Towards a unified bayesian geometric framework for template estimation in Computational Anatomy
Nina Miolane, Xavier Pennec, Susan Holmes

To cite this version:

HAL Id: hal-01396716
https://hal.archives-ouvertes.fr/hal-01396716
Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Towards a unified bayesian geometric framework for template estimation in Computational Anatomy

Nina Miolane, Xavier Pennec, Susan Holmes
nina.miolane@inria.fr

Template estimation in Computational Anatomy

Computational Medicine relying on medical images

Intra-subject
- Aging model of the brain
- Brain tumors

Inter-subjects
- Vascular network
- Brain MRI segmentation

Computational Anatomy

Computational Physiology
- Electromechanical models of the heart
- Aging model of the brain

First step: template shape computation

Second step: analysis

Template shape

Template estimation as a non-linear model of Errors-in-Variables

Generative model of organs’ shapes

\[X_i = \rho(g_i) + \varepsilon_i \]
where \(g_i \sim \mathcal{N}(\mathbf{g}_0, \Sigma) \) i.i.d. and \(\varepsilon_i \sim \mathcal{N}(0, \sigma) \) i.i.d.

Goal: Estimate the template \(T \)

Non-linear model of Errors-in-Variables

\[X_i = \rho(g_i) + \varepsilon_i \]
where \(g_i \sim \mathcal{N}(\mathbf{g}_0, \Sigma) \) i.i.d. and \(\varepsilon_i \sim \mathcal{N}(0, \sigma) \) i.i.d.

Regression curve parameterized by \(T \)

Goal: Estimate the curve parameterized by \(T \)

Different estimators of the template’s shape

Functional model: \(g_i \)'s are parameters

Structural model: \(g_i \)'s are random variables

Maximum-Likelihood (MLE-F)

\[\begin{align*}
\mathbf{g}_i & = \arg \min_{g_i} \sum_{i=1}^n d_\mathcal{L}(\rho(g_i), X_i) \\
T & = \arg \min_T \sum_{i=1}^n d_\mathcal{L}(\rho(T, g_i), X_i)
\end{align*} \]

Frechet mean in the shape space

Maximum-Likelihood (MLE-S)

\[\begin{align*}
(1) & \quad \mathcal{L} = \prod_{i=1}^n \int_{\mathcal{L}} \exp \left(-\frac{d_\mathcal{L}(\rho(T, g_i), X_i)^2}{2\sigma^2} \right) d\gamma \\
(2) & \quad \mathbf{g}_i = \arg \min_{g_i} \int_{\mathcal{L}} d_\mathcal{L}(\rho(g_i), X_i) d\gamma
\end{align*} \]

No closed form solution

Maximum-Likelihood: Expectation-Maximization algorithm (MLE-S)

(1) Expectation
(2) Maximization

Maximum-a-Posteriori (MAP-F)

MLE-S: Consistent but slow
MLE-F: Fast but inconsistent

Acknowledgment: Participation in this conference was supported by the "NSF @ISBA junior travel support"

References: