Higher Randomness and Forcing with Closed Sets

Abstract : Kechris showed in [9] that there exists a largest Π11 set of measure 0. Due to its universal nature, it was conjectured by many that this nullset has a high Borel rank. In this paper, we refute this conjecture and show that this nullset is merely Σ03. Together with a result of Liang Yu, our result also implies that the exact Borel complexity of this set is Σ03. To do this proof, we develop the machinery of effective randomness and effective Solovay genericity, investigating the connections between those notions and effective domination properties.
Type de document :
Article dans une revue
Theory of Computing Systems, Springer Verlag, 2016, <10.1007/s00224-016-9681-5>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01397294
Contributeur : Benoit Monin <>
Soumis le : mardi 15 novembre 2016 - 16:14:22
Dernière modification le : jeudi 17 novembre 2016 - 01:04:34
Document(s) archivé(s) le : jeudi 16 mars 2017 - 18:33:44

Fichier

tocs2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Benoit Monin. Higher Randomness and Forcing with Closed Sets. Theory of Computing Systems, Springer Verlag, 2016, <10.1007/s00224-016-9681-5>. <hal-01397294>

Partager

Métriques

Consultations de
la notice

27

Téléchargements du document

26