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ON THE EXISTENCE OF APPROXIMATE EQUILIBRIA AND SHARING RULE
SOLUTIONS IN DISCONTINUOUS GAMES

Philippe Bich∗ and Rida Laraki† ‡

This paper studies the existence of equilibrium solution concepts in a
large class of economic models with discontinuous payoff functions. The
issue is well understood for Nash equilibria, thanks to Reny’s better-
reply security condition (Reny (1999)), and its recent improvements
(Barelli and Meneghel (2013); McLennan et al. (2011); Reny (2009,
2011)). We propose new approaches, related to Reny’s work, and obtain
tight conditions for the existence of approximate equilibria and of shar-
ing rule solutions in pure and mixed strategies (Simon and Zame (1990)).
As byproducts, we prove that many auction games with correlated types
admit an approximate equilibrium, and that many competition models
have a sharing rule solution.

Keywords: Discontinuous games, better-reply security, sharing rules,
approximate equilibrium, Reny equilibrium, strategic approximation,
auctions, timing games.

JEL classification: C02, C62, C72.

1. INTRODUCTION

Many economic interactions are modeled as games with discontinuous payoff
functions. For example, in timing games, price and spatial competitions, auc-
tions, bargaining, preemption games or wars of attrition, discontinuities occur

‡We thank Panayotis Mertikopoulos and Christina Pawlowitsch for their useful comments.
We thank the anonymous reviewers and the associated editor for many insightful comments
and suggestions. We thank many participants of the following seminars or conferences for
their valuable comments: Conference on Economic Theory, June 2012 (Cowles, Yale), Inter-
national Conference on Game Theory, July 2012 (Stony Brook), SAET conference, July 2012
(Brisbane), Workshop on Dynamic Game Theory, December 2012 (Valparaiso), Roy-Adres
Seminar, September 2011 (Paris), CSEF Seminar, November 2011 (Napoli). This research was
supported by grant ANR-10-BLAN 0112 (Laraki).

∗Paris School of Economics, Centre d’Economie de la Sorbonne UMR 8174, Université
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when firms choose the same price, location, bid or acting time. The objective of
this paper is to extend and link conditions under which Nash, approximate and
sharing rule equilibria exist in such games.

Nash equilibrium is a strategy profile where each agent is reacting optimally
to other players’ plans. Mathematically, it is a fixed point of the best-response
correspondence. When payoff functions are continuous and quasiconcaves, an
application of Kakutani’s fixed point theorem leads to the Nash-Glicksberg the-
orem (Glicksberg (1952); Nash (1950a,b)). In discontinuous games, the Kakutani
approach cannot be directly applied because a player may have no optimal reply
or because his best choice jumps as a function of the choices of the other players.1

A natural issue then is to identify regularity conditions on payoffs, which com-
bined with quasiconcavity of the payoff functions, guarantee the existence of a
Nash equilibrium. The first existence conditions are given by the seminal papers
of Dasgupta and Maskin (1986b,a). A significant breakthrough2 is achieved by
Reny (1999) via the better-reply security approach.

Quoting Reny, “A game is better-reply secure if for every nonequilibrium strat-
egy x∗ and every payoff vector limit u∗ resulting from strategies approaching x∗,
some player i has a strategy yielding a payoff strictly above u∗i even if the others
deviate slightly from x∗”.

Reny’s paper generated a large literature. For instance, Barelli and Meneghel
(2013) and McLennan et al. (2011) proposed relaxations that cover non-quasicon-
cave preferences. Reny (2009, 2011) proposed new refinements for games in mixed
strategies using a strategic approximation methodology. Recently, Barelli et al.
(2014) applied Reny’s better-reply security and strategic approximation tech-
niques to prove existence of the value in Colonel Blotto game.

But what if a Nash equilibrium does not exist? Two related relaxations of
Nash equilibrium have been studied in the literature: endogenous sharing rules
and approximate equilibria.

In many discontinuous games, the exogenously given tie-breaking rule leads
to games without pure Nash equilibria (e.g., asymmetric Bertrand duopoly,
Hotelling location game) or without mixed Nash equilibria (e.g., 3-player pre-
emption games (Laraki et al. (2005)), auctions with correlated types or values
(Fang and Morris (2006); Jackson (2009)). However, the existence of a Nash equi-
librium is restored if the tie-breaking rule is chosen endogenously (Andreoni et al.
(2007); Maskin and Riley (2000); Simon and Zame (1990)). For example, in an
asymmetric Bertrand duopoly, a pure Nash equilibrium exists if ties are broken
in favor of the lower-cost firm. In first-price auctions with complete information,
a pure Nash equilibrium exists if ties are broken in favor of the bidder with the

1Another approach, not considered in this paper, is to use ordered fixed point theory (e.g.,
Tarski’s theorem) to obtain the existence of Nash equilibria in supermodular games (Topkis
(1979)).

2Carmona (2009) gives an extension of Dasgupta and Maskin’s results, which is unrelated
to Reny’s approach.
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highest value. Under mild topological conditions, Simon and Zame (1990) proved
that to every game, one could associate an auxiliary game that admits a Nash
equilibrium in mixed strategies and where payoffs in the two games only differ at
discontinuity points (see Section 2 for a formal definition). Jackson et al. (2002)
remark that their “results concern only the existence of solutions [sharing rule]
in mixed strategies” and that they “have little to say about the existence of so-
lutions in pure strategies”. We prove existence of a sharing rule solution in pure
strategies in every quasiconcave and compact game (see Theorem 3.4).

An alternative solution for games without a Nash equilibrium is the notion
of approximate equilibrium. It is a limit strategy profile x∗ and a limit payoff
vector u∗ of ε-Nash equilibria xε with associated payoff vector u(xε), as ε goes
to 0.

There are many games without a Nash equilibrium but with a reasonable
approximate equilibrium. In first-price auctions with complete information, for
example, a natural approximate equilibrium arises if the player with the highest
value proposes a bid slightly above the second highest value, and if the other
players bid exactly their value. Another example is Bertrand duopoly with asym-
metric costs, where in every approximate equilibria in pure strategies the most
efficient firm proposes a price slightly below the marginal cost of the opponent.

There are few results in the literature establishing the existence of approximate
equilibria, one of which is due to Reny (1996) and Prokopovych (2011).3 While
theoretically interesting, it requires assumptions that are not always satisfied in
applications (as will be seen).

In this paper, we define a game G to be approximately better-reply secure if for
every non-approximate equilibrium strategy profile x∗ and every payoff vector
limit u∗ resulting from strategies approaching x∗, some player i has a strategy
yielding a payoff strictly above u∗i , even if the others deviate slightly from x∗.

We prove that every approximately better-reply secure quasiconcave compact
game admits an approximate equilibrium. An example is given by the class of
diagonal games, which encompasses many models of competition (in price, time,
location or quantity): each player, i = 1, ..., N , chooses a real number xi in [0, 1].
The payoff of player i is fi(xi, φ(x−i)) if xi < φ(x−i), gi(xi, φ(x−i)) if xi > φ(x−i),
and hi(xi, x−i) if xi = φ(x−i), where fi : [0, 1]2 → R, gi : [0, 1]2 → R and
φ : [0, 1]N−1 → R are continuous functions. For example, in first-price auctions,
fi = 0, gi(xi, x−i) = vi−xi, and φ(xi, x−i) = maxj 6=i xj. In second-price auctions,
gi(xi, x−i) = vi −maxj 6=i xj (where vi is the value of the object for player i).

The paper is organized as follows. In Section 2, we recall the main results for
the existence of a solution in discontinuous games: Reny’s better-reply security
(Reny (1999)) for existence of Nash equilibria, the sharing rule solution of Si-
mon and Zame (1990), and Reny and Prokopovych’s conditions (Reny (1996),
Prokopovych (2011)) for the existence of an approximate equilibrium. Section

3Historically, Reny proved this result in a working and unpublished paper (Reny (1996)).
Independently, Prokopovych (2011) proved the same result with a different technique.



4

3 is dedicated to quasiconcave compact games in pure strategies. We introduce
the new concept of Reny solution, which weakens Nash equilibrium concept,
and we prove its existence for every discontinuous game. This solution is used to
construct pure sharing rule solutions and approximate equilibria. The results are
illustrated in the class of diagonal games. Section 4 is dedicated to compact met-
ric games in mixed strategies. We prove that the intersection of the sets of Reny
solutions and sharing rule solutions is nonempty and contains the set of approx-
imate equilibria. In addition, we prove that in every approximately better-reply
secure game, approximate equilibria may be obtained as limits of Nash equilib-
ria of an endogenously chosen sequence of discretizations of the game. This is a
natural extension of a similar result established by Reny (2009, 2011) for Nash
equilibria. As applications, we prove the existence of a mixed approximate equi-
librium in multiplayer auctions with correlated types and in two-player auctions
with interdependent types and values.

2. THREE STANDARD APPROACHES TO DISCONTINUOUS GAMES

A game in strategic form G = ((Xi)i∈N , (ui)i∈N) is given by a finite set N of
players, and for each player i ∈ N , a nonempty set Xi of pure strategies, and a
payoff function ui : X =

∏
i∈N Xi → R. This paper assumes G to be compact,

that is, for every i, Xi is a compact subset of a topological vector space, and ui
is bounded. We let Vi(x−i) := supdi∈Xi

ui(di, x−i) denote the greatest payoff that
player i can get against x−i = (xj)j 6=i ∈ X−i := Πj 6=iXj.

Definition 2.1 A pair (x, v) ∈ X ×RN is a Nash equilibrium of G (and x is
a Nash equilibrium profile) if v = u(x) and for every player i ∈ N , Vi(x−i) = vi.

The game G is quasiconcave if for every player i ∈ N , Xi is convex and for
every x−i ∈ X−i, the mapping ui(·, x−i) is quasiconcave. The game is continuous
if for every i ∈ N , ui is a continuous function.4

Theorem 2.2 (Glicksberg (1952)) Every continuous, quasiconcave and com-
pact game admits a Nash equilibrium.

The rest of the section presents three extensions of this result when payoffs
are discontinuous. Our paper combines them into one general idea.

2.1. Better-Reply Secure Game

In many discontinuous games, a Nash equilibrium exists (symmetric Bertrand
competition, auctions with private values, wars of attrition, among many). Reny’s
theorem provides an explanation for this (Reny (1999)). Formally, we let Γ =
{(x, u(x)) : x ∈ X} denote the graph of G and Γ be the closure of Γ. Since X is

4X is endowed with the product topology.
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compact and u bounded, Γ is a compact subset of X ×RN . Define the “secure
payoff level” of player i at (di, x−i) ∈ X as follows:

ui(di, x−i) := lim inf
x′−i→x−i

ui(di, x
′
−i) := sup

V ∈V(x−i)
inf

x′−i∈V
ui(di, x

′
−i),

where V(x−i) denotes the set of neighborhoods of x−i. This is the payoff that di
can almost guarantee to player i if his opponents play any profile close enough to
x−i. We let Vi(x−i) := supdi∈Xi

ui(di, x−i) denote the largest payoff that player i
can secure against x−i.

Definition 2.3 A game G is better-reply secure if whenever (x, v) ∈ Γ and x
is not a Nash equilibrium profile, some player i ∈ N can secure5 a payoff strictly
above vi, i.e. V i(x−i) > vi.

Theorem 2.4 (Reny (1999)) Every better-reply secure, quasiconcave and com-
pact game admits a Nash equilibrium in pure strategies.

Since every continuous game is obviously better-reply secure, this extends
Glicksberg’s theorem. In his paper, Reny gives two practical conditions which,
together, imply better-reply security (see Theorem 2.6 below).

Definition 2.5
(i) G is payoff secure if Vi(x−i) = Vi(x−i).
(ii) G is reciprocally upper semicontinuous if, whenever (x, v) ∈ Γ and ui(x) ≤ vi
for every i, then u(x) = v.

Equivalently, G is payoff secure if for every x ∈ X, for every ε > 0, every
player i ∈ N can secure a payoff above ui(x)− ε.

Theorem 2.6 Every payoff secure and reciprocally upper semicontinuous game
is better-reply secure.

2.2. Approximate Equilibrium

In first-price auctions with complete information, bidding slightly above the
second highest evaluation for the bidder with the highest evaluation yields an
approximate equilibrium. One of the main goals of this paper is to develop
theoretical tools to extend this existence result to a large class of auctions.

Definition 2.7 A pair (x, v) ∈ Γ is an approximate equilibrium (and x is an
approximate equilibrium profile) if there exists a sequence (xn)n∈N of X and a

5The following definitions are standard: Player i can secure a payoff above α ∈ R if there
exists di ∈ Xi and a neighborhood V−i of x−i such that for every x′−i ∈ V−i, ui(di, x′−i) ≥ α.
Player i can secure a payoff strictly above α ∈ R if he can secure a payoff above α+ ε for some
ε > 0. We give equivalent formulations using Vi and V i.
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sequence (εn)n∈N of positive real numbers, converging to 0, such that:
(i) for every n ∈ N, xn is an εn-equilibrium: ∀i ∈ N , ∀di ∈ Xi, ui(di, x

n
−i) ≤

ui(x
n) + εn,

(ii) the sequence (xn, u(xn)) converges to (x, v).

In zero-sum games, the existence of an approximate equilibrium is equivalent
to the existence of the value. Every Nash equilibrium is obviously an approximate
equilibrium (take a constant sequence in the definition above). Let us state one
of the very few existing results in the literature.6

Definition 2.8 A game G has the marginal continuity property at x ∈ X if
for every i ∈ N , Vi(x−i) is a continuous function at x−i. If this holds for every
x, the game has the marginal continuity property.

Theorem 2.9 (Reny (1996) and Prokopovych (2011)) Every payoff secure,
quasiconcave compact game that has the marginal continuity property admits
an approximate equilibrium.

This theorem applies to first-price auctions and asymmetric Bertrand’s duopoly.
However, the following location game (Simon and Zame (1990)) is not payoff se-
cure, but admits an approximate equilibrium.

Example 2.10 California Location Game:
This example was introduced by Simon and Zame (1990). The length interval

[0, 4] represents an interstate highway. The strategy set of player 1 (a psychologist
from California) is X = [0, 3] (representing the Californian highway stretch). The
strategy set of player 2 (a psychologist from Oregon) is Y = [3, 4] (the Oregon
part of the highway). The payoff function of player 1 is u1(x, y) = x+y

2
if x < y

and u1(3, 3) = 2. The payoff function of player 2 is u2(x, y) = 4 − u1(x, y).
The strategy profile xn = (3 − 1

n
, 3), corresponding to the vector payoff vn =

(3 − 1
2n
, 1 + 1

2n
), is a 1

2n
-equilibrium. Consequently, (x = (3, 3), v = (3, 1)) is an

approximate equilibrium. However, the game is not payoff secure for player 2 at
x = (3, 3).

2.3. Sharing Rule Solutions

Simon and Zame show that even if a game does not have a Nash equilibrium,
it is always possible to slightly change the payoffs at discontinuity points so that
the new game has a mixed Nash equilibrium.

Example 2.11 California Location Game, Continued.
In the California location game, define a new payoff function q as follows:

q(x) = u(x) for every x 6= (3, 3) and q(3, 3) = (3, 1). The pure strategy profile

6Ziad (1997) proposes another existence theorem of approximate equilibria, unrelated to our
work. See also Carmona (2010, 2011) and Reny (1996).



7

(3, 3) with payoff (3, 1) is a Nash equilibrium of the game defined by q. The new
sharing rule at x = (3, 3) has a simple interpretation: it corresponds to giving
each psychologist his/her natural market share. Moreover, this is exactly the
prediction of the approximate equilibrium in Example 2.10. We will prove that
this property is very general: every approximate equilibrium is a sharing rule
equilibrium (see Theorem 3.10).

To prove the existence of a solution, Simon and Zame do not require the game
to be quasiconcave. However, they allow the use of mixed strategies. Formally,
G is metric if strategy sets are Hausdorff and metrizable and payoff functions
are measurable. Denote by Mi = ∆(Xi) the set of Borel probability measures
on Xi (usually called the set of mixed strategies of player i). This is a compact
Hausdorff metrizable set under the weak* topology. Let M = ΠiMi.

Definition 2.12 A mixed Nash equilibrium of G is a pure Nash equilibrium of
its mixed extension G′ = ((Mi)i∈N , (ui)i∈N), where payoff functions are extended
multi-linearly to M .

Definition 2.13 A pair (m, q) is a mixed sharing rule solution of G if m ∈M
is a mixed Nash equilibrium of the auxiliary game G̃ = ((Xi)i∈N , (qi)i∈N), where
the auxiliary measurable payoff functions q = (qi)i∈N must satisfy the condition:

(SR): ∀x ∈ X, q(x) ∈ coΓx,

where, Γx = {v ∈ RN : (x, v) ∈ Γ} is the x-section of Γ, and co stands for the
convex hull.

Condition (SR) has two implications: if u is continuous at x, q(x) = u(x);
if
∑
i∈N

ui(x) is continuous, then
∑
i∈N

qi(x) =
∑
i∈N

ui(x) (justifying the terminology

“sharing rule”).

Theorem 2.14 (Simon and Zame (1990)) Every compact metric game admits
a mixed sharing rule solution.

Jackson et al. (2002) extend Simon and Zame’s theorem to games with incom-
plete information. In their paper, they interpret a tie-breaking rule as a proxy
for the outcome of an unmodeled second stage game. As example, they recall the
analysis of first-price auctions with incomplete information for a single indivisi-
ble object. Maskin and Riley (2000) add to the sealed-bid stage a second stage
where bidders with the greatest bid in the first stage play a Vickrey auction.
In the private value setting, their dominant strategy is to bid their true values.
Consequently, the second stage induces a tie-breaking rule where the bidder with
the highest value wins the object. More generally, a tie-breaking rule may be im-
plemented by asking players to send a cheap message (their private values in
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auctions), in addition to their strategies (bids). The messages will be used only
to break ties (as in the second stage of Maskin and Riley’s mechanism).

When the game is continuous, the new and the original games coincide, and
so we recover Nash-Glicksberg’s theorem in mixed strategies.

Theorem 2.15 (Nash-Glicksberg’s Theorem in mixed strategies) Every con-
tinuous, metric compact game admits a mixed Nash equilibrium.

In the next section, we prove the existence of a pure sharing rule solution,
defined now.

Definition 2.16 A pair (x, q) is a pure sharing rule solution if x ∈ X is a
pure Nash equilibrium of the auxiliary game G̃ = ((Xi)i∈N , (qi)i∈N), where the
auxiliary payoff functions q = (qi)i∈N must satisfy the following condition:7

(SR strong): ∀y ∈ X, q(y) ∈ Γy,

If G is metric, condition (SR strong) requires that for every strategy profile
y, there exists a sequence (yn) converging to y such that q(y) = limn u(yn). On
one hand, our condition is stronger than the original condition (SR) because
one always has Γy ⊂ coΓy. On the other hand, to prove the existence of a pure
sharing rule solution, we need payoff functions to be quasiconcave.

To allow comparison between sharing rule solution and approximate equilib-
rium, we introduce the following terminology.

Definition 2.17 A pair (m, v) ∈ M ×RN (resp. (x, v) ∈ X ×RN) is called
a mixed (resp. pure) sharing rule equilibrium if (m, q) is a mixed (resp. pure)
sharing rule solution for some q and q(m) = v.

The proof of the existence of a pure sharing rule equilibrium is a direct conse-
quence of the existence of a Reny solution, defined in the next subsection.

3. EXISTENCE OF SOLUTIONS FOR GAMES IN PURE STRATEGIES

As discussed above, sharing rule and approximate equilibrium concepts are
alternative solutions for games without a Nash equilibrium. Both are defined on
Γ (the closure of the graph of the game). To prove their existence, we use a new
concept, Reny solution, defined on Γ.

3.1. Existence of a Reny solution

In the following definition, recall that Vi(x−i) := supdi∈Xi
ui(di, x−i).

7If (m, q) is a mixed sharing rule solution and m ∈ X is also a pure strategy, then (m, q) may
not be a pure sharing rule solution (because q may not satisfy (SR strong)), but the converse
implication is always true.
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Definition 3.1 A pair (x, v) ∈ Γ is a Reny solution if for every i ∈ N ,
Vi(x−i) ≤ vi. The strategy profile x ∈ X is a Reny solution profile if (x, v) ∈ Γ
is a Reny solution for some v.

Example 3.2 Two-player first-price auctions
Both players i = 1, 2 choose a bid xi ∈ [0, 1], and receive a payoff:

ui(xi, xj) =


wi − xi if xi > xj,
wi−xi

2
if xi = xj,

0 if xi < xj.

If w1 ∈]0, 1[ (the value of player 1) is higher than w2 ∈]0, 1[ (the value of player
2), then the above game is quasiconcave, and every (x1, x2, v1, v2) = (y, y, w1 −
y, 0) is a Reny solution whenever y ∈ [w2, w1]. To see this, note first that the
game is payoff secure, thus a Reny solution (x, v) = (x1, x2, v1, v2) ∈ Γ satisfies

sup
di∈[0,1]

ui(di, x−i) ≤ vi, i = 1, 2(1)

Since this game has no Nash equilibrium, x1 is equal to x2 (otherwise ui
would be continuous at x = (x1, x2), and equation (1) would imply that x
is a Nash equilibrium). Moreover, each player can get a payoff of at least 0
by playing 0. Consequently, v1 and v2 are non-negative. From (x, v) ∈ Γ ,
(v1, v2) = limn→+∞(u1(x

n), u2(x
n)) for some sequence of profiles xn = (xn1 , x

n
2 )

converging to (x1, x1). There are three cases (up to a subsequence), depending
on whether the sequence converges to x from above, along the diagonal, or from
below. In the two first cases, we get v = (0, w2 − x1) or v = (w1−x1

2
, w2−x1

2
), thus

x2 = x1 ≤ w2 < 1 (since v2 is non-negative). Then, playing slightly above x1
gives a payoff strictly above v1 for player 1, which contradicts equation (1). In
the last case, v = (w1 − x1, 0), thus x1 ≤ w1. Then, equation (1) implies that
x1 ≥ w2 (otherwise player 2 could do better than 0 by playing slightly above
x1). Conversely, it is easy to check that (y, y, w1 − y, 0) is Reny solution when
y ∈ [w2, w1].

In this example, the set of Reny solutions coincides with the set of approximate
equilibria (playing y ∈ [w2, w1] for player 2 and slightly above for player 1 is
an ε-equilibrium). Note that there are several Reny solutions and thus several
approximate equilibria, but multiplicity also happens for Nash equilibria: in this
example with a second-price auction mechanism, playing y for player 2 and w1

for player 1 is a Nash equilibrium for all y ∈ [0, w1).

Theorem 3.3 For every quasiconcave and compact game G, the set of Reny
solutions is nonempty and compact, and it contains the set of Nash equilibria.
Moreover, G is better-reply secure if and only if Nash equilibrium profiles and
Reny solution profiles coincide.

Observe that a Nash equilibrium (x, u(x)) is a Reny solution because Vi(x−i) ≤
Vi(x−i), and by Nash conditions, Vi(x−i) ≤ ui(x). Moreover, if the game is contin-
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uous, then Reny solutions and Nash equilibria coincide because Vi(x−i) = Vi(x−i)
and u(x) = v.

Proof: The existence of a Reny solution is a straightforward consequence of
Reny’s theorem (Reny (1999)). Indeed, assume, by contradiction, that there is no
Reny solution. This implies that the game is better-reply secure. Consequently,
by Reny’s theorem, there exists a Nash equilibrium, which is a Reny solution:
a contradiction. Compactness of the set of Reny solutions is due to the lower
semi-continuity of Vi, and the last assertion of Theorem 3.3 is a consequence of
the definition of better-reply security. Actually, if the game is better reply secure,
a Reny solution profile must be a Nash equilibrium profile because otherwise,
better reply security contradicts Reny solution condition. Conversely, if Nash
equilibrium profiles and Reny solution profiles coincide, then for every x ∈ X
that is not a Nash equilibrium profile, x not a Reny solution profile, thus better-
reply security condition is satisfied. Q.E.D.

As an illustration, we can revisit the result of Reny in Theorem 2.6 and prove
that whenever a game is payoff secure and reciprocally upper semicontinuous, it
is better-reply secure. Actually, assume (x, v) to be a Reny solution. Thus, for
every i ∈ N , Vi(x−i) ≤ vi. Since the game is payoff secure, Vi(x−i) = Vi(x−i) ≤ vi.
Since ui(x) ≤ Vi(x−i), one has ui(x) ≤ vi for every i ∈ N . By reciprocal upper
semicontinuity, v = u(x), and so Vi(x−i) ≤ ui(x) for every i ∈ N . Consequently,
(x, v) is a Nash equilibrium.

Two major applications of Reny solution are presented in the next subsections.
In Subsection 3.2., Reny solution allows to prove the existence of a pure sharing
rule equilibrium in every quasiconcave compact game. In Subsection 3.3., Reny
solution is used to prove the existence of approximate equilibria in a number of
economic models.

3.2. Existence of a Sharing Rule Equilibrium

The existence of a Reny solution allows to solve the open problem in Jackson
et al. (2002).

Theorem 3.4 Every Reny solution is a pure sharing rule equilibrium. In par-
ticular, every quasiconcave and compact game G admits a pure sharing rule
solution.

Remark 3.5 Observe that a pure sharing rule solution (m, q′) of G′ (the mixed
extension of G) is not a mixed sharing rule solution à la Simon Zame of G because
the new payoff profile q′ is defined on M and not on X, and q′ is not necessarily
the multilinear extension of a pure strategy payoff profile. Thus, our result does
not imply Simon-Zame’s theorem.

Proof: To prove Theorem 3.4, consider a Reny solution (x, v) ∈ Γ. Then, we
can build a sharing rule solution as follows. For every i ∈ N and di ∈ Xi, denote
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by S(di, x−i) the space of sequences8 (xn−i)n∈N of X−i converging to x−i such that
limn→+∞ ui(di, x

n
−i) = ui(di, x−i). Then, define q : X → RN by

q(y) =

{
v if y = x,
any limit point of (u(di, x

n
−i))n∈N if y = (di, x−i) for some i ∈ N, di 6= xi, (x

n
−i)n∈N ∈ S(di, x−i),

q(y) = u(y) otherwise.

Now, let us prove that (x, q) is a pure sharing rule solution. Since (x, v) ∈ Γ,
and by definition of q, condition (SR strong) of Definition 2.16 is satisfied at x
(this would be false if the definition of q in the second case above was qj(di, x−i) =
uj(di, x−i), j = 1, ..., n). Obviously, it is satisfied at every y different from x for at
least two components, and also at every (di, x−i) with di 6= xi, from the definition
of q(di, x−i) in this case. Q.E.D.

Remark 3.6 Thus, Reny solution refines pure sharing rule equilibrium, and the
refinement is strict as the following better-reply secure game shows. A player
maximizes over [0, 1] the following discontinuous payoff function: u(x) = 0 if
x < 1, and u(1) = 1. If q(y) = 0 for every y, then (x, q) is a pure sharing rule
solution for every x ∈ [0, 1]. Yet, the only Reny solution is (x, v) = (1, 1), and it
coincides with the unique Nash equilibrium.

Remark 3.7 An important question, raised by De Castro (2011) and Carmona
and Podczeck (2014), is whether for every game G one can define a new payoff
function q(y) ∈ coΓ(y) inducing a better-reply secure game. The mapping q
defined in the proof of Theorem 3.4 does not answer the question: if (x, v) ∈ Γ
is the Reny solution considered in this proof, then q is equal to the initial payoff
mapping u at every y ∈ X different from x for at least two components. Since u
is arbitrarily discontinuous, there is no hope, in general, that q defines a better-
reply secure game.

De Castro (2011) proposes a first answer: he introduces a regularity property,
a weakening of better-reply security, as follows: a game is regular if for every
(x, v) ∈ Γ, if vi ≥ Vi(x−i) for all i ∈ N then ui(x) = Vi(x−i) for all i ∈ N . Then he
proves that every discontinuous game has a measurable selection q(y) ∈ coΓ(y)
which induces a regular game. This result cannot be applied to prove Theorem
3.4 because a regular game may have no Nash equilibrium.

Another approach is given by Carmona and Podczeck (2014) throughout the
concept of virtual continuity. However, they consider the case of better-reply
security in mixed strategies. Consequently, this is not directly related to Theorem
3.4.

Remark 3.8 Actually, the pure sharing rule solution (x, q) built in the proof of
Theorem 3.4 satisfies the additional property:9 qi(di, x−i) ≥ ui(di, x−i) for every

8If X is not first countable, one should consider the space of nets instead of sequences.
9Indeed, if di = xi, then qi(di, x−i) = qi(x) = vi ≥ ui(x) because (x, v) is a Reny solution.

If di 6= xi then qi(di, x−i) = ui(di, x−i).
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i ∈ N and every di ∈ Xi. This property says that q remains above the secure
payoff level in the original game.

Application 3.9 Shared Resource Games
The payoff of each player i ∈ N can be written as ui(xi, x−i) = Fi(xi, Si(xi, x−i)),

where Fi : Xi ×R→ R and Si : X → R (the shared resource of player i). The
total amount of the resource

∑N
i=1 Si is a (possibly discontinuous) function of the

strategy profile x ∈ X. This game G was introduced to model fiscal competition
for mobile capital (Rothstein (2007)).

A sharing rule of G is defined to be a family (S̃i)i∈N of functions from X to R
such that for every strategy profile x ∈ X, there is a sequence (xn) converging to
x such that for every player i, S̃i(x) = limn→∞ Si(xn). Theorem 3.4 implies the
following extension of Rothstein’s results. Assuming G to be quasiconcave and
compact, Fi continuous and Si bounded for every player i, we get the existence of
a new sharing rule (S̃i)i∈N whose associated game ũi(xi, x−i) = Fi(xi, S̃i(xi, x−i))
admits a pure Nash equilibrium. Moreover, under the following assumptions,
every Nash equilibrium of G̃ is a Nash equilibrium10 of G:

A1) For all xi ∈ Xi, Fi(xi, si) is nondecreasing in si.
A2) For all x−i ∈ X−i, sup

di∈Xi:(di,x−i)∈Ci
ui(di, x−i) = sup

di∈Xi

ui(di, x−i), where Ci is

the set of continuity points of Si.

A3) If x /∈ ∩i∈NCi, sup
di∈Xi

ui(di, x−i) > Fi

(
xi,

lim supx′→x
∑N
i=1 Si(x

′)

N

)
for every

i ∈ N .
In his paper, Rothstein says “the work of Simon and Zame (1990) is directly

applicable, but only to establish the existence of a Nash equilibrium in mixed
strategies with an endogenous sharing rule.” By Theorem 3.4, the game has a
pure endogenous sharing rule equilibrium.

3.3. Existence of an Approximate Equilibrium

Theorem 3.10 Every approximate equilibrium is a Reny solution, and, there-
fore, also a pure sharing rule equilibrium.

Proof: The proof is as follows. Let (xn)n∈N be a sequence of εn-equilibria such
that (xn, u(xn)) converges to (x, v). By definition, ui(di, x

n
−i) ≤ ui(x

n) + εn for
every n ∈ N, every player i ∈ N and every deviation di ∈ Xi. Passing to the
infimum limit when n tends to infinity, we obtain ui(di, x−i) ≤ vi. Thus, (x, v)

10Indeed, for every Nash equilibrium x of G̃, one has supdi∈Xi
ui(di, x−i) ≤

supdi∈Xi
Fi(di, S̃i(di, x−i)) ≤ Fi(xi, S̃i(x)) for every player i. The first inequality is a con-

sequence of A2 and the definition of S̃i. If x ∈ Ci for every i, then S̃i(x) = Si(x),
and x is a Nash equilibrium of the initial game G. Otherwise, from A1 and A3, we get
lim supx′→x

∑N

i=1
Si(x

′)

N < S̃i(x) for every i ∈ N . Summing these inequalities contradicts the

definition of S̃i.
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is a Reny solution, and also a pure sharing rule equilibrium by Theorem 3.4.
Q.E.D.

This leads to the following definition.

Definition 3.11 A game G is approximately better-reply secure if whenever
(x, v) ∈ Γ and x is not an approximate equilibrium profile, some player i can
secure a payoff strictly above vi.

The existence of a Reny solution implies the following result.

Theorem 3.12 Every approximately better-reply secure quasiconcave and com-
pact game admits an approximate equilibrium.

California location game is approximately better-reply secure. This theorem
provides a local version of Reny-Prokopovych’s theorem (described in Subsection
2.2).

Corollary 3.13 If (x, v) is a Reny solution and if, at x, the game is payoff
secure and has the marginal continuity property, then (x, v) is an approximate
equilibrium.

Proof: Actually, if (x, v) is a Reny solution, then

sup
di∈Xi

ui(di, x−i) = sup
di∈Xi

ui(di, x−i) ≤ vi,

the equality being a consequence of payoff security at x. Since v = limxn→x u(xn)
for some sequence xn, the local continuity of supdi∈Xi

ui(di, x−i) with respect to
x guarantees that (x, v) is an approximate equilibrium. Q.E.D.

This corollary implies Reny-Prokopovych’s theorem, and is useful in practice
as the following application shows.

Application 3.14 Diagonal Games.
For every i ∈ N , we let fi, gi be continuous mappings from [0, 1]× [0, 1] to R,

and hi : [0, 1]N → R be a bounded mapping. The payoff of player i is:

ui(xi, x−i) =


fi(xi, φ(x−i)) if φ(x−i) > xi,
gi(xi, φ(x−i)) if φ(x−i) < xi,
hi(xi, x−i) if φ(x−i) = xi,

where φ : [0, 1]N−1 → [0, 1] is a continuous aggregation function, i.e. a function
that aggregates the N − 1 strategies of the opponents into one strategy in [0, 1].
This aggregation function must satisfy11 for every (y, z) ∈ [0, 1]N−1 × [0, 1]N−1

and t ∈ [0, 1]:

11For every (x, y) ∈ [0, 1]N−1× [0, 1]N−1, x << y (resp. x ≤ y) means xi < yi (resp. xi ≤ yi)
for every i ∈ {1, ..., N − 1}.
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Monotonicity: if y ≤ z then φ(y) ≤ φ(z); if y << z then φ(y) < φ(z).
Anonymity: for every permutation σ of {1, ..., N−1}, we have φ(y1, ..., yN−1) =

φ(yσ(1), ..., yσ(N−1)).
Unanimity: φ(t, ..., t) = t.
Representativity:12 if φ(y) > 0 and yi > 0 for some i, then φ(zi, y−i) > 0 for

every zi > 0. Similarly, if φ(y) < 1 and yi < 1 for some i, then φ(zi, y−i) < 1 for
every zi < 1.

These four properties are satisfied, for example, when φ is one of the following
functions:
• φ1(y) = max{y1, y2, ..., yN−1},
• φ2(y) = min{y1, y2, ..., yN−1},

• φ3(y) =
1

N − 1

N−1∑
j=1

yj,

• ψk(y) = {k-th highest value of {y1, ..., yN−1}}, k = 1, ..., N − 1.
Diagonal games include many models of competition with complete information.
For example, in one-unit auctions, φ = φ1, in k-unit auctions φ = ψk, in wars of
attrition, preemption or Bertrand competition, φ = φ2.

Theorem 3.15 Every quasiconcave diagonal game satisfying condition (C) be-
low is approximately better-reply secure, thus it possesses an approximate equi-
librium.
(C) there is α ∈]0, 1

2
[ such that for every x ∈ [0, 1]N and i ∈ N , if xi = φ(x−i)

then there is αi(x) ∈]α, 1− α[ such that
hi(x) = αi(x)fi(xi, φ(x−i)) + (1− αi(x))gi(xi, φ(x−i)).

Condition (C) means that hi is a strict convex combination of gi and fi with
weights that are bounded below. In auctions, for example, the winner is usually
decided uniformly among highest bidders, thus the payoff of a player in case
of ties is a strict convex combination between his payoff if he wins, gi, and if
he looses, fi. The coefficient of the convex combination depends on how many
players are tied, inducing a discontinuity on hi. The probability of being selected
or not selected is bounded below by 1

N
= α.

Proof: Hereafter, we give a sketch of the proof. See appendix 6.1 for a detailed
proof.

Under Assumption (C), the game is payoff secure. Consequently, if (x, v) ∈ Γ
is a Reny solution then

sup
di∈[0,1]

ui(di, x−i) ≤ vi, i ∈ N.

To prove that x is an approximate equilibrium profile, one has to check four
different cases: first, if xi 6= φ(x−i) for every i, then the payoff functions are

12We denote (zi, y−i) := (y1, ...yi−1, zi, yi+1, ..., yN−1).
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continuous at x, v = u(x), and the equation above defining Reny solution implies
that (x, v) is a Nash equilibrium. Second, if there exists i such that xi = φ(x−i) ∈
]0, 1[, then anonymity, representativity, and monotonicity give φ(x−j) ∈]0, 1[
for every j. Then, the marginal continuity property is satisfied at x, and from
Corollary 3.13, (x, v) is an approximate equilibrium. Third, assume there is a
player i such that xi = φ(x−i) = 0. By anonymity and monotonicity, φ(x−j) = 0
for every j ∈ N . Let (xn)n∈N be a sequence such that (xn, u(xn)) → (x, v).
Define a sequence of profiles (yn)n∈N as follows: we let j ∈ N be any player; if
vj ≤ fj(0, 0) and xj = 0, define ynj := 0 for every n. Otherwise, define ynj := xnj
for every n. We check that yn is an εn-equilibrium for some εn → 0. In the last
case, there is a player i ∈ N such that xi = φ(x−i) = 1: this is similar to the
third case. Q.E.D.

4. EXISTENCE OF SOLUTIONS FOR GAMES IN MIXED STRATEGIES

We letG be a metric compact game,G′ its mixed extension and Γ′ the closure of
the graph of G′. As previously defined, Mi = ∆(Xi) is the set of mixed strategies
of player i. This is a compact Hausdorff metrizable set under the weak* topology.
Let M = ΠiMi.

A Reny solution (resp. an approximate equilibrium) of G′ is called a mixed
Reny solution (resp. approximate mixed equilibrium) of G. A mixed Reny solu-
tion always exists from Theorem 3.3 because G′ is compact and quasiconcave.

In the next subsection, we establish a formal link between the set of Reny
solutions of G′ and the set of mixed sharing rule equilibria (as defined by Simon
and Zame originally, see Definition 2.13 and Definition 2.17 above) by proving
that the intersection of these sets is nonempty. Then, we prove that if G′ is
approximately better-reply secure, some approximate equilibria can be obtained
as limits of Nash equilibria of finite discretizations of the initial game. The
approximation methodology is illustrated in auctions with correlated types or
values.

4.1. Linking Approximate and Simon-Zame Equilibria with Reny solutions

The intersection of mixed Reny solutions and mixed sharing rule equilibria
permits to localize mixed approximate equilibria, as proves the following theorem
(see the proof in Appendix 6.2).

Theorem 4.1 Mixed approximate equilibria are always in the intersection of
mixed Reny solutions and mixed sharing rule equilibria.13

Importantly, this intersection is always nonempty, which is a consequence of
a simple limit argument we now explain. We let D0 be the set of all finite sub-

13From Section 3, this is also true in pure strategies. Nevertheless, it cannot be directly
proved applying Section 3 to G′, simply because a pure sharing rule equilibrium of G′ may not
be a mixed sharing rule equilibrium of G.
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sets Πi∈NDi of M . Consider the inclusion relationship on D0: it is reflexive,
transitive and binary. Then, each pair Πi∈NDi and Πi∈ND

′
i in D0 has an upper

bound Πi∈N(Di ∪D′i) in D0. The pair (D0,⊂) is called a directed set. To every
D = Πi∈NDi ∈ D0, we can associate (mD, u(mD)), where mD is a mixed Nash
equilibrium of the finite game restricted to D. This defines a mapping14 from
D0 to Γ′, called a net (of Γ′). A limit point (m, v) ∈ Γ′ of this net, denoted
(mD, u(mD))D∈D0 , is defined by the following property: for every neighborhood
Vm,v of (m, v) and every D = Πi∈NDi ∈ D0, there exists D′ ∈ D0 with D ⊂ D′

such that (mD′ , u(mD′)) ∈ Vm,v.

Definition 4.2 A pair (m, v) ∈ Γ′ is a limit-equilibrium of G′ if it is a limit
point

of a net (mD, u(mD))D∈D0 of mixed Nash equilibria of the finite game restricted
to D.

Theorem 4.3 Every compact metric game has a limit-equilibrium. Every limit-
equilibrium is a mixed Reny solution and is a mixed sharing rule equilibrium.
Consequently, the intersection between mixed Reny solutions and mixed sharing
rule equilibria is nonempty, and if G′ is better-reply secure then every limit-
equilibrium is a mixed Nash equilibrium.

Existence of a limit-equilibrium is obvious and is a consequence of the com-
pactness of Γ′. The rest of the proof is presented in the appendix and is an
adaptation of the arguments of Simon and Zame.

Remark 4.4 Observe that this provides a very short and constructive proof of
Reny’s existence result for games in mixed strategies (Reny (1999)) because if
G′ is better-reply secure, every limit-equilibrium is a mixed Nash equilibrium.

4.2. Weak Strategic Approximation

The idea of using a sequence of finite games to detect Nash equilibria goes back
to Dasgupta and Maskin (1986b). This has been formalized by Reny (2011) in
the class of better-reply secure games via the notion of strategic approximation.
We can extend this method to approximately better-reply secure games.

Definition 4.5 A game G admits a weak strategic approximation if there is a
sequence of finite sets Dn ⊂M such that all accumulation points of mixed Nash
equilibria

of the game restricted to Dn are approximate equilibria of G′.

14By definition, mD = (mD
i )i∈N is an element of Πi∈N∆(∆(Xi)). More precisely, it is a

profile of probability measures on finite subsets of ∆(Xi), where i ∈ N . Given i ∈ N , let
{σ1, ..., σK} be the support of mD

i and p1, ..., pK the associated weights. By abuse of notation,

we can define mD
i =

∑K
k=1 pk.σk, which is now an element of ∆(Xi). Up to this identification,

(mD, u(mD)) can be seen as an element of Γ′.
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Theorem 4.6 If a compact metric game G′ is approximately better-reply se-
cure, it has a weak strategic approximation. Moreover, if a compact metric game
admits a weak strategic approximation, it has an approximate equilibrium.

The proof of the first part (in the appendix) is an adaptation of Reny’s argu-
ments (Reny (2011)), thanks to the notion of limit-equilibrium. The second part
is straightforward, from the existence of accumulation points for every sequence
in a compact set.

Remark 4.7 A condition that guarantees the existence of a weak strategic
approximation was given by Blackwell and Girshick (1954) (see Theorem 2.3.3)
in zero-sum 2-player games G = (X1, X2, u1, u2). It could be stated as follows: for
every ε > 0, there exists a finite set D1 ⊂ X1 such that, for every x1 ∈ X1, there
exists a mixture σ1 of elements of D1 such that u1(σ1, x2) ≥ u1(x1, x2) − ε for
every x2 ∈ X2. Assume this is true. From boundedness of payoffs, there exists
a finite subset D2 ⊂ X2 such that for every x2 ∈ X2, there is d2 ∈ D2 with:
∀d1 ∈ D1, | u2(d1, x2) − u2(d1, d2) |≤ ε. Then every mixed Nash equilibrium of
the restriction of G to D1 × D2 is an ε−Nash equilibrium of G (see Blackwell
and Girshick (1954) for more details). Thus, this game admits a weak strategic
approximation.

The following diagonal game does not satisfy the assumption of Blackwell and
Girshick, but satisfies the assumption of Theorem 4.8 below (and thus admits
a weak strategic approximation): consider X1 = X2 = [−1, 1], u1(x1, x2) = 0 if
x1 6= x2, u1(x1, x2) = x1 otherwise, and u2 = −u1. If there exists a finite subset
D1 ⊂ X1 satisfying Blackwell and Girshick condition, taking x2 ∈ (0, 1] which is
not in D1 and x1 = x2, we get a contradiction for ε > 0 small enough.

4.3. Applications

Non Quasiconcave Two Player Diagonal Games

Theorem 4.8 Every two-player diagonal game in which h is continuous admits
a weak strategic approximation (and thus an approximate equilibrium in mixed
strategies).

The proof of theorem 4.8 consists of constructing a weak strategic approxi-
mation (see Appendix 6.5). Interestingly, the approximation is endogenous (i.e.
game dependent). The multi-player case is investigated in the next application.

Example 4.9 Sion-Wolfe’s zero-sum game shows that Theorem 4.8 can be false
for games with two lines of discontinuities instead of one (see Sion and Wolfe
(1957)).

Some particular cases covered by Theorem 4.8 follow.
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Example 4.10 Bertrand Duopoly with Discontinuous Costs

Hoernig (2007) introduced the following modification of Bertrand’s game: each
firm i = 1, 2 chooses a price pi ∈ [0, 1]; the demand is D(p1, p2) = max{0, 1 −
min(p1, p2)}; the total (symmetric) cost for each firm is C(q) = C̃ ∈ (0, 1

4
) if

the production q is positive, and C(0) = 0 otherwise. Assuming equal sharing at
ties, Hoernig (2007) proved that the game has no mixed Nash equilibrium. By
Theorem 4.8, it has an approximate equilibrium.

Example 4.11 Bertrand-Edgeworth Duopoly with Capacity constraints

There are two firms. Firm i has an endowment of Ci units of the commodity
(the capacity of a zero-cost technology). Firms choose prices (p1 and p2). The firm
choosing the lowest price (say p) serves the entire market D(p) up to its capacity.
The residual demand D(p) − Ci is met by the other firm (up to its capacity as
well). If the duopolists set the same price they share the market according to
some rule h. If h shares the market in proportion to the capacities, Dasgupta
and Maskin (1986a) proved the existence of a mixed equilibrium. Theorem 4.8
proves the existence of an approximate equilibrium for every continuous h.

Bayesian Diagonal Games and Auctions with Correlated Types
In many economic models, such as auctions, players do not have full knowledge
about other player’s evaluations. This leads naturally to the following class of
Bayesian diagonal games. At stage 0, a type t = (t1, ..., tN) ∈ T = T1 × ...× TN
is drawn according to some joint probability distribution p, and each player i is
informed of his own type ti (correlations between types are allowed). At stage
1, each player i is asked to choose an element xi ∈ [0, 1] (interpreted as a bid).
The payoff of player i is:

ui(t, xi, x−i) =


fi(t, xi, φi(x−i)) if φi(x−i) > xi,
gi(t, xi, φi(x−i)) if φi(x−i) < xi,
hi(t, x) if φi(x−i) = xi,

where fi(t, ·, ·) and gi(t, ·, ·) are two continuous mappings on [0, 1]× [0, 1], and
φi : RN−1 → [0, 1] is a monotone aggregation function (see application 3.14). The
mapping h is the tie-breaking rule and may be discontinuous (but is measurable).
Actually, in first price auctions for example, the tie-breaking rule may depend
on how many players offer the highest bid. That’s why in our definition, hi may
be discontinuous and have more arguments than fi and gi. The game is called a
game of private values if for every i, ui depends only on its own type ti and does
not depend on t−i.

To avoid additional notations and measurability issues, we assume the type
space T to be finite. This assumption could be relaxed (see Remark 6.2 in Ap-
pendix 6.6).
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Theorem 4.12 Every Bayesian diagonal game admits a weak strategic approx-
imation (and so a mixed approximate equilibrium)15 if for every i ∈ N and t ∈ T
one has:
(a) fi(t, 0, 0) ≤ hi(t, 0, .., 0) ≤ gi(t, 0, 0);
(b1) fi(t, 1, 1) ≥ hi(t, 1, ..., 1) ≥ gi(t, 1, 1) or16 (b2) there is η > 0 such that there
is always a best response of each type in [0, 1− η[;
(c1) there are only two players or (c2) values are private.

Example 4.13 One unit first-pay, Second-pay and All-Pay Auctions
Take any N -player auction where the winner is the player with maximal bid.

More precisely, suppose that player i’s value for the object is vi(t) ∈]0, 1[. If
xi > x̄−i := maxj 6=i xj, i wins the auction and pays a price pi(xi, x̄−i) ≥ 0.
His final payoff is then gi(t, xi, x̄−i) = vi(t) − pi(xi, x̄−i) where pi is continu-
ous, non decreasing in both variables and pi(y, y) = y for every y. If xi < x̄−i,
player i looses the auction, and pays a transfer τi(xi) ≥ 0. His payoff is then
fi(t, xi, x̄−i) = −τi(xi) where τi(xi) is continuous, non decreasing and τi(0) = 0.
In case of a tie (xi = x̄−i), the winner is selected uniformly among the set of
players with maximum bid. For example, in first-price and second-price auc-
tions, τi = 0. In all-pay auctions, τi = −xi. In first-pay and all-pay auctions,
pi(xi, x̄−i) = max{xi, x̄−i}, in second-price auctions, pi(xi, x̄−i) = x̄−i. In this
general model, 0 = fi(t, 0, 0) < gi(t, 0, 0) = vi(t) and 0 ≤ hi(t, x) ≤ vi(t), so that
(a) is satisfied. Condition (b1) is satisfied in first-price and second-price auctions,
but not in all-pay auctions. However, Condition (b2) is satisfied in these three
types of auctions because player i has always a best response in [0,maxtvi(t)+ε[.
Thus Theorem 4.12 applies when there are two players or values are private.

Example 4.14 Multi-unit Auctions
Consider the previous model with the following modification: K homogeneous

units of an indivisible good are sold, but each bidder i = 1, ..., N (N ≥ K) can
buy only one unit of the good. Player i wins if his bids is among the K highest
bids. In case of a tie, the remaining winners are chosen at random among the
tie-players. Theorem 4.12 applies, and here φ(x1, ..., xN−1) is simply the K-th
highest of x1, ..., xN−1.

Example 4.15 Double Auction
Suppose player 1 is a buyer with a value v(t1, t2) ∈]0, 1[ and player 2 is a seller

with a cost c(t1, t2) ∈]0, 1[. Player 1 chooses a maximum bid x1 ∈ [0, 1] and
player 2 a minimum price x2. If x1 < x2, there is no trade (so that f1(t, x1, x2) =

15Importantly, for every ε > 0, the ε-equilibria we build in the proof are tie-breaking rule
independent.

16Conditions b1 and b2 are boundary conditions at 1. Condition b1 is satisfied by first-price,
second-price, multi-unit and double auctions, but not for all-pay auctions. Condition b2 is true
for all-pay, first-price, second-price and multi-unit auctions, but not for double auctions (see
Examples 4.13, 4.14 and 4.15)
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g2(t, x1, x2) = 0). If x1 ≥ x2, there is a trade at price p = x1+x2
2

, so that
h1(t, x1, x2) = g1(t, x1, x2) = v(t1, t2) − x1+x2

2
and h2(t, x1, x2) = f2(t, x1, x2) =

x1+x2
2
− c(t1, t2). Consequently, f1(t, 0, 0) = 0 < h1(t, 0, 0) = g1(t, 0, 0) = v(t)

and f2(t, 0, 0) = −c(t) = h2(t, 0, 0) < g2(t, 0, 0) = 0: condition (a) is satisfied.
Condition (b1) is satisfied similarly, but Condition (b2) is not satisfied for the
seller. Since the game has only two players, Theorem 4.12 applies.

An open question is whether Theorem 4.12 holds for N-player diagonal games
without condition (c2). But without conditions (a) or (b), approximate equilibria
may not exist as the following zero-sum example shows.

Example 4.16 Consider a zero-sum timing game, viewed as a diagonal game
with constant payoff functions f , g and h. Each player should decide when to
stop the game between 0 and 1. The game stops at the first moment when one
of the two players stops. If both players stop simultaneously before the exit time
t = 1 or no player stops before time t = 1, then there is a tie (payoff is given by
h). Player 2 has two types A and B with equal probabilities. Player 1 has only
one type. If player 1 stops first, he gets f = 1. If player 1 stops second he gets
g = −1. The payoffs depend on the type of player 2 only when the players stop
simultaneously. If his type is A, player 1 has an advantage and gets the payoff
h = 3, and if his type is B, player 1 has a disadvantage and gets the payoff
h = −2. We can prove that max min ≤ −1

2
and that min max ≥ −1

4
, so that the

game has no value and so no approximate equilibrium (See Appendix 6.7).

Remark 4.17 Theorem 4.12 is to be compared with the one in Jackson and
Swinkels (2005). They show existence of a Nash equilibrium which is tie-breaking-
rule independent in multi-unit auctions with private values and uncorrelated
types. Recalling that when types are correlated, a Nash equilibrium may not
exist (Fang and Morris (2006)), the existence of an approximate equilibrium is
the best one can hope.

Remark 4.18 Existence of Nash equilibria for Bayesian games is well un-
derstood for Bayesian games with continuous payoffs (Balder (1988), Milgrom
and Weber (1985)). Recently, it has been extended to discontinuous payoffs un-
der a uniform payoff security assumption (e.g., Carbonell-Nicolau and McLean
(2015)), with application to auctions.

5. CONCLUSION

Our paper proposes a unifying framework to study the existence of approxi-
mate and sharing rule equilibria in discontinuous games, which links Simon-Zame
and Reny approaches in pure and mixed strategies.

In the first part, we focus on quasiconcave compact games in pure strategies.
A new relaxation of Nash equilibrium notion (Reny solution) is shown to al-
ways exist. It provides tight conditions, in the spirit of Reny’s conditions, that
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guarantee the existence of an approximate equilibrium. Reny solution is also
used to solve an open problem in Jackson et al. (2002), namely the existence of
a sharing rule equilibrium in pure strategies (up to now, existence was known
only for games in mixed strategies). As applications, we prove the existence of
sharing rule equilibria in many economic models with discontinuous preferences
and approximate equilibria in a large class of diagonal games.

In the second part, we concentrate on metric compact games in mixed strate-
gies. We prove that the intersection between the sets of Simon-Zame and Reny
solutions contains the set of approximate equilibria. Moreover, this intersection
is nonempty. This shows that the three main solution concepts discussed in this
paper are strongly connected. As application, we prove the existence of an ap-
proximate equilibrium in a large class of auctions with interdependent types and
values.

6. APPENDIX

6.1. Proof of Theorem 3.15

Under Assumption (C), the game is payoff secure: indeed, if xi 6= φ(x−i), ui is
continuous at x, thus xi is secure for player i. If xi = φ(x−i), then player i can
secure his payoff (up to an arbitrary ε > 0), increasing or decreasing xi slightly,
or keeping it constant. Consequently, if (x, v) ∈ Γ is a Reny solution of the game,
then:

sup
di∈[0,1]

ui(di, x−i) = sup
di∈[0,1]

ui(di, x−i) ≤ vi, ∀i ∈ N.(2)

Now, we prove that x is an approximate equilibrium profile by checking 4
different cases. In the first case, assume for every player i ∈ N , xi 6= φ(x−i).
Thus, payoffs are continuous at x and v = u(x). From equation (2), (x, v) =
(x, u(x)) is a Nash equilibrium. In the second case, there exists a player i such
that xi = φ(x−i) ∈]0, 1[. Then φ(x−j) ∈]0, 1[ for every j. Indeed, for every j 6= i,
either xj ≥ xi > 0, and anonymity and representativity imply that φ(x−j) > 0
and monotonicity that φ(x−j) ≤ φ(x−i) < 1, or xj ≤ xi < 1, and we get similarly
φ(x−j) ∈]0, 1[. Thus, the marginal continuity property is satisfied at x, since for
every player j ∈ N , we have

sup
dj∈[0,1]

uj(dj, x−j) = max{ sup
dj<φ(x−j)

fj(dj, φ(x−j)), sup
dj>φ(x−j)

gj(dj, φ(x−j))},

from assumption (C), and from continuity of φ, fj and gj. Thus, Corollary 3.13
implies that (x, v) is an approximate equilibrium. In the third case, there exists
a player i such that xi = φ(x−i) = 0. Then φ(x−j) = 0 for every player j: indeed,
anonymity gives φ(x−j) = 0 for every j such that xj = 0, and monotonicity
gives φ(x−j) = 0 for every j such that xj > 0. Now, let (xn)n∈N be a sequence
of profiles such that (xn, u(xn)) → (x, v). For every player j such that xj = 0
and vj ≤ fj(0, 0), we let ynj := 0 for every integer n, and (ynj )n∈N := (xnj )n∈N :
otherwise. This defines a sequence of profiles (yn)n∈N converging to x. Let us
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prove that yn is an εn-equilibrium for some εn → 0. From continuity of φ,
limn→+∞ φ(yn−j) = φ(x−j) = 0 for every player j. In particular, from equation
(2), and since gj is continuous, we get

sup
dj∈[0,1]

gj(dj, 0) ≤ vj.(3)

Fix some player j ∈ N , and consider 3 subcases:

• First, assume fj(0, 0) = gj(0, 0). In this case, from assumption (C), fj(0, 0) =
gj(0, 0) = h(0, x−j), and thus dj → uj(dj, x−j) is continuous. In particular,
vj = uj(x) and equation (2) implies that player j plays optimally at xj.
By continuity, player j is εn-optimizing by playing ynj against yn−j (because
yn converges to x), for some sequence of positive reals (εn)n∈N converging
to 0.
• Second, assume vj ≤ fj(0, 0) and fj(0, 0) 6= gj(0, 0).

From equation (3), gj(0, 0) ≤ vj ≤ fj(0, 0), and since fj(0, 0) 6= gj(0, 0),
we get fj(0, 0) > gj(0, 0). But this implies that gj(., 0) is non increasing on
[0, 1]: indeed, otherwise, for ε > 0 small enough, we would get a contra-
diction with the quasiconcavity of yj → uj(yj, ε, ..., ε) and the inequality
uj(0, ε, ..., ε) = fj(0, ε) > uj(2ε, ε, ..., ε) = gj(2ε, ε).
Consequently, we finally get

sup
dj∈[0,1]

gj(dj, 0) = gj(0, 0).(4)

Moreover, since uj(0, x−j) = hj(0, x−j) ∈ ]gj(0, 0), fj(0, 0)[ (because of as-
sumption (C)), the fact that gj(., 0) is non increasing on [0, 1] also implies
that xj = 0 (otherwise gj(0, 0) < uj(0, x−j) ≤ vj = uj(x) = gj(xj, 0)
and equation (4) would be false). In particular, by definition, this implies
ynj = 0 for every n.
From gj(0, 0) < fj(0, 0), assumption (C), the continuity of gj and fj, equa-
tion (4) and the fact that φ(yn−j) converges to 0, there exists a real sequence
εn → 0 such that one has

gj(φ(yn−j), φ(yn−j))−εn ≤ sup
dj∈[0,φ(yn−j)]

fj(dj, φ(yn−j))−εn ≤ fj(0, φ(yn−j))(5)

sup
dj∈[0,1]

gj(dj, φ(yn−j))− εn ≤ gj(φ(yn−j), φ(yn−j)) ≤ hj(φ(yn−j), y
n
−j)(6)

and
gj(φ(yn−j), φ(yn−j)) < hj(φ(yn−j), y

n
−j) < fj(φ(yn−j), φ(yn−j)),(7)

the last equation being true because the inequality gj(0, 0) < fj(0, 0) re-
mains true on a neighborhood of (0, 0), and from Assumption (C).
This implies that player j is 2εn-optimizing by playing ynj = 0 against yn−j:
indeed if φ(yn−j) > 0, this is a consequence of equations (5), (6), (7); if
φ(yn−j) = 0, this is a consequence of equation (6).
• Third, assume fj(0, 0) 6= gj(0, 0) and vj > fj(0, 0) (thus ynj = xnj for every
n).
From assumption (C) and the definition of vj, we deduce that fj(0, 0) <
hj(0, x−j) < gj(0, 0), but from equation (3), gj(0, 0) ≤ vj, and we finally
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get
fj(0, 0) < hj(0, x−j) < gj(0, 0) = vj.(8)

Now, first assume xj = 0.
Thus, we should have uj(x

n) = gj(x
n
j , φ(xn−j)) for n large enough, which

requires xnj > φ(xn−j) for n large enough. By monotonicity of φ and since
xni ≥ yni for every player i, we get ynj = xnj > φ(xn−j) ≥ φ(yn−j). Thus,
uj(y

n) = gj(y
n
j , φ(yn−j)) and by continuity of gj, this converges to gj(0, 0) =

vj, when n tends to infinity.
From equation (3) and equation (8), we get

max{fj(0, 0), hj(0, x−j), sup
dj∈[0,1]

gj(dj, 0)} ≤ gj(0, 0)(9)

Since uj(y
n) converges to gj(0, 0), we get that ynj is an ε′n-best-response

against yn−j for some sequence of positive reals (ε′n)n∈N converging to 0
(use continuity of fj, gj and assumption (C)).
Second, assume xj > 0.
Since φ(x−j) = 0, uj is continuous at x and vj = gj(xj, 0) = uj(x). From
equation (2), xj is a best-response against x−j, thus we finally have

max{fj(0, 0), hj(0, x−j), sup
dj∈[0,1]

gj(dj, 0)} ≤ uj(x)(10)

and, similarly to the previous case, from the continuity of fj and gj, as-
sumption (C) and the continuity of uj around x, we obtain that ynj = xnj is
an ε′n-best-response against yn−j for some sequence of positive reals (ε′n)n∈N
converging to 0.
This ends the three subcases, and x is an approximate equilibrium profile
associated to the sequence (yn)n∈N.

In the last case, we assume there exists i ∈ N such that xi = φ(x−i) = 1: this
can be proved as in the third case.

6.2. Proof of Theorem 4.1

The first inclusion is a consequence of Theorem 3.10 applied to G′.

For the second inclusion, consider a sequence (mn, u(mn))n∈N∗ of 1
n
-mixed Nash

equilibria converging to (m, v). To prove that it is a mixed sharing rule equilib-
rium, we show how to adapt Simon-Zame’s proof.

Note that the sequence (mn)n∈N converges (weakly) to m. We let E be the
space of RN -valued vector measures on X, endowed with the weak* topology.
Consider the sequence (u ·mn)n∈N of the compact space E (here, u ·mn denotes
the RN -valued measure on X defined by u·mn(F ) =

∫
F u dm

n for every Borelian
set F of X). Without any loss of generality, up to a subsequence, this sequence
converges to some measure ν. From Lemma 2, p.867 (Simon and Zame (1990)),
there exists a Borel measurable selection q of Q, the multivalued function from
X to RN , defined by Q(x) =co Γx, such that ν = q ·m (remark that the proof
of this lemma does not use the support of mn, but only the fact that u is a
selection of Q). Define, for every player i and every integer k > 0, Hk

i = {xi ∈
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Xi :
∫
qid(δxi ×m−i) >

∫
qid(mi ×m−i) + 1

k
}. Let us prove that mi(H

k
i ) = 0 for

every integer k > 0.

Otherwise, considerK ⊂ Hk
i ⊂ U , whereK is compact, U open,mi(U−K) < ε

with ε > 0, and with mi(K) > 0. We let f : Xi → [0, 1] be a continuous function
which is identically equal to 1 on K and 0 on the complement of U . Consider the
strategy βni =

fmn
i∫

fdmn
i

. Then, ui(β
n
i ,m

n
−i) > ui(m

n) + 1
2k

for n large enough and

ε > 0 small enough (see Step 4 in Simon and Zame), which contradicts the fact
that mn is a 1

n
-Nash equilibrium (for n large enough). Thus mi(H

k
i ) = 0 for every

integer k > 0. Now, let Hi = {xi ∈ Xi :
∫
qid(δxi × m−i) >

∫
qid(mi × m−i)}.

Since Hi = ∪kHk
i , we get mi(Hi) = 0.

From Step 5 in Simon and Zame, there exists a modification q̃ of q, such that
q = q̃ except on a set of m−measure 0, such that m is a Nash equilibrium of
the game G̃ = ((Xi)i∈N , (q̃i)i∈N), and q̃(m) = q(m). More precisely, take p̃i a
Borel measurable selection from Q which minimizes the i-th component of Q,
define T = {x ∈ X : xi ∈ Hi for at least two indices i ∈ N}, define q̃(x) = p̃i(x)
if x ∈ Hi × X−i but x /∈ T , and q̃(x) = q(x) otherwise. To prove that m is a
Nash equilibrium of G̃, we follow Simon and Zame. By contradiction, assume
that some player i has a profitable deviation xi, that is q̃i(xi,m−i) > q̃i(m) + η
for some η > 0. Then the case xi /∈ Hi is not possible by definition of Hi (see
Step 6, Case 1 in Simon and Zame). The case xi ∈ Hi is as in Step 6, Case 2 in
Simon and Zame, and implies that ui(xi,m

n
−i) > ui(m

n) + η
2

for n large enough,
a contradiction.

6.3. Proof of Theorem 4.3

A limit-equilibrium (m, v) exists by compactness of Γ′. First let us prove that it
is a Reny solution of Γ′. Fix d ∈M . The definition of a limit-equilibrium implies
that for every neighborhood V of (m, v), there exists mV ∈ M and D′ a finite
subset of M containing d such that (1) ∀i ∈ N,∀d′ ∈ D′, ui(d′i,mV

−i) ≤ ui(m
V )

and (2) (mV , u(mV )) ∈ V . Shrinking V to (m, v) implies that ui(di,m−i) ≤ vi,
and since this is true for every d ∈M , (m, v) is a Reny solution of Γ′.

Now, let us prove that (m, v) induces a solution à la Simon-Zame. Since M is
a compact metric set, there exists a countable decreasing basis of neighborhoods
V n of (m, v) in Γ′. Since X is a compact metric set, there exists a sequence
Dn = Πi∈ND

n
i of finite sets of pure strategies converging to X for the Hausdorff

distance. By definition of a limit-equilibrium (Definition 4.2), for every integer
n, there exists a sequence of finite sets D

′n = Πi∈ND
′n
i of mixed strategies

containing Dn, and a probability mn, which is a Nash equilibrium of the game
restricted to D

′n such that (mn, u(mn)) ∈ V n. Recall that Simon and Zame’s
existence proof consists in approximating the game by a finite game in pure-
strategies (here Dn), and in considering a weak limit of a sequence (mn)n∈N
of Nash equilibria of this approximation. We cannot apply Simon and Zame’s
proof directly to the Nash equilibria mn of the finite games D′n, because D′n



25

may contain mixed strategies. But D
′n ⊃ Dn: thus, no player i has a profitable

deviation in Dn
i against mn, and we shall prove that this property is sufficient

to adapt Simon-Zame’s proof.

Let G̃, q̃ and Hi be defined as in the proof of Theorem 4.1 (Section 6.2 just
above). To prove that m is a Nash equilibrium of G̃, assume that some player i
has a a profitable deviation xi to m−i that is, q̃i(xi,m−i) > q̃i(m). Then the case
xi /∈ Hi yields a contradiction (Step 6 Case 1 in Simon and Zame). For the second
case, simply consider a sequence xni converging to xi such that xni ∈ Dn

i (here,
we use that Dn = Πi∈ND

n
i converges to X for the Hausdorff distance). A limit

argument (Step 6 Case 2 in Simon and Zame) proves that ui(x
n
i ,m

n
i ) > ui(m

n)
for n large enough, a contradiction, because mn is a Nash of D′n and because
xni ∈ Dn

i ⊂ D′ni .

6.4. Proof of Theorem 4.6

Let V ⊂ Γ′ be the set of non Reny solutions of G′. By definition, for every
(m, v) ∈ V , there exists V (m,v) (a neighborhood of (m, v)), d(m,v) ∈ M and a

player i ∈ N such that ui(d
(m,v)
i ,m′−i) > v′i for every (m′, v′) ∈ V (m,v). This

yields a collection of pairs (V (m,v), d(m,v)) for every (m, v) ∈ V . Since the set
of Reny solutions is compact in Γ′, V is open in Γ′, thus there is a countable
family of pairs {(V n, dn)}n defined as above such that V = ∪n≥0V n. Define
Dn
i = {d1i , ..., dni } and Dn = Πi∈ND

n
i for every integer n, and let us prove that

it is a weak strategic approximation of the initial game. We only have to prove
that if (m, v) = limn→+∞(mn, u(mn)), where (mn, u(mn)) is a Nash equilibrium
of the game restricted to Dn (for every integer n ≥ 0), then (m, v) is a Reny
solution (which implies that it is an approximate equilibrium, since the game
is approximately better-reply secure). By contradiction, assume (m, v) is not a
Reny solution. By definition of V and the V n (n ≥ 0), there exists some integer
k such that (m, v) ∈ V k and (mn, u(mn)) ∈ V k for every n large enough. By
definition of V k, there is some player i such that ui(d

k
i ,m

′
−i) > v′i for every

(m′, v′) ∈ V k. In particular, ui(d
k
i ,m

n
−i) > ui(m

n) for n large enough, which
contradicts the fact that (mn, u(mn)) is a mixed Nash equilibrium of the game
G′ restricted to Dn, since dki ∈ Dn

i for every n ≥ k.

6.5. Proof of Theorem 4.8

The proof of Theorem 4.8 and Theorem 4.12 uses the same principle: for every
ε > 0, we construct a finite approximation G′ε of G′ such that for every player i
and every mixed strategy of players j 6= i in G′ε, player i has an ε-best response
which belongs to G′ε. This proves that every mixed Nash equilibrium of the finite
approximation is an ε−Nash equilibrium of the initial game. The approximation
shall depend on the structure of the game, and in particular on the behavior of
the payoffs in a neighborhood of the boundary.
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First note that in two player diagonal games, necessarily φ(y) = y for every
y ∈ [0, 1] (by the unanimity condition). Call x ∈ [0, 1] a right local equilibrium
if hi(x, x) > gi(x, x) for both i = 1, 2 and a left local equilibrium if hi(x, x) >
fi(x, x) for both i = 1, 2. Thus, if players are supposed to play (x, x) and if x is
a right local equilibrium, no player has an interest to deviate to some strategy
in some right neighborhood of x (but he may have a profitable deviation outside
that neighborhood) and similarly for left local equilibria.

We let x0 be the largest element in [0, 1] such that all x < x0 are right local
equilibria and y0 be the smallest element in [0, 1] such that all y > y0 are left
local equilibria. Note that x0 may be 0 and y0 could be 1. By continuity of f , g
and h, if x0 < 1 then hi(x0, x0) ≤ gi(x0, x0) for some i ∈ {1, 2} and similarly, if
y0 > 0 then hj(y0, y0) ≤ fj(y0, y0) for some j ∈ {1, 2}. Depending on the relative
position of x0 and y0, we consider the three following cases.

First case. x0 > y0. In this case, the finite approximated game is simply defined
by some finite discretization D of [0, 1] containing 0 and 1 and σ a mixed strategy
of the game restricted to D . Without any loss of generality, taking the mesh
of this discretization smaller than some η > 0, we can assume that the payoff
functions f and g do not change by more than ε

2
if a player moves by no more than

η, and such that if x < x0 is in D, then hi(x, x) > gi(y, x) for all x < y < x+ η,
and if x > y0 is in D, then hi(x, x) > fi(y, x) for all x > y > x − η. We let
y ∈ [0, 1] be some ε/2-best reply to σj of player i which is not in D (if such
strategy does not exist, we are done with the proof). Then either y < x0 or
y > y0. In the first case, denote by z the greatest element in D smaller than y,
so that hi(z, z) > gi(y, z) by assumption of the discretization and since z is a
right equilibrium. Since player j plays a probability distribution supported on
D, moving from y to z for player i induces for him a greater payoff from the
event associated to player j playing z and at most a change of ε

2
on the events

where player j is playing a strategy in D different from z. Thus, z is an ε-best
reply for player i. A similar argument applies to y > y0 (use the left equilibrium
property).

Second case. x0 < y0, which implies that hk(x0, x0) ≤ gk(x0, x0) and hl(y0, y0) ≤
fl(y0, y0) for some k ∈ {1, 2} and l ∈ {1, 2}. By continuity, we get η > 0
small enough such that hk(x0, x0) < gk(x, x0) + ε

4
for every x ∈]x0, x0 + η[ and

hl(y0, y0) < fl(y, y0) + ε
4

for every y ∈]y0 − η, y0[. Thus, there are four cases to
check, depending on the values of k and l. Let us solve explicitly the case k = 1
and l = 2. The same idea of construction could be done in the other cases, with
a small adaptation in the definition of the weak strategic approximation.

Fix ε > 0 and define x0 = t0 < s0 < t1, ... < sK−1 < tK = y0, a discretization
of [x0, y0] with a mesh smaller than some η > 0 so that payoff functions f and
g do not change by more than ε/4 if the pure strategy moves by no more than
η. As in the first case, we let D be a finite discretization of [0, x0[∪]y0, 1] with a
mesh smaller than η > 0 so that payoff functions f and g do not change by more
than ε

2
if the pure strategy moves by no more than η and such that if x < x0 is
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in D, then hi(x, x) > gi(y, x) for all x < y < x + η and if x > y0 is in D, then
hi(x, x) > fi(y, x) for all x > y > x + η. Now, the finite approximation of G′ is
defined as follows: player 1 is restricted to play in D or uniformly on one of the
intervals [tk, sk], k = 0, ..., K − 1, or to choose tK = y0. Player 2 is restricted to
play in D or uniformly on one of the intervals [sk, tk+1], k = 0, ..., K − 1, or to
choose t0 = x0. Observe that the intervals where players are uniformly mixing
are disjoint and alternate. We let σ be some strategy of player 2 in the restricted
game. Let y be some ε/4 pure best response of player 1 in G, which is not in the
discretization D (again, if it does not exist, this is finished). Several subcases
have to be examined. First subcase, if y < x0 or y > y0, we proceed as in the first
case to construct an ε-best reply in D. Second subcase, if y is in some interval
]sk, tk+1[ of player 2 (k ∈ {0, 1, ..., K−1}), and if player 2 is choosing that interval
with positive probability, an easy computation proves that the payoff of player
1 coming from that interval is, up to ε/4, a convex combination of his payoff
if he chooses tk+1 and his payoff if he chooses sk. But, the payoff of player 1
coming from Player 2 playing in the other intervals or in D changes by no more
that ε/4 when he moves in the interval [sk, tk+1]. Consequently, player 1 has a
3
4
ε-best response at the extreme points sk or tk+1 of the interval, a case which

is treated in the next subcase: Third subcase, let z ∈ [tk, sk] being a 3
4
ε-best

response, for some k ∈ {0, 1, ..., K − 1}. If k > 0, by assumption, there is zero
probability that player 2 stops in that interval and so player 1’s payoff does not
move by more that ε/4 if he plays uniformly in [tk, sk] (which is authorized for
player 1) instead of playing z. This gives an ε-best response. If k = 0, if player
2 is playing x0 with positive probability and player 1 is playing z = x0, then
player 1 does not lose more than ε/4 by playing slightly more than x0 instead of
x0 (since h1(x0, x0) < g1(x, x0) + ε

4
for every x ∈]x0, x0 + η[). Then remains the

case where z belongs to the interval ]t0, s0[. But, again, since his payoff moves
continuously in that interval, playing uniformly in it is an ε-best response. The
proof for player 2 is similar (we use the fact that h2(y0, y0) < f2(y, y0) + ε

4
for

every y ∈]y0 − η, y0[).
The three remaining cases for k and l are solved similarly, by a judicious choice

of who of the two players is allowed to stop at x0 and y0: if k = 2 and l = 1, then
player 1 can stop at x0 and player 2 at y0; if k = 2 and l = 2, (only) player 1 is
allowed to stop at both x0 and y0; if k = 1 and l = 1, only player 2 is allowed
to stop at both points. If some player can stop at x0 then it is the other player
who is authorized to stop uniformly in the small interval of the discretization
just after x0, and the intervals in which players can stop (by mixing uniformly)
alternate until the point y0, and the last interval belongs to the player who is
not allowed to stop at y0.

Third case. x0 = y0, implying hk(x0, x0) < gk(x, x0) + ε
4

for x ∈]x0, x0 + η[ and
hl(x0, x0) < fl(x, x0) + ε

4
for x ∈]x0− η, x0[ for some k ∈ {1, 2} and l ∈ {1, 2} (if

x0 is 0 or 1, then only one of the inequalities holds). Suppose for example that
h1(x0, x0) < g1(x, x0) + ε

4
for x ∈]x0, x0 + η[. We let D1 = {0 = t0 < ... < tK}
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be a discretization on the left of x0, not including x0, and empty if x0 = 0; let
D2 = {s0 < ... < sK = 1} be a discretization on the right of y0, not including
y0, and empty if y0 = 1. Again, without any loss of generality, assume that the
mesh of the discretizations is smaller than η > 0, so that payoff functions f and
g do not change by more than ε

2
if a player moves by no more than η. Consider a

strategic approximation where Player 2 is allowed to play in D1∪D2∪{x0} and
player 1 to play in D1∪D2 or to mix uniformly in the length [x0, s0]. Let y ∈ [0, 1]
be some ε/2-best reply of player 1 to some mixed strategy of player 2 which is
not in D1 (if such strategy does not exist, this is finished). If y < x0, moving from
y to the greatest element in D1 smaller than y gives an ε-best reply for player
1. If y > x0, moving from y to the smallest element in D1 larger than y gives an
ε-best reply for player 1. Last, if y = x0, playing uniformly in [x0, s0] instead of
playing x0 is an ε-best reply for player 1, because of h1(x0, x0) < g1(x, x0) + ε

4

for x ∈]x0, x0 + η[. We treat in a similar way the case of player 2, and the case
k = 2.

6.6. Proof of Theorem 4.12

Recall that for simplicity, we assume the type space T to be finite.

Case c2: the multiplayer private value setting
Define a weak strategic approximation of the initial game G as follows: for each
integer m, a strategy (in Mi) of player i (whatever his type) is some element of
the finite set Dm of uniform distributions on Ikm = [ k

m
, k+1
m

] (k ∈ {0, 1, ...,m−1}).
By Nash theorem, this finite (Bayesian) game has a mixed Nash equilibrium σm.
We shall prove that if players j 6= i play according to σm−i, each type ti of player
i has some ε-best response (in G′) which belongs to Dm. This proves that σm is
an ε-Nash equilibrium of G′ for m large enough.

Consider ε > 0, and suppose m is large enough so that for every t ∈ T , fi(t, ., y)
and gi(t, ., y) do not move by more than ε in the interval [ k

m
, k+2
m

] (k = 0, ...,m−2)
uniformly in y. If player i of type ti chooses a pure strategy x ∈ [0, 1] and
if the realized strategy profile of its opponents is x−i, then its payoff can be
written wi(ti, x, φi(x−i)), where wi(ti, x, φi(x−i)) is almost surely equal to either
fi(ti, x, φi(x−i)) or gi(ti, x, φi(x−i)) (ties have zero-probability), depending on
the position of φi(x−i) with respect to x. This is because the image probability
measure of σm−i by φi has no atoms.17 It also implies that the (expected) payoff

17To prove that, consider the event [φN (x1, ..., xN−1) = α] for some α ∈ [0, 1]. Let

S = {(x1, ..., xN−1) ∈ [0, 1]N−1 :
∑N−1

k=1 xk = 1} be the (N − 2)-simplex. The monotonicity
assumption guarantees that for every (x1, ..., xN−1) ∈ S, there is no more than one y ∈ R
such that φN ((x1, ..., xN−1) + y(1, ..., 1)) = α. For every x = (x1, ..., xN−1) ∈ S, define
ψ(x1, ..., xN−1) = y if such y exists, and ψ(x1, ..., xN−1) = 0 otherwise. One can identify S×R
to a subset of RN−1 (which contains [0, 1]N−1) throughout the mapping i : S ×R → RN−1

defined by i((x1, ..., xN−1), y) = (x1, ..., xN−1) + y(1, ..., 1). With this identification, the graph
of ψ contains the event [φN (x1, ..., xN−1) = α]. But ψ is measurable, and thus its graph has
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of player i, fixing the strategies of the opponents, is a continuous function of his
own strategy x. Consequently, there exists x∗ ∈ [0, 1], a pure best response of
player ti (in the original game G′). From x∗, one can construct an ε-best response
in Dm as follows: if x∗ ∈ [0, 1

m
], from assumption (a), replacing x∗ by the uniform

distribution on I1m is a ε-best response for m large enough. If k
m
< x∗ < k+1

m
for

some k = 1, ...,m−2 then, either gi(ti, x
∗, x∗) ≥ fi(ti, x

∗, x∗) and then replace x∗

with the uniform strategy on Ik+1
m (it is better for i to choose a higher strategy),

or gi(ti, x
∗, x∗) < fi(ti, x

∗, x∗), and then replace x∗ with the uniform distribution
on Ik−1m (it is better for i to choose a lower strategy). In both cases, this gives
an ε-best response in Dm for m large enough. Last if Assumption b1) is satisfied
and not b2) and x∗ ∈ [1 − 1

m
, 1], then replace x∗ with the uniform distribution

on Im−1m .

Remark 6.1 Note that this proof works also when the payoff of type ti depends
also on (ti, t−i) if we add the following assumption: for every player i and every
x∗ ∈ [0, 1], if gi(t, x

∗, x∗) ≤ fi(t, x
∗, x∗) is true for one t̄−i then it is true for every

t−i, and similarly for the inequality gi(t, x
∗, x∗) ≥ fi(t, x

∗, x∗). Finally, remark
that the proof only requires the (strict) Monotonicity of φi, and not the other
properties.

Case c1: the two-player general value setting
When there are two players, by unanimity φi(y) = y. Now, we mimic the

proof and the approximation scheme of the second case of Theorem 4.8 with
x0 = 0 and y0 = 1, proving that if σ is some mixed strategy profile of player 2 in
the approximated game, then every type t1 has an ε-best response against σ in
the full game that belongs to his set of authorized strategies. That is, take the
following discretization of [0, 1]: 0 = s0 < t0 < s1 < t1 < ... < tK < sK+1 = 1.
Player 1 is restricted to play uniformly on one of the intervals [sk, tk], k = 0, ..., K,
or to choose x = 1. Player 2 is restricted to play uniformly on one of the intervals
[tk, sk+1], k = 0, ..., K, or to choose x = 0. Observe that the intervals where
players are mixing are disjoint and alternate (player 1 can stop uniformly in the
first interval, player 2 in the second, player 1 in the third, etc.).

Remark 6.2 In both cases (two players or private value with N players), by
construction, in the weak strategic approximation, ties have zero probability.
Consequently, the Nash equilibria are independent on the tie-breaking rule h.
Also, examining the proofs, one can see that the result of Theorem 4.12 holds
when the type space T is a compact metric set, functions fi(t, a, b), gi(t, a, b) are
jointly continuous in (t, a, b) ∈ T × [0, 1]× [0, 1], and hi(t, x) is measurable and
continuous in t uniformly in x. In that case, for every ε > 0, one can discretize
the type space to obtain a Bayesian diagonal game with finitely many types

a 0-Lebesgue-measure in RN−1 (from Fubini theorem). The assertion follows from the fact
that σm

−i is a convex combination of uniform probabilities whose supports are rectangles with
nonempty interiors.
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tε ∈ Tε. This game admits an ε-equilibrium (by Theorem 4.12) from which one
can construct a 2ε-equilibrium in the original game by asking each type ti in the
original game to play a strategy of a closest type tεi in the game with finitely many
types. If the discretization is well chosen so that supx |ui(ti, x) − ui(tεi , x)| ≤ ε,
then type ti is playing a 2ε-best response in the original game.

6.7. Proof of Example 4.16

Start with the maxmin. We let α be the probability with which player 1 stops
at x = 0 (so with probability (1−α) he stops after zero). If α = 0, player 2 gets
1 by stoping at time zero (and so player 1 gets −1). If α > 0, type A for player 2
can stop uniformly between 0 and some ε where ε is very small so that with high
probability, if the game has not been stopped at time zero, it is stopped by player
2 (just after zero). Assume that type B of player 2 stops at time zero. Payoff of
player 1 is thus very close to α(1

2
×1+ 1

2
×−2)+(1−α)×−1. Consequently, the

best strategy for player 1 against such behavior by player 2 is to stop at t = 0
with probability 1 so that max min ≤ −1

2
.

Let us now compute the min max. Let us restrict player 1 to playing best-
replies to the following kind of strategies : (1) to stop at time t = 0 or (2) to
stop uniformly between 0 and some ε very small, which depends of course on the
strategy of player 2. Knowing this behavior, type B must stop at time zero. We
let β be the probability that type A stops at time zero. The payoff of player 1 if he
stops at 0 (choose option 1) is 1

2
×−2+ 1

2
×(β×3+(1−β)×1) = −1

2
+β, while if he

chooses option 2 his payoff is close to 1
2
×−1+ 1

2
(β×−1+(1−β)×1) = −β. Thus,

the optimal β for type B against this behavior of player 1 must be equalizing
and so is β = 1

4
. Consequently, min max ≥ −1

4
.
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