ
(
u(n), S

(n)
κ,m−1,n(u)

)
dWu −

1

2

∫ t

0

σ2
κ

(
u(n), S

(n)
κ,m−1,n(u)

)
du

]
,

Ft(rκ,m,n) = S0 exp

[∫ t

0

rκ
(
u(n), S

(n)
κ,m−1,n(u)

)
du

]
, m ≥ 1, t ∈ [0, T ].

We also define Yκ,m,n = ln(Sκ,m,n/S0).

Lemma 3.11. For all κ > 0, there exists constants ακ, Cκ > 0 such that for

all m,n ≥ 1:

E sup
t∈[0,T ]

∣∣Sκ,m(t)− Sκ,m,n(t)
∣∣2 ≤ ακC

m
κ

n
.

3.4. Main result

In the following, we follow the convention that τ̃κ,m,n = +∞ if P (τ ≤ T ) = 0.

Otherwise, τ̃κ,m,n is defined as

τ̃κ,m,n := inf{t : S(n)
κ,m,n(t) ≤ κ−1}.

Theorem 3.12. Assume that Conditions 2.2 or 2.3 hold and suppose that G

is Lipschitz and consistent of order n with respect to discretization. Suppose

that τ = +∞ a.s. under Condition 2.2. Then, for κ > 0 and m,n ∈ N, there
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are some positive constants ακ, Cκ and sequences εκ > 0, εκ,m > 0, and εκ,m,n

such that

|EG(S)1τ>T − EG(S(n)
κ,m,n)1τ̃κ,m,n>T | ≤ εκ + εκ,m +

ακ(Cκ)
m

n
+ εκ,m,n,

where εκ → 0 as κ → ∞, εκ,m → 0 as m → ∞, εκ,m,n → 0 as n → ∞.

Moreover, εκ,m,n = 0 if P (τ ≤ T ) = 0.

Remark 3.13. In practice, we first fix κ large enough and we fix m large

enough so that εκ,m is sufficiently small. At last, we choose n large enough.

The algorithm’s complexity allowing to compute this scheme is then mn.

Notice that in the case where G(S) only depends on ST and G(0) = 0, then

EG(S) = EG(S)1τ>T which is approximated by EG(S
(n)
κ,m,n)1τ̃κ,m,n>T .

4. Numerical example: the CEV model

The Constant Elasticity of Variance (CEV) model is defined by the dynamics

dSt = σSβt dWt, t ∈ [0, T ], (4.10)

where the parameter β is called the elasticity. We suppose that σ = σLNS
1−β
0

where σLN is the effective lognormal volatility. This implies that the volatility

depends on β as in [18], see also [5, 21] for more details on this model.

Consider the financial market model defined by a Bond B ≡ 1 and the risky

asset price S. We recall that S is a martingale if β ≤ 1. If β > 1, S is a strict

local martingale, i.e. is not a martingale. In both cases, there is no arbitrage

opportunity when using predictable strategies generating portfolio processes

which are bounded from below, see [4, Section 3.2]. Indeed, any self-financing

portfolio process which is bounded from below is a supermartingale.

Let hT be a European or Asian contingent claim. Suppose that hT is bounded,

which is the case for a Put option. Then, by the predictable representation

theorem, the martingale Vt = E(hT |Ft), t ∈ [0, T ], is a self-financing portfolio

process such that VT = hT . We deduce that the unique price for the payoff

hT is well defined as the expectation V0 = EhT . In the following, we illustrate
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our method by estimating V0 = EhT when β > 1 and β < 1 respectively.

The price for the Call option may be easily deduced from the Put-Call parity

and the analytic expression of the expectations ESt, t ∈ [0, T ], see [18].

4.1. The CEV model with elasticity β > 1

Let us introduce δ = (1−2β)(1−β)−1. We suppose that δ > 2 or equivalently

β > 1 so that S is a strictly positive process. The price of the Call option

with strike K > 0 is then given in [18] by

pCall(S0, K, σ, δ, T ) = S0

(
Γ(
δ

2
− 1,

S0

2T
)− χ′2(S0

T
, δ − 2,

K̃

T
)

)
−Kχ′2(K̃

T
, δ,

S0

T
),

where K̃ := K2(1−α)

σ2(1−α)2 , Γ is the normalised incomplete gamma function

Γ(z, x) =
1

Γ(z)

∫ x

0

tz−1e−tdt,

and χ
′2(x, k, λ) is the cumulative density function of the non-central chi-

squared distribution with degrees of freedom k and non-centrality parameter

λ. The price of the Put option with strike K is deduced as

pPut(S0, K, σ, δ, T ) = pCall(S0, K, σ, δ, T )− S0Γ(1− δ

2
,
S0

2T
) +K.

In [18], the price of the Put option is computed analytically for several values

of β > 1 when T = 1, S0 = 100, σLN = 20% and K = 90, 100, 110. These an-

alytical values are compared to the ones obtained by simulating the terminal

value XT :=
S

2(1−β)
T

σ2(1−β)2 . In the following, we compare these results to the values

we obtain when using our method. Actually, we can not expect to obtain the

convergence of Sκ towards S in the Lp sense, p ≥ 1, since Condition 3.2 does

not a priori hold for p ≥ 1, see also Condition 3.3 (I). Indeed, ESκ(t) = S0 for

all t since Sκ is a square integrable martingale. On the other hand, ESt < S0

for all t > 0 as shown in [18] since S is a strict local martingale. Therefore,

ESκ(t) does not converge to ESt as κ → ∞. Nevertheless, when the payoff

function g ≥ 0 is bounded, the dominated convergence theorem yields that
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g(Sκ) → g(S) in the Lp sense as κ → ∞, p ≥ 1, which is enough for our

purpose. Precisely, since S = Sκ on τκ ≥ T , we get that

E
∣∣g(Sκ)− g(S)

∣∣p ≤ (max g)pP

(
sup
t∈[0,T ]

St ≥ κ

)
→ 0, asκ→∞.

This implies that Theorem 3.12 still hold.

Let us compare the Picard method to the analytic one and to the backward

Euler–Maruyama scheme (BEM), see [15]. In the following, we choose m = 3

and σκ(u, x) := σ(u, x ∧ κ) where

κ = S0

(
1 +

5

1 + β2

)
.

This choice has been empirically chosen to improve the performance of our

results for the Put option prices and then implemented for the Asian options.

Recall that the volatility of the model also depends on β. If β = 1.5, we

observed that the approximation error is not smaller if we increase to much

κ. The reason is very simple: choosing κ very large is equivalent to suppose

that κ = +∞ as the maximum of S over all simulated trajectories is finite

since we fix a finite number of dates n+ 1 and a finite number of simulations

N . Theoretically, if κ is very large, we need to increase the number of dates

n as the Lipschitz constant is larger, which is more time consuming.

We choose N = 15000 simulations and n = 1000 so that the discretization

step is T/n. We consider the case K = 100. The presented results are averages

we obtain by repeating more than 1000 times the same simulations so that the

relative standard deviation of the results is smaller than 5% of the estimated

averages.

Naturally, the computation time needed for the analytic method (< 0.01) is

negligible contrary to the needed time for other methods which require to

simulate all the trajectories.

In the following, we compare our method to the Monte Carlo one of [18] and

the BEM method as well (see [15, Section 2, Section 3.4]), requiring that the

radius of the 95% confidence interval is less than 0.025 when applying the law
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β Picard Time in s. BEM Time in s. Analytic Err. (P) Err. (BEM)
1.5 7.8602 6.38 7.8839 0.78 7.9696 1.4% 1.08%
2 7.8995 6.19 7.8930 0.76 7.9789 1.01% 1.08%

2.5 7.9948 6.09 7.9087 0.79 7.9960 0.02% 1.09%
3 8.1332 6.08 8.9329 0.76 8.0211 1.4% 1.10%

3.5 8.2779 6.06 7.9686 0.80 8.0560 2.76% 1.09%
4 8.4006 6.06 8.0200 0.81 8.1033 3.67% 1.03%

4.5 8.4886 6.13 8.0841 0.80 8.1639 3.98% 0.98%
5 8.5348 6.08 8.1583 0.78 8.2345 3.65% 0.93%

5.5 8.5344 5.936 8.2365 0.78 8.3084 2.72% 0.87%
6 8.5015 5.906 8.3086 0.80 8.3786 1.47% 0.84%

6.5 8.4499 6.096 8.3715 0.78 8.4396 0.13% 0.81%
7 8.3821 6.401 8.4228 0.82 8.4882 1.26% 0.77%

Table 1. Put option prices using Picard iterations and the analytic expression respectively
for different values of β > 1.

β Picard Comput. Time BEM Time MC [32] Time Error
1.5 7.961482891 268.748 7.9572 31.73 7.958596698 20.756 0.03%
2 8.001945176 276.356 7.9692 28.28 7.968447144 12.571 0.42%

2.5 8.096442435 286.754 7.9841 26.05 7.981469166 13.68 1.44%
3 8.231139717 298.65 8.0099 23.60 8.002688168 13.098 2.86%

3.5 8.382673524 317.32 8.0483 22.09 8.050143346 10.78 4.14%
4 8.507583601 338.079 8.0948 20.57 8.091346416 7.908 5.15%

4.5 8.594539064 345.449 8.1543 19.06 8.164748506 5.855 5.17%
5 8.631951141 351.436 8.2231 17.13 8.234170007 3.698 4.84%

Table 2. Put option prices using Picard iterations, BEM and Monte Carlo methods
respectively for different values of β > 1 so that the radius of the 95% confidence interval
is less than 0.025.

of large number. The simple Monte Carlo simulation is less time consuming.

Nevertheless, we shall see that the two other methods outperform the Monte

Carlo simulations as soon as we consider an Asian Put option with several

dates.

It is also natural to compare our method to a simple Doléans-Dade scheme

deduced from the dynamics (4.10) where the volatility function σ(x) = σxβ−1

is replaced by σκ(x) = σ(x ∧ κ)β−1. Inspired by the Doleans-Dade formula,

we consider the Doléans-Dade scheme

Snti+1
= Snti exp

{
σκ(S

n
ti

)∆Wti+1
−
σ2
κ(S

n
ti

)

2
∆ti+1

}
, Sn0 = S0, i = 0, · · · , n−1.

In the following table, we compare the approximate prices to the analytic

ones for several values of β by implementing the scheme until the error is

smaller than the one observed in Table 1 by increasing N with the bound

N ≤ 5.106. We choose n = 1000 so that the time step is T/n. The strike is

K = 100 and κ = 400. The error is still computed as the ratio between the

difference of the two prices and the smallest one.
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β Price (truncated Doléans-Dade scheme) Comput. time in seconds N Error

1.5 7.1412 535 5.106 11.6%

2 7.1978 555 5.106 10.85%

2.5 7.2544 553 5.106 10.22%

3 7.3134 549 5.106 9.68%

3.5 7.3779 556 5.106 9.19%

4 7.4524 564 5.106 8.73%

4.5 7.5999 541 5.106 7.42%
5 8.0123 0.014 136 3.65%

5.5 8.4954 0.013 136 2.72%

6 10.7683 523 5.106 28.5%

6.5 11.934 518 5.106 41.4%

7 12.9042 518 5.106 52%

Table 3. Put option prices with truncated Doléans-Dade scheme for different values of
β.

We observe that the results are similar for smaller κ = 120 as the errors are

around 10% and computation times are about 520 seconds. If κ = 800, we

get similar results. The performance is still good for β = 5 but also β = 4

while it is bad for β = 5.5 contrary to the case κ = 400. The best results we

can get seem to be when κ = +∞, i.e. without any truncation, but remains

bad. With a larger n = 10000 and N = 15000, errors go from 2.5% to 10.24%

but computational times are larger than 14 seconds. With only n = 1000,

computation times are smaller, precisely about 1.5 seconds, but the errors

are similar i.e. from 2% to 20%. So, seemingly, it is more efficient to increase

N rather than n if we aim to decrease the error. In any case, comparing with

the results of Table 1, it is clear that our methods outperforms the simple

truncated Euler scheme.

As to a direct discretization from (4.10), i.e. Snti+1
= Snti + Σ(Snti)∆Wti+1

, the

Euler scheme with n = 1000 and N = 15000 explodes without truncation

for β ≥ 3 as we may expect. For β ∈ {1.5, 2, 2.5}, the scheme appears to

be efficient as the error is small (≤ 1.4%) and the computation time is also

smaller (' 1.6 seconds). With the truncation Σ(x) = σ(x∧κ)β where κ = 300,

the errors are about 1.5% for the first values of β > 1 while the errors go to

4.6% for β = 5 to 769% for β = 7. Therefore, a truncation from the simple

Euler scheme seems to be conceivable only for values of β smaller than 5.

At last, we shall see that our method outperforms the classical one based on

Monte Carlo simulations as soon as we consider an Asian Put option of the

form (K − (ST1 − · · ·STJ )/J)+ where J ≥ 3 and T1 < T2 < · · · < TJ = T .
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Let us first consider the case J = 2. In that case, by conditioning, we rewrite

E(2K − ST1 − ST2)+ = EP (ST1) where, by the Markov property, P (s) is the

price of the Put option of strike 2K−s in the CEV model with initial value s

and horizon date T2−T1. As shown in [18], it is possible to directly simulate

the distribution of ST1 . We then analytically deduce the price P (ST1) for

each simulated value of ST1 . By the law of large numbers, we then deduce an

approximation of EP (ST1). With the same parameters as before, we obtain

the following results when T1 = T/2 and T2 = T = 1.

β P Time BEM (B) Time MC Time Error P-C Euler (E) Error E-C Error B-C
1.5 6.2284 6.02 6.3342 0.52 6.3147 0.328 1.39% 6.3983 1.32% 0.31%
2 6.2549 6.4 6.3379 0.52 6.3198 0.133 1.04% 6.4052 1.35% 0.29%

2.5 6.3142 6.178 6.3466 0.53 6.3297 0.121 0.25% 6.4165 1.37% 0.27%
3 6.4027 6.159 6.3603 0.52 6.3438 0.113 0.93% 6.4321 1.39% 0.26%

3.5 6.5011 6.398 6.3780 0.53 6.3625 0.118 2.18% 6.4520 1.41% 0.24%
4 6.5950 6.235 6.3998 0.53 6.3864 0.101 3.27% 6.4772 1.42% 0.21%

4.5 6.6737 6.25 6.4269 0.53 6.4166 0.098 4% 6.5162 1.55% 0.16%
5 6.7267 6.188 6.4623 0.52 6.4544 0.101 4.22% 6.7340 4.33% 0.12%

5.5 6.7465 5.967 6.5060 0.53 6.5003 0.102 3.79% 7.5778 16.58% 0.09%
6 6.7411 5.968 6.5571 0.53 6.5530 0.102 2.87% 12.7244 94.18% 0.06%

6.5 6.7192 5.997 6.6099 0.53 6.6102 0.100 1.65% 25.4794 285.46% 0.00%
7 6.6820 6.000 6.6638 0.53 6.6687 0.100 0.20% 51.2649 668.74 0.07%

Table 4. Asian Put option prices with two dates using Picard iterations (P), the Monte
Carlo methods combined with the analytic expression (MC) and a truncated Euler scheme
(E) respectively. The errors are computed between the Picard method (P) and the Euler
scheme (E) respectively with respect to the combined method (C).

β P Time in s. BEM (B) Time MC Time Error P-C Error B-C
1.5 6.293809919 171.191 6.2947 20.49 6.307557882 10.375 0.22% 0.20%
2 6.314878756 173.881 6.3012 18.93 6.311235573 3.961 0.06% 0.16%

2.5 6.373160059 179.582 6.3126 17.68 6.320525289 3.429 0.84% 0.12%
3 6.460785842 186.615 6.3216 16.33 6.331600424 3.015 2.04% 0.16%

3.5 6.559108888 198.54 6.3398 15.48 6.347881289 2.524 3.33% 0.13%
4 6.655375191 205.6 6.3670 14.41 6.366022368 2.317 4.55% -0.02%

4.5 6.734410841 216.076 6.3994 13.56 6.390785176 2.13 5.38% -0.13%
5 6.781869529 219.877 6.4358 12.62 6.42642745 2.009 5.54% -0.15%

Table 5. Asian Put option prices with two dates using Picard iterations and the Monte
Carlo methods combined with the analytic expression respectively such that the 95% confi-
dence interval radius is smaller than 0.025.

As we may observe, it is still advantageous to combine the Monte Carlo

method with the analytic one in the case of an Asian option with only two

dates. Moreover, we still observe that the simple truncated Euler scheme

is efficient for β ≤ 5 while it produces a large convergence error if β > 5

contrary to the Picard iterations.

Let us now suppose that J = 3. By the Markov property, we rewrite after

conditioning E(3K − ST1 − ST2 − ST3)+ = EP (ST1) where P (s) is the price
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of the Asian Put option of strike 3K− s in the CEV model with initial value

s, intermediate date T2 − T1 and horizon date T3 − T1. By the Monte Carlo

method, we simulate ST1 so that we deduce P (ST1) using the pricer for two

dates we have introduced before. In that case, the complexity explodes as we

need to run two successive Monte Carlo schemes. With the same parameters

but only with β = 1.5 or β = 7 and T1 = T/3, T2 = 2T/3 and T3 = T = 1,

we get the following results:

β P Time BEM Time MC Time Error P-C Euler (E) Error E-C Error B-C
1.5 5.3788 61.73 5.6768 7.87 5.2698 8333 2.07% 5.8172 10.39% 7.72%
7 5.6278 61.83 5.9535 8.36 5.5188 2306 1.98% 10.2290 85.35% 7.88 %

Table 6. Asian Put option price with three dates when β = 1.5 or β = 7 using Picard
iterations, the Monte Carlo methods combined with the analytic expression and the trun-
cated Euler scheme respectively. The errors are computed between the Picard method (P)
and the Euler scheme (E) respectively with respect to the combined method (C).

β P Time BEM Time CI MC Time Error P-C Error B-C
1.5 5.345 1322 5.7254 17.724 0.05 5.26 372089 1.62% 8.85%

Table 7. Asian Put option price with three dates using Picard iterations and the Monte
Carlo methods combined with the analytic expression respectively such that the 95% confi-
dence interval radius is smaller than 0.05.

Conclusion: our method appears to outperform the technique based on

the Monte Carlo methods combined with the analytic expression for Asian

options with more than three dates as well as the truncated Euler scheme.

Notice that computational times may be shortened in the Picard scheme by

replacing the time-consuming computation of the exponential function by the

first terms of its Taylor expansion. Nevertheless, the BEM method appears to

be the most efficient even if, with three dates, the error in Table 7 is smaller

for the Picard method. In the case where β = 2, the simple truncated Euler

scheme seems to be efficient provided that β ≤ 5 as convergence errors and

computation times are small. In the following section, we implement the CEV

model for β < 1. In that case, the BEM method does not work well.
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4.2. The CEV model with elasticity β ∈ (0, 1)

Recall that Condition 2.3 holds when β ∈ (0, 1). Nevertheless, the required

property that there exists an absorbing point only holds when β ≥ 0.5 [18].

In this section, the parameters are S0 = 100, σLN = 0.5, T = 4, K = 100,

N = 15000, n = 20 and m = 2. The parameter κ is empirically fixed to

κ = S0 (0.78− 0.4 ∗ β2) for the Picard scheme and κ = 300 for the truncated

Euler scheme.

When implementing the BEM method, the implicit scheme requires to solve

an equation of the form g(X) = 0, e.g. using the Newton method. To do so,

we fix an interval [a, b] we expect the solution X∗ to belong to. Unfortunately,

the algorithm stops as soon as a is too large or b too small as [a, b] does not

contain X∗. We observe this phenomenon even with a = 10−8 and b = 108 so

that we can not obtain any result.

We consider the Put option.

The methodology we follow consists in increasing the number of simulations

N until the estimated price belongs to the interval of radius 1% and centred at

the analytic expression of the price. Otherwise, we stop N to 2.105. Repeating

1000 times the procedure, we deduce an average of the estimated price for

each method and the needed time in milliseconds as well.

β Truncated Euler scheme Time (ms) Analytic Time (ms) Error # of simulations
0 37.5155 18.254 39.0452 < 0.01 3.92% 8618

0.1 38.8543 4.662 39.0089 < 0.01 0.40% 1891
0.2 38.9200 1.806 38.9307 < 0.01 0.03% 745
0.3 38.8460 1.106 38.8210 < 0.01 0.06% 460
0.4 38.7139 1.164 38.6962 < 0.01 0.05% 487
0.5 38.5853 1.099 38.5753 < 0.01 0.03% 456
0.6 38.4624 2.287 38.4724 < 0.01 0.03% 930
0.7 38.2547 4.537 38.3928 < 0.01 0.36% 1866
0.8 37.4803 12.511 38.3368 < 0.01 2.23% 5198
0.9 36.9813 17.533 38.3041 < 0.01 3.45% 7479

Table 8. Put option prices using truncated Euler Scheme and the analytic expression
respectively for different values of β < 1.

Let us now present the approximated prices obtained by the Picard method

with n = 20.



/ 20

β Picard Comp. Time (ms) Analytic Error # of simulations
0 39.0421 1.299 39.0451 0.01% 218

0.1 38.9987 1.608 39.0088 0.03% 269
0.2 38.9235 1.759 38.9306 0.02% 292
0.3 38.8090 1.331 38.8209 0.03% 219
0.4 38.7007 1.477 38.6961 0.01% 239
0.5 38.5871 2.22 38.5753 0.03% 367
0.6 38.5036 3.112 38.4724 0.08% 520
0.7 38.4055 2.136 38.3928 0.03% 357
0.8 38.3374 1.336 38.3368 0.00% 216
0.9 38.1972 6.028 38.3041 0.28% 991

Table 9. Put option prices using Picard iterations and the analytic expression respectively
for different values of β < 1.

As we may observe, the Picard method outperforms the truncated euler

method, i.e. provides smaller error with less computation time. For two dates

Asian options we choose n = 40 in order to work with the same mesh.

β (P) Time (ms) MC (C) Time (ms) Error P-C Euler (E) Time (ms) Error E-C
0,5 28,8773 266,07 32,5530 0,103 12,73% 28,0664 171,11 15,99%
0,6 31,3302 11,391 31,3744 0,124 0,14% 30,9665 18,045 1,32%
0,7 30,7832 5,097 30,7640 0,137 0,06% 30,7794 2,305 0,05%
0,8 30,6667 2,84 30,6624 0,149 0,01% 30,6813 3,402 0,06%
0,9 30,6594 4,208 30,6532 0,194 0,02% 30,6334 3,826 0,06%

Table 10. Asian Put option prices with two dates using Picard iterations (P), truncated
Euler scheme (E) and the Monte Carlo methods combined with the analytic expression
(C). The errors are computed between the Picard method (P) and the Euler scheme (E)
respectively with respect to the combined method (C).

Clearly, the combined method derived from [18] remains the most performant

for two dates. Notice that the Picard method outperforms the truncated one.

At last, with the combined method, it takes several hours to estimate

the price of an Asian option with three dates Ti/3, i = 1, 2, 3 and T = 4.

It only takes 78 seconds for the Picard method and the estimated price is

27.8456.

Conclusion: in the case where β ∈ [0, 1), the Picard method seems to be

the best method comparatively to Euler truncated scheme, the BEM method

or the combined method based on Monte Carlo simulations of the terminal

price for more than three dates as the computation time is smaller and the

errors are satisfactory. Otherwise, for one or two dates, the combined method

derived from [18] appears to be efficient.
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5. The Aı̈t-Sahalia model

The Aı̈t-Sahalia model (see [15, Section 3.6]) satisfies the s.d.e.

dSt = σSρt dWt +
(
α−1S

−1
t − α0 + α1St − αtSrt

)
dt,

where ρ, r > 1, αi ≥ 0, i = −1, · · · , 2 and σ > 0. The initial value is S0 = 0.2

and the other parameters are T = 1, K = 0 for the Call option so that we

shall estimate E(ST ).

We choose α−1 = 0.1 and αi = 0, if i = 0, · · · , 2. We fix σ = 0.2 and

r = ρ = 2. The BEM method provides E(ST ) ' 0.4906674 in 6.689 m.s.

The simple Euler scheme compute the value E(ST ) ' 0.49050227 in 1.227

m.s. while the Picard method estimates E(ST ) ' 0.4905902 in 19.517 m.s.

for m = 10. With m = 5, it takes 9.832 m.s. but we get E(ST ) ' 0.5041992.

If we choose the parameters α−1 = 0.1, α0 = 1, α1 = 5 and α2 = 2, by the

BEM method, we get E(ST ) ' 1.59841981 in 7.531 m.s. while the simple

Euler scheme provides E(ST ) ' 1.6022864 in 1.245 m.s. At last, it takes

18.747 m.s. for the Picard method to estimate E(ST ) ' 1.6042199 with

m = 10. On these examples, we see that the simple Euler scheme provides a

rather accurate estimation of EST in comparaison to the evaluation given by

the BEM method that requires more time. Clearly, the Picard method is not

efficient on this model in the sense that the needed time to obtain a small

error is significantly larger.

6. Example of mean reverting SDEs

Let us consider the dynamics dSt = (1 − St)dt + γSβt dWt, where W is a

standard Brownian motion and β ∈ [0.5, 1). Here we choose β = 1. Using

the Lamperti transformation, we simulate the process Xt = S−β+1
t when

implementing the BEM method. We noticed that the BEM scheme explodes

because of the inversion problem that needs to be solved and the simple

Euler scheme explodes in particular when β is closed to 0.5. Otherwise, an

improved convergent Milstein scheme is proposed by [6]. As mentioned in [6],
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the discretization step needs to be smaller than γ−2 for the approximation

process to be positive. This is indeed what we observed so that the needed

time to compute appears to be significantly large for γ large enough. In that

case, the Picard method appears to be more efficient. Here we compare the

two methods with γ = 1 so that it is possible to get accurate estimations

with the improved Milstein scheme in a reasonable computation time. The

goal here is to present the accuracy of the Picard method. With the discrete

dates tnk = (T/n)k, k = 0, · · · , n, the improved Milstein is given by:

Sntnk+1
= Sntnk + (1− Sntnk+1

)∆tnk+1 + [Sntnk ]β∆Wtnk

+
1

2
(β − 1)[Sntnk ]2β−1

(
(∆Wtk)

2 −∆tk
)
.

We propose to compare the results obtained by implementing the Picard

method without truncature, i.e. κ = +∞, to the Milstein scheme as a ref-

erence. To do so, we first implement the Milstein scheme. We then compute

the averaged needed time over 1000 experiments for the Picard method to

provide an approximation at a relative distance from the Milstein estima-

tion less than 1%. As shown in the following table, the estimations are very

accurate.

β Milstein Picard Error Time (s)
0.5 0.9968 0.9980 0.12% 1.103
0.55 0.9969 0.9974 0.05% 0.631
0.6 0.9969 0.9977 0.07% 0.633
0.65 0.9969 0.9976 0.07% 0.643
0.7 0.9968 0.9977 0.09% 0.656
0.75 0.9967 0.9979 0.12% 0.760
0.8 0.9965 0.9972 0.07% 0.835
0.85 0.9961 0.9974 0.13% 0.886
0.9 0.9955 0.9965 0.10% 0.979
0.95 0.9946 0.9960 0.14% 1.129

1 0.9932 0.9945 0.12% 0.853

Table 11. Estimation of EST with T = 6 and S0 = 1 for several values of β.
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7. Conclusion

The conclusion of this work is that it is not possible to say in general what the

‘best’ simulation technique is. Through the examples we present, the same

technique may appear as very efficient or, on the contrary, inappropriate.

The Picard technique seems to be appropriate for models where the diffusion

coefficient is sublinear, e.g. for asian option pricing, while the BEM method

is efficient when the diffusion coefficient is super linearly growing.

8. Proofs

Throughout the paper, we shall use the following convention: from a line to

the next one, constants K,κ or C may designate different constants which

are independent of any other current variables except maybe the fixed pa-

rameters of the model as the maturity date T or Lipschitz constants. In the

contrary case, we shall use notations like Cm to stress the dependence on

some parameter m.

Proof of Lemma 2.6. Let us denote S = Sr,σ = F (r)E(σ). Using the integra-

tion by part formula, we obtain that

Stt =

∫ t

0

Sudu+

∫ t

0

udSu, t ∈ [0, T ].

On the other hand, a direct computation shows that∫ T

0

S(n)
u du = −

∫ T

0

udS(n)
u + TS

(n)
T .

Since S
(n)
T = ST , we deduce that∫ T

0

Sudu−
∫ T

0

S(n)
u du =

∫ T

0

ud(S(n)
u − Su).
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Observe that∫ T

0

udS(n)
u =

n∑
i=1

tni ∆Stni ,

=
n∑
i=1

tni

∫ tni

tni−1

σ(u, Su)SudWu +
n∑
i=1

tni

∫ tni

tni−1

r(u, Su)Sudu,

=

∫ T

0

I(n)(u)σ(u, Su)SudWu +

∫ T

0

I(n)(u)r(u, Su)Sudu,

where I(n)(u) = ti if u ∈ [ti−1, ti). It follows that∫ T

0

Sudu−
∫ T

0

S(n)
u du =

∫ T

0

(I(n)(u)−u)σ(u, Su)SudWu+

∫ T

0

(I(n)(u)−u)r(u, Su)Sudu

As |u(n)(u)−u| ≤ T/n and r and σ are supposed to be Lipschitz, we deduce by

the Cauchy-Schwarz inequality and the Ito isometry the following sequence

of inequalities:

E|G(S))−G(S(n))| ≤ CTE

∣∣∣∣∫ T

0

(I(n)(u)− u)σ(u, Su)SudWu

∣∣∣∣
+CTE

∣∣∣∣∫ T

0

(I(n)(u)− u)r(u, Su)Sudu

∣∣∣∣ ,

E|G(S)−G(S(n))| ≤ CT

√
C(σ)

∫ T

0

(I(n)(u)− u)2E(1 + S4
u)du

+CT (r)

∫ T

0

|I(n)(u)− u|E(1 + S2
u)du,

≤
CG
√
C(σ)

n

√∫ T

0

(1 + ES4
u)du

+
CT (r)

n

∫ T

0

E(1 + S2
u)du,

≤
CG
√
C(σ)

n

√∫ T

0

(1 + ES4
u)du

+
CT (r)

n

√∫ T

0

E(1 + S2
u)

2du.

The conclusion follows. 2
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Lemma 8.1. Suppose that Condition 2.3 holds. Let κ > 0. Then, there exists

a constant Cκ depending on κ such that for all x, y > 0 and t ∈ R+,

|σκ(t, x)− σκ(t, y)| ≤ Cκ
√
|x− y|.

Proof. Under Conditions 2.3, we obtain the following chain of inequalities

|σκ(t, x)− σκ(t, y)| = |σκ(t, x ∨ κ−1)− σκ(t, y ∨ κ−1)|,

≤ Cκ| ln(x ∨ κ−1)− ln(y ∨ κ−1)|,

≤ Cκ| ln(x) ∨ ln(κ−1)− ln(y) ∨ ln(κ−1)|,

≤ 2Cκ| ln(
√
x) ∨ ln(κ−1/2)− ln(

√
y) ∨ ln(κ−1/2)|,

≤ Cκ|
√
x−√y| ≤ Cκ

√
|x− y|.

The last inequalities are due to the fact that the mapping z 7→ ln(z) ∨
ln(κ−1/2) is Lipschitz and the square root function is Holder continuous of

order 1/2. 2

Lemma 8.2. Suppose that Condition 2.2 holds. Let κ > 0. Then, there

exists a constant Cκ depending on κ such that for all X, Y ∈ R2, x, y > 0

and t ∈ R+,

|σκ(t, eX)− σκ(t, eY )| ≤ Cκ|X − Y |,

|σκ(t, x)− σκ(t, y)| ≤ Cκ
√
|x− y|.

Proof.

Using the assumption and the fact that the mapping X 7→ eX∧κ is Lipschitz,

we get that

|σκ(t, eX)− σκ(t, eY )| = |σκ(t, eX ∧ κ)− σκ(t, eY ∧ κ)|,

≤ Cκ|eX ∧ κ− eY ∧ κ| ≤ Cκ|X − Y |.
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On the other hand, we have

|σκ(t, x)− σκ(t, y)| = |σκ(t, x ∧ κ)− σκ(t, y ∧ κ)|,

≤ Cκ|x ∧ κ− y ∧ κ| ≤ Cκ
√
|x ∧ κ− y ∧ κ|,

≤ Cκ
√
|x− y|.

The last inequalities hold since
√
|x ∧ κ− y ∧ κ| is bounded by

√
2κ and the

mapping x 7→ x ∧ κ is Lipschitz. 2

Proof of Lemma 3.1. Suppose that Condition 2.2 holds. Consider the sequence

of stopping times

τκ := inf{t : St ≥ κ}. (8.11)

Since the stopped processes Sτ
κ

and (Sκ)
τκ satisfy the same s.d.e., we de-

duce that St = Sκ(t) on t ∈ [0, τκ]. As τκ → ∞, we then conclude. Under

Condition 2.3, we follow the same arguments with

τκ := inf{t : St ≤ κ−1}. (8.12)

Note that τκ → τ as κ→∞. 2

Lemma 8.3. Assume that Condition 3.3 (I) is satisfied. Then, there exists

a constant C independent of κ such that supu≤T ESκ(u) ≤ C.

Proof. By definition, we have Sκ(u)/Fu(rκ(·, Sκ(·))) ≤Mu where M0 = 1 and

M is a local martingale which is solution to the s.d.e.

dMu = Muσκ(u, Sκ(u))dWu.

As r is supposed to be bounded, we deduce that Sκ(u) ≤ CS0Mu. Let (τn)

be a sequence of stopping times such that M τn is a true martingale. Then,

ESκ(u∧τn) ≤ CS0 and finally ESκ(u) ≤ CS0 by virtue of by Fatou’s lemma.

2

Lemma 8.4. Assume that Assumption 3.3 (I) is satisfied. Then, for all p

such that p ≤ 0 or p ≥ 1/2, there exists a constant Cp independent of κ such

that supu≤T E(Sκ(u))p ≤ Cp.



/ 27

Proof. Since r is bounded, the following inequality holds for all fixed q ≥ 0:

(Sκ(u))p ≤ CqS
p
0Nue

1
2
(q−p)

∫ u
0 σ2

κ(r,Sκ(r))dr,

where

Nu := exp{p
∫ u

0

σκ(r, Sκ(r))dWr −
1

2
q

∫ u

0

σ2
κ(r, Sκ(r))dr}.

Using the inequality 0 ≤ ab ≤ (a2 + b2), we get that

(Sκ(u))p ≤ CSp0Ñu + CSp0e
(q−p)

∫ u
0 σ2(r,Sκ(r)∧κ)dr,

where Ñ = N2 is a local martingale if we choose q = 2p2. Moreover, as the

function x 7→ e(q−p)ux is convex, the Jensen inequality and the hypothesis

yields that

e(q−p)
∫ u
0 σ2(r,Sκ(r)∧κ)dr ≤ 1

u

∫ u

0

e(q−p)rσ
2(r,Sκ(r)∧κ)dr

≤ Cp +
C

u

∫ u

0

(
(log(Sκ(r)))

k(q−p)T 1Sκ(r)∧κ≥1 + 1Sκ(r)∧κ≤1

)
dr,

where k is a constant. Using the property

(log(x ∨ 1))k(q−p)T ≤ Cpx, ∀x ≥ 0,

and Lemma 8.3, we deduce that E(Sκ(u))p ≤ Cp. 2

Lemma 8.5. Assume that Condition 3.3 (II) is satisfied. Then, for all p

such that p ≥ 0, there exists a constant Cp independent of κ such that

supu≤T E(Sκ(u))p ≤ Cp.

Proof. Let us consider N = N(p) ∈ N such that 0 ≤ p ≤ 2Nα. Observe that,

for p ≥ 0, 0 ≤ (Sκ(u))p ≤ 1+(Sκ(u))2Nα1Sκ(u)≥1 ≤ 1+(Sκ(u))2Nα. Therefore,

it is enough to show the lemma when p = 2Nα. We show by induction that

the statement holds for every p = 2jα, 0 ≤ j ≤ N . This is trivial if j = 0.

Applying the Ito formula when q = 2(j + 1)α, j ≥ 0, we get that

(Sκ(u))q = (S0)
q +

∫ u

0

q(Sκ(r))
qσκ(r, Sκ(r))dWr +

∫ r

0

q(Sκ(r))
qrκ(r, Sκ(r))dr,

+
1

2
q(q − 1)

∫ u

0

(Sκ(r))
qσ2

κ(r, Sκ(r))(r)dr.
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Recall that σκ is bounded. Using the Doleans-Dade representation of Sκ(u),

we deduce that Sκ(u) admits finite moments at any order. It follows that

the Ito integral in the inequality above is a square integrable martingale.

Therefore,

E(Sκ(u))q = (S0)
q +

∫ u

0

qE(Sκ(r))
qrκ(r, Sκ(r))dr,

+
1

2
q(q − 1)

∫ u

0

E(Sκ(r))
qσ2

κ(r, Sκ(r))dr.

We then use the inequality r ≤ 1+r2 and by Assumption 3.3 (II), we deduce

that gj+1(u) := E(Sκ(u))2(j+1)α satisfies

gj+1(u) ≤ max
j≤N

(S0)
2(j+1)α + C(N2α2 +Nα)

∫ u

0

gj(r)dr

+C
(
Nα +N2α2

) ∫ u

0

gj+1(r)dr

Suppose that gj ≤ Cj where Cj does not depend on κ. Then, by Gronwall’s

lemma, we deduce that gj+1 ≤ Cj+1 where Cj+1 does not depend on κ. The

conclusion follows with j = N since the number of steps N(p) is finite and

only depends on p. 2

Corollary 8.6. Assume that Condition 3.3 is satisfied. Then, for all p ≥ 0,

there exists a constant Cp independent of κ such that E supu≤T (Sκ(u))p ≤ Cp.

Proof. Since ‖ · ‖Lp1 ≤ ‖ · ‖Lp2 if 1 ≤ p1 ≤ p2, and (Sκ(u))p ≤ 1 +Sκ(u) when

p ∈ [0, 1], we may assume without loss of generality that p ∈ 2N. Let us first

suppose that Condition (I) holds. We recall that

Sκ(t) = S0 +

∫ t

0

σ(u, Sκ(u) ∧ κ)Sκ(u)dWu +

∫ t

0

r(u, Sκ(u) ∧ κ)Sκ(u)du.

Since 0 ≤ σ2(t, x) ≤ C(1 + x) and r is bounded, we easily deduce that

E supu≤T (Sκ(u))p ≤ Cp by the Burkholder-Davis-Gundy and Jensen inequal-

ities as well as Lemma 8.4.

Let us now suppose that Condition (II) holds. In this case,

0 ≤ Spκ(u)(σp(u, Sκ(u) ∨ κ−1) + rp(u, Sκ(u) ∨ κ−1)) ≤ C(Spκ(u) + S(1−α)p
κ (u)).
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Since 1− α ≥ 0, we use Lemma 8.5 and conclude as previously. 2

Since Sκ converges pointwise on [0, τ ] to S, S = Sκ on [0, τκ] where τκ → τ ,

and St = 0 on t ≥ τ , we apply Fatou’s Lemma and deduce the following.

Corollary 8.7. Assume that Condition 3.3 is satisfied. Then, for all p ≥ 0,

there exists a constant C such that E supu≤T (Su)
p ≤ Cp.

Remark 8.8. Recall that

dYt = σ(t, St)dWt + r(t, St)dt−
1

2
σ2(t, St)dt.

Under Condition 3.3 (I), since 0 ≤ σ2(t, x) ≤ C(1 + x), we then deduce that

E supu≤T Y
2
u < ∞ as the coefficient r is bounded. In particular, the process∫ ·

0
σ(t, St)dWt is a true martingale.

Proof of Lemma 3.6. If σκ = σ(·, · ∧ κ), we consider the stopping time τ k

defined by (8.11). We obtain that

E sup
t∈[0,T ]

∣∣Sκ(t)− St∣∣p = E sup
t∈[0,T ]

∣∣Sκ(t)− St∣∣p1τκ<t
≤ E sup

t∈[0,T ]

∣∣Sκ(t)− St∣∣p1τκ<T .
In the case where τ k is defined by (8.11), we deduce that

E sup
t∈[0,T ]

∣∣Sκ(t)− St∣∣p ≤ E sup
t∈[0,T ]

∣∣Sκ(t)− St∣∣p1supt∈[0,T ] St≥κ

≤
√

E sup
t∈[0,T ]

∣∣Sκ(t)− St∣∣2p
√

E
(

supt∈[0,T ] St
)2l

κ2l
.

The conclusion follows. In the case where σκ = σ(·, · ∨κ−1), let τ k be defined

by (8.12). Then,

E sup
t∈[0,τ∧T ]

∣∣Sκ(t)− St∣∣p = E sup
t∈[0,T ]

∣∣Sκ(t)− St∣∣p1τκ<t≤τ∧T
≤ E sup

t∈[0,T ]

∣∣Sκ(t)− St∣∣p1τκ<t≤τ1τ≤T
+E sup

t∈[0,T ]

∣∣Sκ(t)− St∣∣p1inft∈[0,T ] St≤κ−11τ>T .
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Notice that the second term of the last inequality above is bounded as follows:

E sup
t∈[0,T ]

∣∣Sκ(t)− St∣∣p1inft∈[0,T ] St≤κ−11τ>T ≤
√

E sup
t∈[0,T ]

∣∣Sκ(t)− St∣∣2pγ(τ, κ),

where γ(τ, κ) := P (inft∈[0,T ] St ≤ κ−1; τ > T ) → 0 as κ → ∞. If t ∈ [τκ, τ ],

where τ < T , then

Sκ(t) = κ−1 +

∫ t

τκ
Sκ(u)σκ(u, Sκ(u))dWu +

∫ t

τκ
Sκ(u)rκ(u, Sκ(u))du,

St = κ−1 +

∫ t

τκ
S(u)σ(u, S(u))dWu +

∫ t

τκ
S(u)r(u, S(u))du.

Under Condition (II) of Condition 3.3, we have

|Sκ(u)σκ(u, Sκ(u))|+ |Sκ(u)rκ(u, Sκ(u))| ≤ C(|Sκ(u)|+ |Sκ(u)|1−α),

|Sκ(u)σκ(u, Sκ(u))|+ |Sκ(u)rκ(u, Sκ(u))| ≤ C(|Sκ(u)|+ |Sκ(u)|1−α).

Using the Burkholder-Davis-Gundy inequalities and the Cauchy-Schwarz in-

equality, we deduce that the term δ(τ, κ) = E supt∈[0,T ]
∣∣Sκ(t)−St∣∣p1τκ<t<τ1τ≤T

is bounded as follows:

δ(τ, κ) ≤ C

(
sup
κ

√
E sup
t∈[0,T ]

|Sκ(t)|2p +
√

E sup
t∈[0,T ]

|S(t)|2p
)√

E|τκ ∧ T − τ ∧ T |p.

By the Lebesgue theorem, since τκ → τ , we deduce that E|τκ∧T−τ∧T |p → 0

as κ→∞. The conclusion follows. 2

Lemma 8.9. Let (gm)m be a sequence of positive functions defined on an

interval [0, T ], T > 0, such that for some C > 0, we have:

gm+1(t) ≤ C

∫ t

0

gm(u)du, 0 ≤ g0 ≤ C.

Then

sup
t∈[0,T ]

gm(t) ≤ Cm t
m

m!
sup
t∈[0,T ]

g0(t).

Proof.The proof relies on the following recursive reasoning. Set

Cg := sup
t∈[0,T ]

g0(t) ≤ C.
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Suppose that

sup
t∈[0,T ]

gn−1(t) ≤ Cn−1 tn−1

(n− 1)!
Cg.

Then, we have

gn(t) ≤ C

∫ t

0

Cn−1 un−1

(n− 1)!
Cgdu.

The claim follows. 2

Proof of Lemma 3.7. If α ≥ 2, recall that for all x, y ≥ 0:∣∣xα/2 − yα/2∣∣ ≤ α

2
(max(|x|; |y|))α/2−1 |x− y|.

We deduce by Conditions 2.2 and 2.3 that(∫ t

0

σ2
κ,m+1(s)− σ2

κ,m(s)ds

)2

≤ CCκ

∫ t

0

(σκ,m+1(s)− σκ,m(s))2 ds,

by virtue of Jensen’s inequality. Together with the Burkholder–Davis–Gundy

inequalities, we obtain that

E sup
u≤t

∣∣Yκ,m+1(u)− Yκ,m(u)
∣∣2 ≤ CCκE

∫ t

0

sup
u≤s

∣∣σκ,m+1(u)− σκ,m(u)
∣∣2ds

+ CCκE

∫ t

0

sup
u≤s

∣∣rκ,m+1(u)− rκ,m(u)
∣∣ds.

By Conditions 2.2 or 2.3, with Lemma 8.2,

|σκ(t, eX)− σ(t, eY )|+ |rκ(t, eX)− r(t, eY )| ≤ Cκ|X − Y |,

hence∣∣σκ,m+1(u)− σκ,m+1(u)
∣∣+ ∣∣rκ,m+1(u)− rκ,m+1(u)

∣∣ ≤ Cκ
∣∣Yκ,m(u)− Yκ,m−1(u)

∣∣.
We deduce that

E sup
u≤t

∣∣Yκ,m+1(u)− Yκ,m(u)
∣∣2 ≤ Cκ

∫ t

0

E sup
u≤s

∣∣Yκ,m(u)− Yκ,m−1(u)
∣∣2ds,

where Cκ is a constant depending on κ. Using Lemma 8.9, we get that

E sup
u≤t

∣∣Yκ,m+1(u)− Yκ,m(u)
∣∣2 ≤ (Cκ)

m+1E sup
u≤t

∣∣Yκ,1(u)− Yκ,0(u)
∣∣2 tm
m!
,

≤ C(Cκ)
m+1 tm+1

(m+ 1)!
(1 + S2

0), (8.13)

where C does not depend on m and κ. We deduce Inequality (3.6). Similarly,

we obtain Inequality (3.7) and the claim follows. 2
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Lemma 8.10. Let a1, · · · ak be real numbers. we have the following inequality(
k∑
l=1

al

)2

≤
k∑
l=1

2la2l ,

(
k∑
l=1

al

)4

≤
k∑
l=1

8la4l .

Proof.For any real numbers a, b, the inequality 2ab ≤ a2 + b2 implies that

(a + b)2 ≤ 2a2 + 2b2. Therefore, (a + b)4 ≤ (2a2 + 2b2)2 ≤ 8a4 + 8b4. We

conclude by induction. 2

Proof of Corollary 3.8. Using Lemma 8.10, we obtain the inequality

E sup
u≤t

∣∣Yκ,∞(u)− Yκ,m(u)
∣∣2 ≤ ∞∑

j=m

2jE sup
u≤t

∣∣Yκ,j+1(u)− Yκ,j(u)
∣∣2.

We deduce the first inequality from (8.13) and, similarly, the second one. The

conclusion follows. 2

Proof of Lemma 3.9. Applying the Burkholder–Davis–Gundy and Jensen

inequalities, we get that

E sup
u∈[0,t]

(
Sκ,m+1(u)− Sκ,m(u)

)2 ≤ CE

∫ t

0

(Sκ,m+1(s)σκ,m+1(s)− Sκ,m(s)σκ,m(s))2 ds,

+2E

∫ t

0

(Sκ,m+1(s)rκ,m+1(s)− Sκ,m(s)rκ,m(s))2 ds,

where we recall that σκ,m(s) := σκ(s, Sκ,m−1(s)). The first term in the r.h.s.

of the inequality is bounded from above as follows:

E

∫ t

0

(Sκ,m+1(s)σκ,m+1(s)− Sκ,m(s)σκ,m(s))2 ds ≤

2E

∫ T

0

S2
κ,m+1(s) [σκ,m+1(s)− σκ,m(s)]2 ds+ 2E

∫ T

0

(σm,κ(s)(Sκ,m+1(s)− Sκ,m(s)))2 ds.

The second one is similarly bounded. Recall the inequalities |σκ|+ |rκ| ≤ Cκ,

κ > 0, and recall that, by assumption or by Lemma 8.2,

|σκ(t, eX)− σκ(t, eY )|+ |rκ(t, eX)− rκ(t, eY )| ≤ Cκ|X − Y |. (8.14)

Moreover, using Gronwall’s lemma, since σκ and rκ are bounded by a constant

depending on κ, we deduce the existence of Cp,κ > 0 such that for all p

sup
m

E sup
t∈[0,T ]

S2p
κ,m(t) ≤ Cp,κ.



/ 33

Using the stochastic integral representation of Sκ,m+1 and Sκ,m respectively,

we obtain by means of Cauchy-Schwarz’s inequality, Jensen’s inequality and

the Ito isometry that

E sup
u∈[0,t]

(
Sκ,m+1(u)− Sκ,m(u)

)2 ≤ Cκ

√
E sup
u≤T

∣∣Yκ,m(u)− Yκ,m−1(u)
∣∣4

+ Cκ

∫ t

0

E sup
u≤s

(Sκ,m+1(u)− Sκ,m(u))2 ds.

Using Gronwall’s Lemma, we deduce that

E sup
t∈[0,T ]

(Sκ,m+1(t)− Sκ,m(t))2 ≤ Cκ

√
E sup

t≤T
|Yκ,m(t)− Yκ,m−1(t)|4.

The conclusion follows. 2

Proof of Lemma 3.10. By virtue of Lemma 8.10, we get the inequality

E sup
t∈[0,T ]

(
Sκ,∞(t)− Sκ,m(t)

)2 ≤ ∞∑
j=m

2jE sup
u∈[0,t]

(
Sκ,j+1(u)− Sκ,j(u)

)2
≤ Cκ

∞∑
j=m

(Cκ)
j

√
j!
.

2

Proof of Lemma 3.11. Since σκ and rκ are bounded by a constant depend-

ing on κ, we deduce by the Burkholder-Davis-Gundy inequalities and the

Gronwall’s lemma a constant cκ > 0 such that for all m,n,

E sup
t∈[0,T ]

∣∣Sκ,m(t) + Sκ,m,n(t)
∣∣4 ≤ cκ. (8.15)

For a sake of simplicity, we suppose that r = 0 as the proof is similar for the

general case. Therefore,

Sκ,1(t) = S0 +

∫ t

0

Sκ,1(u)σκ(u, S0)dWu,

Sκ,1,n(t) = S0 +

∫ t

0

Sκ,1,n(u)σκ(u
(n), S0)dWu.

Let us introduce gm(t) := E supu∈[0,t]
∣∣Sκ,m(u) − Sκ,m,n(u)

∣∣2, m ≥ 1. By the
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Doob’s inequality,

g1(t) ≤ 4

∫ t

0

(
Sκ,1,n(u)σκ(u

(n), S0)− Sκ,1(u)σκ(u, S0)
)2
du,

g1(t) ≤ 8

∫ t

0

σ2
κ(u

(n), S0) (Sκ,1,n(u)− Sκ,1(u))2 du

+ 8

∫ t

0

S2
κ,1(u)

(
σκ(u

(n), S0)− σκ(u, S0)
)2
du.

Since σκ is bounded by a constant Cκ and |σκ(u(n), S0) − σκ(u, S0)| ≤ T/n,

we deduce by (8.15) that

g1(t) ≤
Cκ
n2

+ Cκ

∫ t

0

g(u)du, t ∈ [0, T ].

By the Gronwall’s lemma, we deduce that g1(T ) ≤ Cκ/n
2 for some constant

Cκ which does not depend on n. More generally, if m ≥ 2, we have

Sκ,m(t) = S0 +

∫ t

0

Sκ,m(u)σκ(u, Sκ,m−1(u))dWu,

Sκ,m,n(t) = S0 +

∫ t

0

Sκ,m,n(u)σκ(u
(n), S

(n)
κ,m−1,n(u))dWu.

Therefore, by the Doob’s inequality,

gm(t) ≤ 4

∫ t

0

(
Sκ,m,n(u)σκ(u

(n), S
(n)
κ,m−1,n(u))− Sκ,m(u)σκ(u, Sκ,m−1(u))

)2
du,

gm(t) ≤ 8

∫ t

0

σ2
κ(u

(n), S
(n)
κ,m−1,n(u)) (Sκ,m,n(u)− Sκ,m(u))2 du

+ 8

∫ t

0

S2
κ,m(u)

(
σκ(u

(n), S
(n)
κ,m−1,n(u))− σκ(u, Sκ,m−1,n(u))

)2
du

+ 8

∫ t

0

S2
κ,m(u) (σκ(u, Sκ,m−1,n(u))− σκ(u, Sκ,m−1(u)))2 du.

Recall that σκ is bounded by a constant Cκ and

|σκ(u(n), Sκ,m−1,n(u))− σκ(u, Sκ,m−1,n(u))| ≤ Cκ/n.

Therefore, we may obtain upper bounds for the two first terms of the r.h.s.

in the inequality above as we do for m = 1. Precisely, we also need to

estimate E(S
(n)
κ,m−1,n(u) − Sκ,m−1,n(u))2. To do so, it suffices to recall that
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E supt∈[[0,T ]] S
4
κ;m(t) ≤ Cκ for some constant Cκ which does not depend on

m hence, if u ∈ [tni , t
n
i+1), i = 0, · · · , n, we deduce by the Ito isometry and

the Cauchy-Schwarz inequality that E(S
(n)
κ,m−1,n(u) − Sκ,m−1,n(u))2 ≤ Cκn

−1

where Cκ only depends on κ.

At last, an upper bound for the third term is obtained using the Cauchy-

Schwarz inequality, (8.15) and the following inequality (see Lemmas 8.2 and

8.1):

|σκ(u, Sκ,m−1,n(u))− σκ(u, Sκ,m−1(u)| ≤ Cκ

√
|Sκ,m−1,n(u)− Sκ,m−1(u)|.

Therefore,

gm(t) ≤ Cκ
n

+ Cκgm−1(t) + Cκ

∫ T

0

gm(u)du.

By the Gronwall’s lemma, we then deduce a constant Cκ which only depends

on κ such that

gm(T ) ≤ Cκ
n

+ Cκgm−1(T ).

By induction, we deduce that, for all m ≥ 2,

gm(T ) ≤ n−1
m∑
j=1

(Cκ)
j ≤ ακ(Cκ)

mn−1,

for some constant ακ. 2

Lemma 8.11. Let S be a positive stochastic process such that P (inft∈[0,T ] St =

a) = 0 for all a ∈ (0, S0). Let (Sn)n∈N be a sequence of stochastic pro-

cesses such that E supt∈[0,T ] ‖St − Snt ‖2 → 0 as n → ∞. Let us define τS :=

inf{t : St < a} and τS
n

:= inf{t : Snt < a}. Then, E|1τS>T − 1τSn>T | → 0

as n→∞.

Proof. Suppose that E|1τS>T − 1τSn>T | → l > 0 for a subsequence. Since

| inft∈[0,T ] St − inft∈[0,T ] S
n
t | ≤ supt∈[0,T ] ‖St − Snt ‖, we may also suppose that

inft∈[0,T ] S
n
t converges to inft∈[0,T ] St a.s. for a common subsequence. In the

case where τ > T , i.e. inft∈[0,T ] St ≥ a, as P (inft∈[0,T ] St = a) = 0, we may

assume that inft∈[0,T ] St > a hence inft∈[0,T ] S
n
t > a for n large enough and,

finally τS
n
> T . If τ ≤ T , inft∈[0,T ] S

n
t < a and then, similarly, we obtain that
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τS
n ≤ T for n large enough. We deduce that |1τS>T − 1τSn>T | → 0 a.s. in

contradiction with l > 0. 2

Lemma 8.12. Let S be a positive stochastic process such that P (inft∈[0,T ] St =

a) = 0 for all a > 0. Let (Sn)n∈N be a sequence of stochastic processes such

that E supt∈[0,T ] |St − Sn(t)|2 → 0 as n → ∞. Let us denote by S
(n)
n its dis-

crete version given in Section 2.1. Let us define τS := inf{t : St < a} and

τS
(n)
n := inf{t : S

(n)
n (t) < a}. Then, E|1τS>T − 1

τS
(n)
n >T

| → 0.

Proof. Recall that τS > T if and only if inft∈[0,T ] St ≥ a. Let us first show that,

for any random interval I ⊆ [0, T ], supt∈I Sn(t) converges in L2 to supt∈I St as

n→∞. To see it, note that for all t ∈ [0, T ], St ≤ Sn(t)+supt∈[0,T ] |St−Sn(t)|
hence supt∈I St ≤ supt∈I Sn(t) + supt∈[0,T ] |St − Sn(n)|. By symmetry, we get

that

| sup
t∈I

Sn(t)− sup
t∈I

St| ≤ sup
t∈[0,T ]

|St − Sn(t)|

and the conclusion follows. Note that the same property holds if we replace

the infinimum by the supremum of S over I.

On the set {inft∈[0,T ] St < a}, as S is continuous, we may construct by a

measurable selection argument a measurable interval I = [t0 − ε, t0 + ε],

ε > 0 a.s., such that supt∈I St < a. Otherwise, we arbitrarily set I = [0, T ].

Suppose that for a subsequence E|1τS>T − 1
τS

(n)
n >T

| → l > 0. Consider an-

other subsequence such that we also have supt∈[0,T ] |St − Sn(t)| → 0 a.s. By

the first step for the infinimum, if inft∈[0,T ] St > a, then inft∈[0,T ] Sn(t) > a

if n is large enough. As inft∈[0,T ] S
(n)
n (t) ≥ inft∈[0,T ] Sn(t), we deduce that

inft∈[0,T ] S
(n)
n (t) > a and, finally, |1τS>T − 1

τS
(n)
n >T

| = 0 if n is large enough.

On the set inft∈[0,T ] St < a, i.e. when τS ≤ T , we have supt∈I St < a. By the

first step, supt∈I Sn(t) < a if n is large enough. Choose n sufficiently large

so that T/n < ε(ω). Then, the random discrete date tni such that t0(ω) ∈
[tni , t

n
i+1) satisfies tni ∈ I hence S

(n)
n (t0) = Sn(tni ) < a. It follows that τS

(n)
n ≤ T .

We finally deduce by the Lebesgue theorem that E|1τS>T − 1
τS

(n)
n >T

| → 0 in

contradiction with l > 0. 2

Lemma 8.13. Consider the case where σκ = σ(·, · ∨ κ−1) and rκ = r(·, · ∨
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κ−1) under Condition 2.3 with P (τ ≤ T ) > 0. The random variables Zκ =

inft∈[0,T ] Yκ(t), κ > 0, and Zκ,m = inft∈[0,T ] Yκ,m(t), m ≥ 1, admit a density

with respect to the Lebesgue measure.

Proof.The proof is based on [19][Proposition 2.1.11]. To do so, we need verify

the conditions of [19][Proposition 2.1.10]. As the mapping h(x) = x ∨ κ−1 is

not differentiable at point κ−1, we first approximate h by

hn(x) = κ−11(−∞,κ−1−n−1](x) + x1[κ−1+n−1,∞)(x)

+
(
κ−1 +

n

4
(x− κ−1 + n−1)2

)
1[κ−1−n−1,K+n−1](x).

We have the following properties:

0 ≤ hn(x)− h(x) ≤ 1

4n
, |(hn)′(x)− h′(x)| ≤ 1[κ−1−n−1,κ−1+n−1](x).

We then consider the solution Y n
κ of the s.d.e. (3.4) where we replace σκ by

σnκ(t, x) := σ(t, hn(x)).

We may show that supt∈[0,T ] |Y n
κ (t)− Yκ(t)| → 0 in L2 as n→∞. Therefore,

since Y n
κ admits a derivative in the Malliavin sense, we also deduce that

Yκ ∈ D1,2. Moreover, for all s ≤ t, making n→∞, we get that

DsYκ(t) = σκ(s, S0e
Yκ(s)) +

∫ t

s

DsYκ(u)h′(S0e
Yκ(u))S0e

Yκ(u)∇xσκ(t, S0e
Yκ(u))dWu,

+

∫ t

s

DsYκ(u)h′(S0e
Yκ(u))S0e

Yκ(u)∇xγκ(t, S0e
Yκ(u))du,

where γκ = rκ − σ2
κ/2. By the assumptions, e.g. X∇Xσ(t,X) is bounded if

X ≥ κ−1 and h′(X) = 0 if X ≤ κ−1, and the Gronwall’s lemma, we deduce

that

E sup
t∈[0,T ]

|DsYκ(t)|p <∞,

whatever p ≥ 2. By the Ito formula, we obtain an expression of [DsYκ(t)]
2 for

t ≥ s as a stochastic integral. By the stochastic Fubini theorem, we then also

deduce a representation of t 7→
∫ t
0
[DsYκ(t)]

2ds as a stochastic integral. Using

the Gronwall’s lemma, we finally deduce that E supt≤T
∫ t
0
[DsYκ(t)]

2ds <∞,
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i.e. the conditions of [19][Proposition 2.1.10] hold. Moreover, as (DsYκ(t))t≥s

is a Doléans-Dade exponential, it is strictly positive and we finally deduce

that [19][Proposition 2.1.11] applies, i.e. Zκ = inft∈[0,T ] Yκ(t) admits a den-

sity with respect to the Lebesgue measure. The second statement is shown

similarly by induction for m = 0, 1, · · · . 2

Proof of Theorem 3.12. Notice that we have

|EG(S)1τ>T − EG(S
(n)
κ,1,n)1τ̃κ,1,n>T | ≤ E|G(S)−G(Sκ)|1τ>T (8.16)

+E|G(Sκ)−G(Sκ,m)| (8.17)

+E|G(Sκ,m)−G(Sκ,m,n)| (8.18)

+E|G(Sκ,m,n)−G(S(n)
κ,m,n) (8.19)

+E|G(S)||1τ>T − 1τ̃κ,1,n>T |, .(8.20)

Since G is supposed to be Lipschitz, the first term (8.16) is bounded from

above by εκ as stated in Lemma 3.6. The second term (8.17) is bounded from

above by the error εκ,m given by Lemma 3.10. The term (8.18) is bounded

from above according to Lemma 3.11. The consistency property with respect

to discretization satisfied by G allows us to estimate the fourth term (8.19).

As to the last term, notice that G is of linear growth since it is Lipschitz. By

Corollary 8.7, we deduce from the Cauchy-Schwarz inequality a constant C

such that

E|G(S)||1τ>T − 1τ̃κ,1,n>T | ≤ C
√

E|1τ>T − 1τ̃κ,1,n>T |.

It remains to show that E|1τ>T − 1τ̃κ,m,n>T | → 0 a.s. as κ,m, n→∞. Let us

introduce τ̃κ := inf{t : Sκ(t) < κ−1}. Since S and Sκ coincides on [0, τκ] and

τ̃κ = τκ > T if κ is large enough and τ > T , we deduce that |1τ>T−1τ̃κ>T | →
0 if τ > T as κ → ∞. If τ ≤ T , we have τκ ≤ τ so that |1τ>T − 1τκ>T | =

0. Therefore, E|1τ>T − 1τ̃κ>T | → 0 as κ → +∞. It remains to show that

E|1τ̃κ>T − 1τ̃κ,m,n>T | → 0 a.s. as κ,m, n → ∞. Let us introduce τ̃κ,m :=

inf{t : Sκ,m(t) < κ−1}. By Proposition 3.10, Lemma 8.13 and Lemma 8.11,

for fixed κ, E|1τ̃κ>T −1τ̃κ,m>T | → 0 as m→∞. Therefore, it remains to show

that E|1τ̃κ,m>T − 1τ̃κ,m,n>T | → 0 a.s. as n → ∞. By virtue of Lemma 3.11,

Lemma 8.13 and Lemma 8.12, E|1τ̃κ,m>T − 1τ̃κ,m,n>T | → 0 a.s. as n→∞. 2
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