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Abstract

In the standard stochastic frontier model with sample selection,
the two components of the error term are assumed to be independent,
and the joint distribution of the unobservable in the selection equation
and the symmetric error term in the stochastic frontier equation is
assumed to be bivariate normal. In this paper, we relax these assump-
tions by using two copula functions to model the dependences between
the symmetric and inefficiency terms on the one hand, and between
the errors in the sample selection and stochastic frontier equation on
the other hand. Several families of copula functions are investigated,
and the best model is selected using the Akaike Information Criterion
(AIC). The methodology was applied to a sample of 200 rice farmers
from Northern Thailand. The main findings are that (1) the double-
copula stochastic frontier model outperforms the standard model in
terms of AIC, and (2) the standard model underestimates the tech-
nical efficiency scores, potentially resulting in wrong conclusions and
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recommendations.

Keywords: stochastic frontier model, copula representation, depen-
dence, families of copula, sample selection, self-selection, technical ef-
ficiency.

1 Introduction

The original stochastic frontier model with sample selection was proposed
by Greene [6], who provided a general framework for sample selection pro-
cedures in stochastic frontier models. This model has been widely used in
empirical analyses. For example, Flores et al. [4] examined the impact of
Plataformas de Concertación (a program aimed at linking small holders to
high-value agricultural markets in Ecuador) on productivity growth. Rah-
man and Rahman [12] evaluated sustainability of maize cultivation in terms
of energy use while taking into account factors affecting choice of the grow-
ing season and farmers’ production environment. Wollni and Brümmer [17]
investigated technology choice, productivity and efficiency of coffee farm
households in Costa Rica. Rahman et al. [11] evaluated the determinants
of switching to Jasmine rice as well as the determinants of Jasmine rice
productivity in northern and north-eastern Thailand, etc.

Although the original stochastic frontier model with sample selection has
been widely used to analyze technical efficiencies and productivity of crops,
it has some limitations. First, the model is usually fitted using a two-stage
estimation method, which implies that estimators may not be efficient. Sec-
ond, the two components of the error term in the stochastic frontier equation
are assumed to be independent. This assumption can be relaxed by using
copula to fit the joint distribution of the two random error components more
appropriately [14], [16]. Third, the original stochastic frontier model with
sample selection assumes that the unobservable in the sample selection equa-
tion is related to the random error term in the stochastic frontier equation,
but these two quantities are further assumed to have a bivariate normal
distribution. The restricted form of the bivariate normal distribution may
result in strongly biased estimates of parameters and technical efficiencies.
To overcome this limitation, Smith [13] proposed a more general copula-
based approach to account for data selectivity. Generally speaking, there is
no statistical or economic reason to enforce independence between the two
error components, or linear correlation between the errors in the stochastic
frontier and sample selection equations.

To address these issues, we propose a double-copula stochastic frontier
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model with sample selection. In this approach, copula functions are used
to model the dependence of the symmetric and asymmetric error compo-
nents, as well as the dependence between errors of the sample selection and
stochastic frontier equations. Several families of copula functions, such as
the Gaussian, Frank, Clayton, Gumbel and Joe families and their relevant
rotated versions are systematically considered. Each model is fitted globally
using the maximum simulated likelihood method [5], and the best model is
selected using the Akaike information criterion (AIC). This approach was
evaluated using both simulated data and cross-sectional data of rice produc-
tion in Northern Thailand.

The remainder of this paper is organized as follows. The background
on copula functions and sample selection is first recalled in Section 2. Our
double-copula stochastic frontier model with sample selection is then in-
troduced in Section 3. The simulation study is then presented in Section
4.1 and the application to rice production efficiency analysis is described in
Section 4.2. Finally, Section 5 concludes the paper.

2 Background

In this section, we first recall some basic definitions and results about copula
functions in Section 2.1. The sample selection model is then briefly presented
in Section 2.2.

2.1 Copula functions

A recent trend in statistics and econometrics is to relax the multivariate
Gaussian or Student-t distribution assumptions by using more flexible cop-
ula functions [10]. For example, Smith [13] used copula functions to relax
the restrictive bivariate normal distributional assumption of the standard
Heckman’s model; Wu et al. [18] and Sriboonchitta et al. [15] used copula-
based generalized autoregressive conditional heteroskedasticity (GARCH)
model instead of multivariate GARCH models because the former does not
need a multivariate normal or Student-t distribution assumption. A copula
function is used to connect the specified marginals of each variable to form
a multivariate distribution [10]. In this study, we focus on the presenta-
tion of bivariate copula, which will be used later. Given a joint distribu-
tion function H of two continuous random variables X and Y , the function
C : [0, 1]2 → [0, 1] defined by

C(u1, u2) = H(F−1(u1), G
−1(u2)) (1)
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is a copula; here F and G are the marginal distributions of X, Y , respec-
tively, and F−1 and G−1 are the corresponding quantile functions. If the
random vector (X,Y ) has a joint density h(x, y), this density can be ex-
pressed as a function of the copula density c by

h(x, y) =
∂2H(x, y)

∂x∂y
= c[F (x), G(y)]f(x)g(y), (2)

where f(x) and g(y) are the marginal densities.
Different families of copula functions have different characteristics and

limitations. For example, Gaussian copulas cannot capture tail dependences;
Clayton copulas can capture lower tail dependence, while Gumbel copulas
can be used to model upper tail dependence. In this study, we used six
families of copula functions with relevant rotated versions: the independent,
Gaussian, Clayton, Frank, Gumbel, Joe, rotated Clayton, rotated Gum-
bel, and rotated Joe copulas, to capture potential dependence structure in
copula-based stochastic frontier model with sample selection. The main
characteristics of copula families used in this study are summarized in Table
1. Kendall’s τ coefficient can be computed from the copula function as

τ(X,Y ) = 4

∫∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1. (3)

The lower and upper tail dependence coefficients are defined, respectively,
as

λL = lim
u→0+

P
[
Y ≤ G−1(u)|X ≤ F−1(u)

]
= lim

u→0+

C(u, u)

u
(4)

and

λU = lim
u→1−

P
[
Y > G−1(u)|X > F−1(u)

]
= lim

u→1−

1− 2u+ C(u, u)

1− u
. (5)

Figure 1 displays several copula contour plots under standard normal dis-
tribution. The contour plots are generated based on the value of Kendall’s
tau equals to 0.7. These plots illustrate the fact that different copula func-
tions have different characteristics in terms of tail dependences. These copu-
las can only capture positive dependence except the Gaussian, T and Frank
copulas. However, they can be rotated to capture negative dependence.
Thorough reviews of rotated copulas may be found in Cech [3] and Wiboon-
pongse et al. [16].
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Figure 1: Contour plots of copula functions with normal marginal distribu-
tions.
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2.2 Sample selection model

Heckman’s sample selection model [7] was introduced to deal with the prob-
lem of selection bias. Ignoring non-random selection in statistical models can
have severe detrimental effects on parameter estimation (see, e.g., Marra and
Radice [9]; Bushway et al. [2]). Heckman’s sample selection model for lin-
ear regression is a two-equation system. The selection equation determines
if the dependent variable of the regression model is observed or not. It is
defined as

Si =

{
1 if Y ∗i = αT zi + ξi ≥ 0

0 if Y ∗i = αT zi + ξi < 0
, i = 1, . . . , n, (6)

where α is a vector of coefficients, zi a vector of exogenous variables, ξi an
error term assumed to have a standard normal distribution, and Y ∗i a latent
variable. The outcome equation is the classical linear regression model

Yi = βTxi + εi, i = 1, . . . , n, (7)

where Yi is the dependent variable, β is a vector of coefficients, xi a vector
of covariates, and εi an error term assumed to have a normal distribution
with mean 0 and variance σ2ε . The depend variable Yi is observed only
if Si = 1. The joint distribution of ξi and εi is assumed to be bivariate
normal. The full information maximum likelihood estimation and the two-
step estimation methods for this model were developed by Heckman [7] (see
also [8]). The two-step estimation approach involves estimating a Probit
model for selection, and then inserting a correction factor – the inverse Mills
ratio, calculated from the Probit model – into the ordinary least squares
estimator of the linear model of interest. The initial model was generalized
by Smith [13], who proposed to model the dependency between ξi and εi by
a copula, thus relaxing the bivariate normality assumption. The likelihood
function for Smith’s model is

L(α, β, σε) =
∏

{i:si=0}

P (Y ∗i ≤ 0)
∏

{i:si=1}

P (Y ∗i > 0)fc(yi|y∗i > 0), (8)

7



where fc is the conditional probability density function of Y given the event
S = 1. Following [13], this conditional density can be written as

fc(y|y∗ > 0) =
1

1− P (Y ∗ ≥ 0)

∂ {P (Y ≤ y)− P (Y ∗ ≤ 0, Y ≤ y)}
∂y

(9a)

=
1

1− Fξ(−αT z)
∂
{
Fε(ε)−H(−αT z, ε)

}
∂ε

∣∣∣∣∣
ε=y2−βT x

(9b)

=
1

1− Fξ(−αT z)

{
fε(y − βTx)− ∂H(−αT z, ε)

∂ε

∣∣∣∣
ε=y−βT x

}
,

(9c)

where the joint distribution function H of ε and ξ can be expressed using
copula function Cθ, and

∂H(−αT z, ε)
∂ε

=
∂Cθ

(
Fξ(−αT z), v

)
∂v

∣∣∣∣∣
v=Fε(ε)

fε(ε). (10)

3 Methodology

In this section, we first recall the standard stochastic frontier model, and its
version with copula-based modeling of the dependence between the ineffi-
ciency and noise terms (Section 3.1). Our double-copula model with sample
selection is then introduced in Section 3.2.

3.1 Stochastic frontier model

Aigner et al. [1] proposed a stochastic frontier model that is now commonly
used to estimate a production function and to obtain farm-level technical
efficiency estimates. The basic form of stochastic frontier model is given by

Yi = βTxi + εi, (11a)

εi = Vi −Wi, (11b)

i = 1, . . . , n, where Yi represents the output of individual i, xi is a vector
of input quantities, β is a vector of coefficients, and the random error term
is divided into two parts: a firm-specific effect Vi (that can be positive or
negative) and a positive inefficiency term Wi. The optimal frontier output
pursued by individual i is β′xi+Vi; it is stochastic, hence the term “stochas-
tic frontier”. In the classical stochastic frontier model, the two components

8



Vi and Wi of the error term are assumed to be independent. Typically, it is
assumed that Vi has a normal distribution N (0, σ2v), and Wi has a half nor-
mal distribution with scale parameter σw, i.e., Wi = |Ui| with Ui ∼ N (0, σ2w).
The technical efficiency of individual i is defined as exp(−Wi).

Most studies on stochastic frontier analysis assume V and W to be inde-
pendent. However, this assumption can be relaxed by using a copula func-
tion (see [14] and [16]). The likelihood function for the stochastic frontier
model is

L(β, σv, σw) =

n∏
i=1

fε(εi) =

n∏
i=1

fε(yi − βxi), (12)

where fε(εi) is the density function of the random error term. The error
density fε(ε) can be computed as follows [14]. First, we can express the
joint density of (W, ε) from that of (W,V ) and use (2) to obtain

f(w, ε) = f(w,w + ε) = fW (w)fV (w + ε)cθ(FW (w), FV (w + ε)). (13)

Marginalizing out W then yields

fε(ε) =

∫ +∞

0
f(w, ε)dw, (14)

or, equivalently,

fε(ε) = EW [fV (W + ε)cθ(FW (W ), FV (W + ε))] , (15)

where EW [·] denotes the expectation with respect to the W and cθ(·, ·) is
the density of the copula modeling the dependence between V and W . This
expectation generally does not have a closed-form expression, but it can be
approximated by Monte Carlo simulation. If W = |U | with U ∼ N (0, σ2w),
then W0 = W/σw = |U0| with U0 = U/σw ∼ N (0, 1), i.e., W0 has a standard
half-normal distribution. We can then approximate fε(ε) by

fε(ε) ≈
1

N

N∑
r=1

fV (σww0,r + ε)c(FW (σww0,r), FV (σww0,r + ε); θ), (16)

where w0,r, r = 1, . . . , N is a sequence of N random draws from the standard
half-normal distribution. The technical efficiency can be measured by the
conditional expectation

TE = EW [exp(−W )|ε] (17a)

=
1

fε(ε)

∫ +∞

0
exp(−w)f(w, ε)dw (17b)

=
EW [exp(−W )fV (W + ε)cθ(FW (W ), FV (W + ε))]

EW [fV (W + ε)cθ(FW (W ), FV (W + ε))]
. (17c)

9



The numerator and the denominator in (17) can be approximated by Monte
Carlo simulation, in the same way as above.

3.2 Double-Copula stochastic frontier model with sample se-
lection

The idea of the double-copula stochastic frontier model with sample selec-
tion proposed in this paper is to combine the copula-based sample selection
model described in Section 2.2, with the copula-based stochastic frontier
model recalled in Section 3.1. We thus use two copula functions: one to
model the dependence between the errors in the sample selection and pro-
duction equation, and another one to model the dependence between the
two components of the error in the stochastic frontier model. This general
model will allow us to fit a wide range of production data, without relying
on restricted (and often unsupported) assumptions about the dependence
between various random variables in the model. Our approach will be based
on maximum simulated likelihood estimation of all model parameters, in-
cluding those of the two copula functions, for different copula families. The
best model will then be selected using the AIC.

Let us first describe the model precisely, and give the expression of the
likelihood function. The model is defined by the selection equation (6) and
the stochastic frontier equation (11). The joint distribution of the error
terms ξ and ε is

Fξ,ε(ξ, ε) = Cθ[Φ(ξ), Fε(ε)], (18)

where Φ is the normal cdf, Fε is the cdf of ε and Cθ is a copula function in
a family {Cθ : θ ∈ Θ}. The joint distribution of V and W in (11) is

FV,W (v, w) = C ′θ′

{
Φ

(
v

σv

)
, FW (w;σw)

}
, (19)

where FW (·;σw) is the cdf of the half-normal distribution with scale param-
eter σw and C ′θ′ is a copula function in a family {C ′θ′ : θ′ ∈ Θ′}. The vector
of parameters in the model is thus ω = (α, β, σv, σw, θ, θ

′).
From (9) and (10), the likelihood function is

L(ω) =

 ∏
{i:si=0}

Fξ(−αT zi)

×
∏

{i:si=1}

1

1− Fξ(−αT zi)
fε(εi)

[
1−

∂Cθ(Fξ(−αT zi), v)

∂v

∣∣∣∣
v=Fε(ε)

]
, (20)
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where the density fε given by

f(ε) = EW
[
fV (W + ε)c′θ′(FW (W ), FV (W + ε))

]
(21)

can be approximated by Monte Carlo simulation using (16). The log-
likelihood function is

logL(ω) =
n∑
i=1

(1− si) logFξ(−αT zi)− si log(1− Fξ(−αT zi))+

si

(
log(fε(εi)) + log

[
1−

∂Cθ(Fξ(−αT zi), v)

∂v

∣∣∣∣
v=Fε(ε)

])
. (22)

4 Experimental results

4.1 Simulation study

To check the feasibility of estimating the parameters in the copula-based
model introduced in the Section 3.2, we first performed a simulation exper-
iment. The dependences between the error pairs (V,W ) and (ε, ξ) were
successively assumed to be positive-positive, positive-negative, negative-
positive, and negative-negative. Thirty datasets of size n = 200 were gener-
ated from the model described in Section 3.2, with the following parameters:
σv = 1, σw = 4, β = (10, 0.7)T , α = (0.2, 0.5)T . The copulas Cθ and C ′θ′ were
chosen, respectively, in the Clayton and Frank families. In each case, the
Kendall’s tau coefficient was fixed at ±0.7, which corresponds to θ = ±4.67
and θ′ = ±11.41. To obtain a negative correlation between ε and ξ we used
a Clayton copula rotated by 90 degrees.

For each of the four dependence patterns, we generated 30 datasets and
we estimated the model parameters; we then computed the means and stan-
dard deviations of the estimates. To implement the simulated maximum
likelihood method, we fixed N = 500 and we maximized the simulated log-
likelihood using the BFGS algorithm in the R statistical software, using
starting values obtained from the glm and sfa functions in the R packages
statistics and frontier, respectively. The initial values for the copula
parameters were θ′0 = ±11.41 and θ0 = ±4.67.

Figure 2 shows 2-D plots of V vs W and ξ vs. ε for the four different
patterns of positive or negative dependence. The first column (Figures 2(a),
2(c) and 2(e)) corresponds to a positive dependence between V and W , while
the second column (Figures 2(b), 2(d) and 2(f)) corresponds to negative
dependence. The second and third rows correspond, respectively, to positive
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and negative dependence between ξ and ε. For instance, Figure 2(d) shows
the graph of ξ vs. ε in the case of negative correlation between V and W , and
positive correlation between ξ and ε. The Frank copula is characterized by
weak and symmetric tail dependences, and a strong correlation in the center
of the distribution. In contrast, the Clayton copula models asymmetric
dependence, with higher correlation in the lower tail.

Tables 2 and 3 show point estimates and approximate 95% confidence
intervals (mean plus or minus two standard deviations) for the model pa-
rameters, in the case of positive and negative dependence between ε and
ξ, respectively. In each case, we present the results for two models: the
correct one, based on Frank and Clayton copulas, and a model that wrongly
assumes independence between V and W . Somewhat unexpectedly, the im-
pact of model misspecification is rather limited in terms of estimation error:
the parameter estimates obtained from the two models are similar.

We do, however, observe large discrepancies between the estimates of
technical efficiency. This is shown in Figure 3, which displays the distri-
butions of technical efficiency scores computed using (17), for the correct
and misspecified models, using one arbitrary dataset. We also show in this
figure the technical efficiencies computed using the true parameter values
and true errors εi. We can see that the misspecified model overestimates
(respectively, underestimates) the technical efficiency scores in the case of
positive (respectively, negative) dependence between V and W . This obser-
vation is consistent with previous findings by Smith [14] and Wiboonpongse
et al. [16]. It confirms the importance of accounting for possible correlation
in the error terms of the stochastic frontier model.

4.2 Application to rice production data

The double-copula model described in Section 3.2 was applied to data col-
lected from 200 rice farmers from Kamphaeng Phet province, Thailand,
during the year 2012. A random sampling procedure was employed. Out-
put and input data were collected from face to face interviews performed
by graduate students from Chiang Mai University, Chiang Mai, Thailand.
The Kamphaeng Phet province is one of the most important rice produc-
tion areas in the lower part of Northern Thailand. It contains an area of
1,436,934 rai (2299 km2) of rice plantation, which constitutes 3% of the rice
production area in Thailand. Also, the Ping river with the Bhumibol dam
provides convenient conditions for planting rice.

We divided the farmers into two groups depending on the farmers’ plant-
ing techniques. Transplanting is the traditional method, while the other

12
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Figure 2: Simulated data based on Frank and (rotated) Clayton copulas.
The first and second columns correspond to positive and negative depen-
dence between V and W , respectively; the second and third rows correspond
to positive and negative dependence between ξ and ε, respectively.
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Table 2: Parameter estimates and approximate 95% confidence intervals
(means plus or minus two standard deviations) for the simulated data, using
the two models (Independent-Clayton and Frank-Clayton) in the case of
positive correlation between ξ and ε (τ(ξ, ε) = 0.7). The last two rows are
the mean and standard deviation of AIC.

τ(V,W ) = 0.7 τ(V,W ) = −0.7

True Ind-Clt Frk-Clt Ind-Clt Frk-Clt
β0 10 8.34 9.19 10.9 10.17

[7.92, 8.76] [7.53,10.85] [10.58, 11.54] [9.57, 10.77]
β1 0.7 0.67 0.7 0.69 0.68

[0.45, 0.89] [0.48, 0.92] [0.21, 1.17] [0.22, 1.14]
α0 0.2 0.53 0.53 0.23 0.24

[0.33, 0.73] [0.33, 0.73] [0.11,0.35] [0.12,0.36]
α1 0.5 0.58 0.58 0.49 0.49
σw 4 3.07 4.04 2.96 2.07

[2.11, 4.03] [1.94, 6.14] [2.04, 3.88] [1.23, 3.3]
σv 1 0.42 0.91 1.06 1.04

[0.06, 0.78] [0, 1.85] [0.5, 1.62] [0.62, 1.46]
[0.52, 0.64] [0.50,0.66] [0.37, 0.61] [0.37, 0.61]

θ′ ±11.4 9.34 -7.55
[-1.78, 20.46] [-15.49, 0.39]

θ 4.67 4.63 4.51 4.89 5.28
[1.61, 7.65] [1.61, 7.41] [2.17, 7.61] [0.36, 10.2]

logL -288.01 -286.1 -334.21 -333.12

AIC 590.03 588.2 682.42 682.24
s.d. 27.45 26.87 30.55 29.98
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Table 3: Parameter estimates and approximate 95% confidence intervals
(means plus or minus two standard deviations) for the simulated data, using
the two models (Independent-Clayton and Frank-Clayton) in the case of
negative correlation between ξ and ε. (τ(ξ, ε) = −0.7). The last two rows
are the mean and standard deviation of AIC.

τ(V,W ) = 0.7 τ(V,W ) = −0.7

True Ind-Clt Frk-Clt Ind-Clt Frk-Clt
β0 10 8.12 9.2 7.95 7.04

[7.74, 8.5] [7.58, 10.82] [6.43, 9.47] [4.04,10.04]
β1 0.7 0.74 0.74 0.64 0.7

[0.46, 1.02] [0.5, 0.98] [0, 1.28] [0.04, 1.36]
α0 0.2 0.17 0.17 0.19 0.19

[-0.01, 0.35] [-0.01, 0.35] [0.07, 0.31] [0.07, 0.31]
α1 0.5 0.5 0.5 0.46 0.46

[0.28, 0.72] [0.28, 0.72] [0.36, 0.56] [0.36, 0.56]
σw 4 2.8 4.05 3.69 2.6

[2.02, 3.58] [1.91, 6.19] [1.93, 5.45] [0, 5.82]
σv 1 0.54 1.11 1.9 2.17

[0.24, 0.84] [0, 2.37] [0.92, 2.88] [0.27, 4.07]
θ′ ±11.4 7.94 -11.31

[-1.2, 17.08] [-22.91, 0.29]
θ -4.67 -4.24 -4.39 -5.34 -5.48

[-5.88, -2.6] [-5.99, -2.79] [-7.36, -3.32] [-7.22, -3.74]

logL -305.66 -303.52 -375.45 -374.31

AIC 625.32 623.04 764.91 764.62
s.d. 33.82 33.11 26.51 26.21
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Figure 3: Estimated technical efficiencies for the correct model (solid lines),
the misspecified model (interrupted line) and the corrected model with the
true parameters (dotted line). The first and second columns correspond to
positive and negative correlation between V and W , respectively. The first
and second rows correspond, respectively, to positive and negative correla-
tion between ξ and ε.
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planting techniques, such as manual or mechanical seeding, are more recent.
The choice of a planting technique is likely to influence the farmer’s pro-
duction and inputs. If we do not consider self-selection in the estimation
of separate production frontiers, coefficient estimates will be biased. Fol-
lowing Heckman [7], we estimated the probability for the farmers to choose
the transplanting technique by means of a bivariate Probit model. Also, a
stochastic production frontier model was used to analyze the productive ef-
ficiency of rice farmers using the transplanting technique. The copula-based
stochastic frontier model with sample selection was thus specified as

Y ∗i = α0 + α1 ×memberi + α2 × educationi + α3 × hiringi + ξi (23)

log(outputi) = β0 + β1 × log(labor)i + β2 × log(land)i+

β3 × log(input)i + β4 ×machinei + Vi −Wi. (24)

In (23), Y ∗i is the unobserved propensity to choose transplanting relatively to
the other planting techniques, which is a function of the number of family
members, the years of education, and the share of hired labor. In (24),
the production inputs are: labor (person days), land area (rai), material
inputs (which includes inorganic fertilizers, pesticides, and seeds) (baht),
and mechanical power (baht). Figure 4 shows scatter plots of the output and
the independent variables. There clearly exist positive correlations between
the output and independent variables.

To select the best model, i.e., the best pair (Cθ, C
′
θ′) of copulas in (18)

and (19), we first estimated the sign of the correlation between the two pairs
(V,W ) and (ε, ξ). For that purpose, we used the Gaussian copula family.
We found a negative correlation between V and W , and a positive corre-
lation between ξ and ε. We thus considered Gaussian, Clayton, Gumbel,
Frank, Joe, 180-degree rotated Clayton, 180-degree rotated Gumbel, and
180-degree rotated Joe copulas to identify the dependence between ε and ξ.
The dependence between V and W was modeled by independent, Gaussian,
Frank, 90 and 270-degree rotated Clayton, 90 and 270-degree rotated Gum-
bel, and 90 and 270-degree rotated Joe copulas. Each model was fitted to
the data, and we computed the AIC to select the best model.

Table 4 shows the values of AIC for all the considered models. We can
see that the best model is the one based on a Gaussian copula to model the
dependence between ξ and ε, and a Clayton copula rotated by 270 degrees
to represent the dependence between V and W . The AIC for this model
(−83.84) is much smaller that that for the Gaussian-Independent model
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Figure 4: Matrix plot of the rice production data.
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(−53.80). This result confirms the relevance of relaxing the assumption of
independence between the inefficiency and random error components of the
stochastic frontier model.

Table 5 shows the parameter estimates for the Gaussian/Independent
and Gaussian/270-degree rotated Clayton models. The standard errors tend
to be smaller for the model that considers the correlation between V and
W ; as a result, the significance level of coefficients in the sample selection
and stochastic frontier equations tend to be higher. Overall, however, the
estimated parameters in the two models are quite similar. In the sample se-
lection equation, the parameter estimates for the number of family members
and the years of education are significant at the 10% level: the probability
of choosing the transplanting technique is higher when the family is larger
and the education level is smaller. The estimate of σw for the best model
is smaller than that of the alternative model: the assumption of indepen-
dence between the two component errors tends to result in overestimation
of the variability of technical efficiencies. We can see that the estimated
tau coefficient between V and W (−0.975) indicates a very high negative
correlation between the two components of the stochastic frontier equation.
Assuming independence between V and W thus seems to be very inaccurate
here. There is also a highly significant positive correlation between ξ and ε.

Figure 5 shows the distribution of technical efficiency scores for the best
model, and the model assuming independence between V andW . We can see
that the latter model underestimates the technical efficiency, which confirms
the phenomenon observed with simulated data in Section 4.1. According
to the best model, all the farmers are operating at an efficiency level of
96%, whereas only 46% of the farmers have an efficiency equal to or above
that level according to the alternative model. The uniformly high efficiency
observed with our model may be explained by the fact that transplanting,
being the traditional technique, is well mastered by the farmers. It is clear
that mistakenly assuming independence between the inefficiency and noise
terms in the stochastic frontier equation would result in wrong conclusions
and prescription for this case study.

5 Conclusions

In this paper, we have proposed a very general stochastic frontier model
with self-selection based on two copulas. This model is very flexible, in that
it does not assume any specific form for the dependence between the error
terms of the stochastic frontier equation on the one hand, and between the

19



T
ab

le
4
:

V
a
lu

es
of

A
IC

fo
r

a
ll

co
p

u
la

-b
as

ed
m

o
d

el
s.

T
h

e
ro

w
s

co
rr

es
p

on
d

to
th

e
co

p
u

la
b

et
w

ee
n
ξ

a
n

d
ε.

T
h

e
co

lu
m

n
s

co
rr

es
p

on
d

to
co

p
u

la
s

b
et

w
ee

n
V

an
d
W

.
T

h
e

b
es

t
va

lu
e

is
m

ar
ke

d
in

b
ol

d
.

(ξ
,ε

)
\

(V
,W

)
In

d
G

a
u

F
ra

n
k

R
-C

lt
90
◦

R
-C

lt
27

0
◦

R
-G

u
m

90
◦

R
-G

u
m

2
70
◦

R
-J

o
e

9
0
◦

R
-J

o
e

27
0
◦

G
a
u

ss
ia

n
-5

3
.8

0
-5

4
.0

4
-6

0.
49

-5
4.

38
-8
3
.8
4

-6
0.

15
-6

9
.5

8
-5

8.
2
9

-5
4.

4
9

F
ra

n
k

-5
2.

25
-5

7.
33

-5
7.

33
-5

7.
39

-7
0.

91
-7

8.
30

-7
6.

9
4

-5
7
.0

4
-5

7.
3
8

G
u

m
b

el
-5

2.
85

-5
2.

76
-5

3.
69

-4
7.

58
-5

0.
52

-6
3.

55
-5

5
.4

3
-5

4.
4
5

-6
0.

3
3

C
la

y
to

n
-5

4
.4

1
-5

8
.1

6
-5

5.
71

-5
6.

78
-5

4.
37

-5
4.

46
-8

0.
1
1

-6
0
.6

8
-5

5
.7

3
J
o
e

-5
9
.6

3
-6

0
.6

1
-5

5.
27

-5
4.

23
-5

9.
74

-5
9.

64
-5

7.
8
1

-5
5
.9

2
-6

0
.0

7
R

-C
la

y
to

n
18

0◦
-4

9
.5

9
-5

7
.9

2
-5

1.
75

-4
9.

59
-5

6.
96

-7
5.

42
-5

8
.6

3
-5

6.
2
3

-5
7
.7

4
R

-G
u

m
b

el
1
8
0
◦

-5
7.

37
-5

8.
38

-5
6.

72
-5

6.
19

-5
6.

32
-5

5.
99

-6
3.

8
1

-5
5
.3

9
-5

7.
1
0

R
-J

o
e

18
0
◦

-6
4
.0

2
-6

2
.3

9
-6

4.
99

-6
4.

37
-6

3.
26

-6
4.

69
-6

3
.0

1
-6

3.
9
5

-6
4
.9

8

20



Table 5: Parameter estimates of the Gaussian/Independent and
Gaussian/270◦-rotated Clayton models. The standard errors are shown in
parentheses. Significance codes: *=0.1, **=0.05, ***=0.01.

Gauss/indep Gaussian/270◦-Clt

Stochastic frontier equation

intercept 10.30*** (0.028) 10.17*** (0.0011)
log(labor) 0.0911** (0.028) 0.138*** (0.0007)
log(land) 0.781*** (0.069) 0.783*** (0.0011)
log(input) 0.187*** (0.073) 0.173*** (0.0012)
log(machine) 0.023* (0.017) 0.0162*** (0.0003)

Sample selection equation

intercept 0.419 (0.40) 0.207 (0.359)
members 0.0422 (0.034) 0.051* (0.0304)
education −0.226* (0.099) −0.188* (0.0943)
hiring 0.131 (0.426) 0.293 (0.388)

SD and dependence parameters

σw 0.0747 (0.016) 0.0513 (0.0003)
σv 0.0369 (0.0092) 0.0616 (0.0004)
θ′ −78.26 (2.25)
θ 0.808 (0.069) 0.892 (0.039)
τ(V,W ) −0.975*** (0.0008)
τ(ε, ξ) 0.599*** (0.067) 0.701*** ( 0.047)
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errors of the sample selection and stochastic function equations on the other
hand. Rather, our approach considers several families of copula functions
to model these dependences. The maximum simulated likelihood method is
used to fit each model, and the best model is selected using the AIC.

Using both simulated data and cross-sectional rice production data, we
have shown that improperly assuming independence between the two compo-
nents of the error term in the stochastic frontier model may result in biased
estimates of technical efficiency scores, hence potentially leading to wrong
conclusions and recommendations. In particular, for the rice production
data, we found a strong negative correlation between the noise and ineffi-
ciency terms in the stochastic frontier equation, resulting in severe underesti-
mation of the technical efficiencies if this correlation is ignored. This result
confirms previous findings by Smith [14] and Wiboonpongse [16], among
others; however, our approach goes beyond that of other studies, because
we also accounts for sample self-selection in the model. In view of these
findings, a lesson to be learnt from this study is that great caution should
be exercised when interpreting the technical efficiencies in stochastic frontier
analysis, because of the sensitivity of the approach to model misspecification.
Our methodology could be extended by also considering different models for
the marginal error distributions, and by using multivariate copulas.
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Highlights

• We propose a stochastic frontier model with self-selection, based on
two copulas

• The model is estimated using maximum simulated likelihood

• Several copula families are considered; the best model is selected using
AIC

• The model was applied to cross-sectional rice production data

• Our model provides more reliable estimates of technical efficiency
scores
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