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Abstract. Passive probes continuously generate statistics on large number of
metrics, that are possibly represented as probability mass functions (pmf). The
need for consolidation of several pmfs arises in two contexts, namely: (i) when-
ever a central point collects and aggregates measurement of multiple disjoint van-
tage points, and (ii) whenever a local measurement processed at a single vantage
point needs to be distributed over multiple cores of the same physical probe, in
order to cope with growing link capacity.
In this work, we take an experimental approach and study both cases using, when-
ever possible, open source software and datasets. Considering different consoli-
dation strategies, we assess their accuracy in estimating pmf deciles (from the
10th to the 90th) of diverse metrics, obtaining general design and tuning guide-
lines. In our dataset, we find that Monotonic Spline Interpolation over a larger
set of percentiles (e.g., adding 5th, 10th, 15th, and so on) allow fairly accurate
pmf consolidation in both the multiple vantage points (median error is about 1%,
maximum 30%) and local processes (median 0.1%, maximum 1%) cases.

1 Introduction

Passive probes collect a significant amount of traffic volume, and perform statistical
analysis in a completely automated fashion. Very common statistical outputs include,
from the coarsest to the finest grain: raw counts, averages, standard deviations, higher
moments, percentiles and probability mass functions (pmf). Usually, computations are
done locally at a probe, though there may be cases where the need for consolidation of
multiple statistics, in a scalable and efficient way, arise.

We would now like to mention two completely orthogonal scenarios where this need
arises, which we describe with the help of Fig. 1. In the figure, a number of monitors
(denoted with an eye) generate statistics that are fed to a collector (denoted with gears)
for consolidation. The figure further annotates the amount of traffic to be analyzed that
flows across each monitored link.

First, in case of multiple vantage points of Fig. 1-(a), consolidation of several data
sources is desirable as it yields a more statistically representative population sample.
In cases where these probes are placed at PoP up in the network hierarchy, a limited
number of M monitors suffices in gathering statistics representative of a large user pop-
ulation. However, in cases where probes represent individual house-holds, the number
of M ′ monitors possibly grows much larger. As monitors and collector are physically
disjoint, statistics have to be transferred to the collector – a potential system bottleneck.
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Fig. 1. Consolidation scenarios: statistical data is either produced by (a) multiple physically dis-
joint probes (heterogeneous traffic), or (b) a single multi-threaded probe (homogeneous traffic).

Second, even in the case of a single vantage point of Fig. 1-(b), due to the sheer
amount of traffic volume, it may be necessary to split traffic processing over multi-
ple independent cores. Considering a high-end off-the-shelf multi-core architecture, the
number of available CPUs limits the number of parallel processes to a few handful (we
are not considering, at this stage, GPU-based architectures). In contrast to the previous
case, monitors and collector are in this case colocated – so that processing power, rather
than transfer of statistical data, becomes a potential system bottleneck.

While these two scenarios seem rather different at first sight, we argue that they
translate into similar constraints. Thus we suggest using a single, flexible methodology
to cope with both cases. In the case of multiple vantage points, using the least possible
amount of statistical data is desirable to avoid a transfer bottleneck. In the case of par-
allel processing at a single vantage point, elaborating the least possible amount of data
is desirable to limit the computational overhead tied to the consolidation process.

The above constraints possibly trade-off with the amount of data that is required
to meet the desired accuracy level in the consolidation process, which additionally de-
pends on the specific statistic of interest. Whenever the statistic X to be consolidated
has the coarsest (i.e., count, averages or second moment) or finest (full pmf) grain, then
the full set {Xj}Mi=j of statistics gathered over all M vantage points is needed for the
consolidation process: the consolidation process then trivially combines these affine in-
puts (e.g., averaging the average, or maximum over all maximums, or summing the pmf
frequency counters), weighting them on the ground of the amount of traffic Ti that each
vantage point represents wi = Ti/

∑M
j=1 Tj .

Instead, consolidation of intermediate-grain statistics, such as higher moments or
quantiles of the distribution, raises a more interesting and challenging problem. For
example, consider the problem of accurate estimation of the 90th percentile of a given
metric, and assume for the sake of simplicity that all vantage points correspond to the
same amount of traffic (i.e., unit weights wi = 1∀i). It is clear that, while the fine
grained knowledge of the pmf at all vantage points is not necessary to estimate the 90th
percentiles of the aggregate pmf, the mere knowledge of the 90th percentiles over all
vantage points is not sufficient.

While our aim is to propose a general methodology, and to obtain general design
and tuning guidelines, in this paper we report on a specific instance of metrics gathered
through the Tstat [1] measurement tool, a passive flow-level monitor that we developed



over the last years [8]. We point out that, as other tools, Tstat produces both detailed
flow-level logs at several layers (e.g, transport, application) as well as periodic statis-
tics, stored as a Round Robin Database (RRD). While statistics are automatically com-
puted, they offer only limited flexibility providing a breakdown depending on the traffic
direction (e.g., client-2-server vs server-2-client, incoming vs outgoing). Hence, while
aggregate statistics are useful, as they offer a long-lasting automatic of several networks
indicator, in order to study correlation or conditioned probabilities across metrics, logs
are ultimately needed. As such, consolidation of automatic statistics possibly tolerate
slight inaccuracies if that provides sizable savings in terms of computational power or
bandwidth.

In this paper, we focus on the estimation of pmf deciles (from the 10th to the 90th),
considering vantage points located into rather different networks (open dataset when-
ever possible) and a large span of metrics (at IP, TCP and UDP layer). We employ
different consolidation strategies (e.g., Linear vs Spline interpolation techniques) and a
varying amount of information (i.e., considering the deciles, or also additional quantiles
of the distribution). In the remainder of this paper, we outline the methodology (Sec. 2)
and dataset (Sec. 3) we follow in our experimental campaign (Sec. 4). A discussion of
related work (Sec. 5) and guidelines (Sec. 6) concludes the paper.

2 Methodology

2.1 Features

The most concise way to represent a pmf or the related distribution is by the use of
percentiles. Tstat computes two kinds of percentiles:

Per-flow percentiles. For these fine-grained metrics, Tstat employs an online tech-
nique based on constant-space data structures (namely, PSquare [13]): percentiles
of per-flow metrics are then stored in flow-level logs. Though PSquare is very ef-
ficient in both computational complexity and memory footprint (namely, requiring
only 5 counters per percentile), due to the large number of flows it is only seldom
used (e.g., to measure 90th, 95th and 99th percent of queuing delay to measure
bufferbloat [5]).

Aggregated percentiles. For this coarse grain metric, Tstat employs standard fixed-
width histograms: percentiles of the distribution are then evaluated with linear in-
terpolation, and stored in Round Robin Databases (RRD). Generally, each flow
contributes one sample to the aggregate distribution, and several breakdowns of the
whole aggregated are automatically generated depending on the traffic direction
(e.g., client-2-server vs server-2-client, incoming vs outgoing).
For reasons of space, we are unable to report the full list of traffic features tracked
by Tstat as aggregate metrics (for a detailed description, we refer the reader to [1]).
We point out that these span multiple layers, from network (i.e., IP) to transport
(i.e., TCP, UDP, RTP) and application layers (e.g., Skype, HTTP, YouTube). Since
not all kinds of traffic are available across all traces (e.g., no Skype or multimedia
traffic is present in the oldest trace in our dataset), we only consider the IP, TCP
and UDP metrics.



Fig. 2. Synopsis of the experimental workflow

2.2 Consolidation workflow

In this work, we focus on the coarse-grain dataset and estimate quantiles of the distri-
bution. We describe our workflow with the help of Fig. 2, considering a generic traffic
feature. Shaded gray blocks are the input to our system. Such blocks represent quantiles
vectors qi , gathered from multiple (local or remote) Tstat probes running at location i,
with i ∈ [1, NP ]. We interpolate each quantile vector to get a cumulative distribution
function (CDF). These functions are weighted by the amount of traffic they represent
(weights can be computed in terms of flows, packets or bytes), and added to get the total
CDF. Finally, as output of our workflow, we obtain the consolidated qi deciles vector
from the total CDF with the bisection method.

It is worth noticing that the procedure implicitly yields continuous CDF functions,
whereas the empirical CDFs computed through Tstat histograms are piecewise constant
functions instead. To cope with this, it would be possible to quantize a posteriori the
gathered quantiles for discrete variables (e.g., packet length, IP TTL). However, we
neglect this step because (i) we aim for a fully automated process, whereas this per-
feature optimization would require manual intervention and (ii) we expect the impact
due to missed rounding of integer values to be minor anyway.

Finally, the consolidated continuous output is compared to the real quantiles qi of
the aggregated distribution, obtained from running Tstat on the aggregated traces. In
what follows, we evaluate the accuracy of the overall workflow via the relative error
erri = (qi − q̃i)/q̃i of the consolidation process.

2.3 Interpolation

To obtain the CDFs, we employ two kinds of interpolation.

Linear (L). For each couple of consecutive deciles, linear interpolation reconstructs
the CDF by using an affine equation y = mx + q. Being (qi, pi) and (qi+1, pi+1)
the given points, m = pi+1−pi

qi+1−qi
and q = pi. If the function to approximate were

continuous in both their first and second derivative (i.e., f ∈ C2) then we could
upper bound the error through the Rolle’s Theorem. Yet, these assumptions do not



hold in the majority of real cases, so that we can just expect that, the steeper the
first derivative, the higher the errors.

Monotonic Spline (S). Cubic Splines are Piecewise polynomial functions with n = 3.
Given that CDF (a) ≤ CDF (b) when a ≤ b we need to ensure the monotonicity
of the data. This constraint is met employing the Piecewise Cubic Hermite Interpo-
lating Polynomial [9]. The obtained polynomial is ∈ C1: i.e., the first derivative is
continuous, whereas continuity of the second derivative is not guaranteed.

2.4 Input vs Output

As output, we are interested in evaluating all deciles of the distribution: along with min-
imum and maximum values, these represent compact summaries of the whole CDF. Our
methodology exploits quantiles to reconstruct the distributions, and operate over CDFs.
In principle, this allows to gather any set of output quantiles from CDFs reconstructed
from a set of different input quantiles. In this work, we consider two cases:

Single (S). In the simplest case, we consider deciles as both input and output of our
workflow.

Double (D). We argue that CDF interpolation can benefit from a larger number of
samples (i.e., knots in Spline terms), providing a more accurate description for the
intermediate consolidation process. As such, we additionally consider the possi-
bility of using additional intermediate (i.e., 5th, 15th, 25th to 95th) quantiles of
the distribution (i.e., that carry a double amount of information with respect to the
previous case).

While the above two scenarios are not fully representative of the whole input vs
output space (where in principle the full cross-product of input vs output quantiles sets
could be considered) however, we point out that they already provide insights about the
value of additional input information. We expect these settings to quantify the relative
importance of information available at the ingress of the system, with respect to the
specific methodology used for, e.g., interpolation in the workflow.

3 Datasets

We use several traces, some of which are publicly available. Vantage points pertain to
different network environments (e.g., Campus and ISP networks), countries (e.g., EU
and Australia) and have been collected over a period of over 8 years. This extreme
heterogeneity attempts to obtain conservative accuracy values: our expectation is that,
as not only the environment and the geography largely differ, but also since the traffic
patterns, application mixtures and Internet infrastructure have evolved, this setup should
be significantly more challenging than a typical use case. In more details, traces refer
to:

Campus. Captured during 2009 at University of Brescia (UniBS), this publicly avail-
able trace [3] is representative of a typical data connection to the Internet. LAN
users can be administrative, faculty members and students.



Table 1. Summary of dataset used in this work.

Trace ISP Campus Auckland-VI
Year 2006 2008 2001
Packets 44,396,297 17,246,459 291,052,998
Flows 219,481 422,928 11,128,910
Packets/flow 202.27 40.77 26.15
IPs 61,959 81,687 410,059

ISP. Collected during 2006 from one of the major European ISP, which we cannot cite
due to NDA, offering triple-play services (Voice, Video/TV, Data) over broadband
access. ISP is representative of a very heterogeneous scenario, in which no traffic
restriction are applied to customers.

Auckland. Captured during 2001 at the Internet egress router of the University of
Auckland, this publicly available trace [2] enlarges the traffic mix and temporal
span of our dataset.

While we are unable to report details of the above dataset for lack of space, we point out
that these are available at the respective sites [2, 3], of which we additionally provide
statistics on [16]. To simplify our analysis, we consider a subset of about 200,000 ran-
domly sampled flows for each trace1, which implies equal weights. Given that each flow
represents a sample for the CDF, we observe that CDFs are computed over a statistically
significant population.

4 Experiments

4.1 Scenario and settings

Starting from the above dataset, we construct two consolidation scenarios: for the local
parallel processing case (Homogeneous), we uniformly sample flows from the ISP trace,
that we split into N ∈ [2, 8] subtraces (in the N = 8 case, the population accounts to
about 25,000 flows for each individual CDF). For the multiple remote vantage points
case (Heterogeneous), we instead consider the three traces (about 600,000 flows).

To give a simple example of the variability of metrics we report in Fig. 3 the distri-
bution of an IP-level (i.e., IP packet length) metric in the parallel processing (left) and
multiple vantage point (right) scenarios. As expected, differences in the parallel pro-
cessing case are minor: as sampling is uniform, each of the N subsamples already yields
a good estimate of the overall aggregate distribution. Conversely, significant differences
appear in the multiple vantage points scenario: in this case, the application mixture im-
pacting the relative frequency of packet sizes (e.g., 0-payload ACK vs small-size VoIP
packets vs full-size frames data packets). has significantly evolved2.

1 Actually, we consider the full ISP trace, so sample size is 219,481 flows for each trace
2 Additionally, changes in the MTU size due to Operating System and Internet infrastructure

evolution are possible causes, that would however need further verification.
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Fig. 3. Example of variation of an IP-level metric (i.e., IP packet length) in Homogeneous vs
Heterogeneous settings.

Overall, we consider four consolidation settings, arising from different combina-
tion of interpolation techniques and inputs, namely: Linear Simple (LS), Linear Double
(LD), Spline Simple (SS), Spline Double (SD) – that correspond to different computa-
tional complexity and data amount settings. Our aim is to assess the extent of accuracy
gains that can be gathered through the use of more complex interpolation techniques,
or through the exchange of a larger amount of information.

4.2 Methodology tuning

We first assess the consolidation accuracy in the LS, LD, SS, SD settings, for both
homogeneous and heterogeneous scenarios. We report the average error (with standard
deviation bars) in Fig. 4. The plot is additionally annotated with the accuracy gain over
the naive LS setting.

First, notice that in the homogeneous scenario the error is very low, but grows of
about two orders of magnitude in our heterogeneous one (where all techniques are
largely ineffective). Second, it can be seen that while Spline interpolation has an im-
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Fig. 4. Methodology tuning: Consolidation error in the Linear vs Spline, Single vs Double case
for the IP TTL metric considering Homogeneous and Heterogeneous cases

portant impact (at least 38%), doubling the amount of quantiles however has an ever
higher impact. Moreover, this is especially true in the more difficult heterogeneous sce-
nario, where gains are in excess of 70% when interpolation happens over a denser set
of quantiles, whereas Spline interpolation gain at most 48%. While this is an interest-
ing observation, it raises an important question, which we leave for future research:
namely, to precisely assess in which conditions, over all metrics and input-output possi-
bilities, having a larger amount of information is more beneficial than employing more
sophisticated interpolation techniques.

As a consequence, in what follows we limitedly consider the SD setting (i.e., Spline
interpolation over Double set of quantiles), as it yields to the best consolidation results.

4.3 Breakdown

Next, we show a per-percentile per-metric breakdown of the relative error in Fig. 5. For
the sake of illustration, we consider a few metrics that are representative of different
layers (IP, TCP, UDP). To get conservative results, we consider only the most challeng-
ing heterogeneous scenario. As it can be expected, errors are not tied to a particular
decile, as the error is rather tied to the steepness of the change in the CDF around that
decile for that particular metric. For exanoke, considering the IP packet length metric,
due to significant CDF differences across traces depicted early in Fig. 3-(b), it can be
expected that deciles below the median are hard to consolidate: this is reflected by large
errors for the corresponding deciles in Fig. 5.
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As we previously have observed, rather than trying harder to correct these esti-
mation errors a posteriori (i.e., using Spline instead of Linear interpolation), greater
accuracy is expected to come only at a price of a larger amount of information (i.e.,
quantiles for CDF interpolation), and are ultimately tied to the size of the binning strat-
egy in Tstat. Otherwise stated, our recommendation is to selectively bias the amount of
quantiles: instead of indiscriminately increasing the amount of quantiles for all metrics,
one could use denser quantiles (or finer binning) only for metrics with a high subjective
value in the scenario under investigation. This could be facilitated by a integer “overfit”
factor extending beyond the values Simple(=1), Double (=2) explored in this work,
that could be easily set during an initial probe configuration phase.

4.4 Homogeneous vs Heterogeneous

We now report a complete CDF of the relative error over all Tstat metrics and per-
centiles in Fig. 6, where we compare the heterogeneous and homogeneous case (to get
a fair comparison, we consider only N = 3 subsets in both cases). As previously ob-
served, there is a sizable difference in terms of accuracy, with median relative error
in the homogeneous (heterogeneous) cases of 0.1% (1%), and maximum error of 1%
(30%). Notice that we are considering Spline with Double quantiles, otherwise errors
in the heterogeneous settings could grow even further. It follows that, while the con-
solidation appears to be rather robust in homogeneous settings, it may serve as a mere
visual indication depending on the specific metric and decile (recall Fig. 5), but cannot
otherwise be considered reliable (or, at least, a calibration phase is needed in to assess
the relative error with any different set of remote vantage points).
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4.5 Parallel local probes

Finally, we verify the effect of splitting the trace in an arbitrary number of parallel pro-
cesses: we do so by artificially splitting the ISP trace into multiple N ∈ [2, 8] subtraces,
and process them independently. In principle, it would be desirable to use an arbitrarily
high number of cores, as this would allow the monitoring tool scale with the link load.
At the same time, we expect consolidation accuracy to decrease with growing N, so
that an empirical assessment of its error is mandatory, so to gauge to what extent paral-
lelization could compromise the accuracy of the statistical results. Results are reported
in Fig. 7 averaged over all metrics (bars report this time the error variance, as the stan-
dard deviation of a numbere ∈ [0, 1] produce otherwise a too large visual noise). It can
be seen that the error, though very limited for any N > 1, grows logarithmically with
N . This implies that the largest accuracy loss happens whenever a monolithic process
is split into 2 parallel processes, suggesting that a monitoring tool can safely scale to N
cores.

5 Related work

Statistical data processing and aggregation in distributed systems is surely not a novel
research field. Yet, in the telecommunication network domain, the problem has so far
been treated in rather different settings (e.g., sensor vs peer-to-peer networks).

From a system level, this is easily understood since only very recent work offered
high-speed packet capture libraries [4, 10, 17] enabling parallel processing of network
traffic. Work such as [10] or [6] leverage this possibility for packet forwarding or traffic
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classification respectively, though work that focuses on traffic monitoring is closer to
ours [7, 12, 15]. For example, [7] focus on making log storage cope with line rate,
deferring the process of analysis and consolidation as a offline process. Other recent
work defines fully-fledged frameworks for distributed processing [12, 15]. While these
systems have merits, they are far more general than the issue studied in this work. Yet
performance analysis is limited to show-case functionality of the tools, though neither
practical algorithms nor guidelines are given for our problem at hand.

In the distributed system settings, generally the focus has been on either (i) com-
pact and efficient algorithms and dat structures for quantile estimation, or on (ii) proto-
cols to compute an estimate of the entire distribution in a decentralized and efficient
manner. As for (i), among the various techniques, a particular mention goes to the
PSquare method [13], that is still considered as the state of the art [14,18], and is imple-
mented in Tstat. As for (ii), [11] proposes a gossip protocol to distribute computation of
Equi-Width and Equi-Depth histograms, evaluating the convergence speed (measured
in number of rounds) and quality (Kolmogorov-Smirov distance between the actual and
estimated distributions). In our case, a single collector point allow us to minimize the
communication overhead and perform consolidation in a single round. More recently,
a number of approaches are compared in [19], that would be interesting to adapt and
specialize to our settings.

Finally, it is worth mentioning that this problem is orthogonal to the widely used
technique of traffic sampling, with which techniques considered in this work are further-
more inter-operable. Indeed, traffic sampling (e.g., at flow level) is useful in reducing
the sheer volume of traffic flows that have to be processed at a single probe; yet, flow
sampling does not affect the volume of statistical data that is produced by the monitors,



and that is ultimately fed to collectors. Recalling our use cases, flow sampling may re-
lieve CPU bottlenecks of the multi-process case of Fig. 1-(b), but it does otherwise not
affect the amount of statistical data reaching the collector in Fig. 1-(a). To this latter
end, a spatial sampling among monitors could reduce the amount of statistical data fed
to the collector, though this could tradeoff with the representativeness of the data – an
interesting question that deserves further attention.

6 Conclusions

In this work we address the problem of consolidating statistical properties of network
monitoring tools coming from multiple probes, either as a result of parallel processing
at a single vantage point, or collected from multiple vantage points. Summarizing our
contributions, we find that:

– as it can be expected, while consolidation error is practically negligible in the case
of local processes, where statistics are more similar across cores (median error is
about 0.1% and maximum 1%), it is however possibly rather large in the case of
multiple disjoint vantage points with diverse traffic natures (median error is about
1% and maximum 30%, though it possibly exceeds 100% for naive strategies);

– the use of intermediate pmf quantiles (e.g., 5th, 15th, and so on), is desirable as it
significantly improves accuracy (up to 75% in the case of multiple vantage points),
even though it tradeoffs with communication and computational complexity;

– interpolation via Splines is preferable over simpler Linear interpolation, as it yields
to an accuracy gain of over 40%;

– the error in case of parallel processing grows logarithmically with the number of
processes, suggesting parallel processing tools to be a viable way to cope with
growing link capacity at the price of a tolerable accuracy loss.

As part of our ongoing work, we are building this consolidation system as a general
tool, able to work on RRD databases. We also plan to extend our analysis of the accuracy
to cover a larger set of input vs output features combination, and to more systematically
analyze benefits of interpolation vs additional information in these broader settings.
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