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matrices and applications to multi-body
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We present the new, general, explicit form of the equations of motion for constrained
mechanical systems applicable to systems with singular mass matrices. The systems may
have holonomic and/or non holonomic constraints, which may or may not satisfy
D’Alembert’s principle at each instant of time. The equation provides new insights into
the behaviour of constrained motion and opens up new ways of modelling complex multi
body systems. Examples are provided and applications of the equation to such systems
are illustrated.
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1. Introduction

One of the central problems in analytical dynamics is the determination of
equations of motion for constrained mechanical systems. This problem was
formulated more than 200 years ago and has been actively and continuously
worked on since by many engineers, mathematicians and scientists. The initial
description of constrained motion was established by Lagrange (1787). He
invented the method of Lagrange multipliers specifically to handle constrained
motion. Gauss (1829) introduced a general, new principle of mechanics for
handling constrained motion, which is commonly called today as Gauss’s
Principle. Gibbs (1879) and Appell (1899) independently discovered the so-called
Gibbs Appell equations of motion using the concept of quasi-coordinates. Dirac
(1964) developed, using Poisson brackets, a recursive scheme for determining the
Lagrange multipliers for singular, Hamiltonian systems. Udwadia & Kalaba
(1992) discovered a simple, explicit set of equations of motion for general
constrained mechanical systems. Their equations can deal with holonomic and/
or non-holonomic constraints that are not necessarily independent. All these



investigators have used D’Alembert’s principle as their starting point.
The principle states that the total work done by the forces of constraints
under virtual displacements is always zero. This assumption seems to work well
in many situations and can be presumed as being at the core of classical
analytical dynamics. Udwadia & Kalaba (2001, 2002) generalized their equations
to constrained mechanical systems that may or may not satisfy D’Alembert’s
principle.

Though one may perhaps consider these equations to be the most general,
explicit equations obtained to date that describe the motion of constrained
mechanical systems, they are limited by the fact that, unlike Dirac’s formulation,
they cannot deal with singular mass matrices. Systems with singular mass
matrices are not common in classical dynamics when dealing with unconstrained
motion. As known (Pars 1979), when the minimum number of coordinates is
employed for describing the (unconstrained) motion of mechanical systems, the
corresponding set of Lagrange equations usually yield mass matrices that are
non-singular; in fact they are symmetric, and positive definite (Pars 1979).
However, singular mass matrices can, and do, arise in the modelling of complex,
multi-body mechanical systems. Such occurrences are most frequent when
describing mechanical systems with more than the minimum number of required
generalized coordinates, so that the coordinates are then not in fact independent
of one another, and are subjected to constraints. Often, such descriptions of
mechanical systems that use more than the minimum number of required
coordinates are helpful in setting up the equations of motion of complex systems
in a less labour-intensive fashion (see Udwadia & Kalaba 1996 for several
examples). At other times, one may be interested in decomposing a complex
multi-body system into its constituent parts for each of which the equations of
motion are known; one then wants to use these equations for each of the
constituents to obtain the equations of motion of the composite system. Singular
mass matrices can arise in such situations too. Thus, in general, singular mass
matrices can arise when one wants greater flexibility in modelling complex
mechanical systems.

In this paper, we develop general and explicit equations of motion to handle
systems whether or not their mass matrices are singular. The equations are
applicable to systems with holonomic constraints, non-holonomic constraints, or
a combination of the two types, as well as systems where the constraint forces
may or may not be ideal. We show that, in general, the motion of such systems
with singular mass matrices may not always be uniquely defined. Further, we
present the necessary and sufficient conditions for the equations of motions to
uniquely determine the accelerations of the system. We then show that these
general equations are identical to the familiar, explicit equations previously
obtained by Udwadia & Kalaba (2001) when the mass matrices are restricted to
being positive definite. We provide examples to show how systems with singular
mass matrices can arise in the modelling of mechanical systems in classical
mechanics and demonstrate how to use our equations for describing such
systems. The new equations open up new ways of modelling complex multi-body
systems. For, they permit one to decompose such systems into sub-systems each
of whose equations of motion are known, and then combine these sub-system
equations to obtain the equations of motion of the composite system in a
straightforward and simple manner.



2. Explicit equations of motion for general constrained mechanical
systems applicable to systems with singular mass matrices

Consider an unconstrained mechanical system. The motion of the system at any
time t can be described, using Lagrange’s equation, by

Mðq; tÞ€q ZQðq; _q; tÞ; ð2:1Þ
with the initial conditions

qð0ÞZ q0; _qð0ÞZ _q0; ð2:2Þ
where q is the generalized coordinate n-vector; Q is an n-vector which is a known
function of q, _q and t; and n is the number of generalized coordinates. In this
paper we shall assume, contrary to common practice, that the matrix M that
describes the unconstrained motion of the system is a symmetric n by n matrix,
which is, in general, semi-positive definite. By ‘unconstrained’ we mean here that
the n coordinates, q, are independent of one another, or are to be treated as being
independent of each other.

Suppose further that the unconstrained system is now subjected to the m
constraints

4iðq; _q; tÞZ 0; i Z 1; 2;.;m; ð2:3Þ
where k%m equations in the equation set (2.3) are functionally independent. We
shall assume that the initial conditions (2.2) satisfy these m constraints. The
constraints described by (2.3) include all the usual varieties of holonomic and
non-holonomic constraints, and combinations thereof.

Our aim is to obtain explicit expressions for the acceleration, €qðtÞ, of the
dynamical system at the time t, given: (i) its unconstrained equation of motion,
as given by equation (2.1); (ii) the constraints, as given by the equation set (2.3);
and (iii) the state of the system, _qðtÞ and q(t), at time t.

Assuming that the set of constraints (2.3) are smooth enough, we can
differentiate them with respect to t to obtain the relation

Aðq; _q; tÞ€q Z bðq; _q; tÞ; ð2:4Þ
where A is an m by n matrix whose rank is k, and, b is an m-vector.

When the unconstrained system gets constrained, additional forces
constraint forces, Q c will arise to ensure that the constraints are satisfied.
Therefore, the equation of motion for the constrained system becomes

M €q ZQðq; _q; tÞCQcðq; _q; tÞ: ð2:5Þ
We note, again, that the matrix M in equation (2.5) can, in general, be singular.

As stated by Udwadia & Kalaba (2001), the work done by the forces of
constraints under virtual displacements at any instant of time t can be expressed as

wTQcðq; _q; tÞZwTCðq; _q; tÞ; ð2:6Þ
where Cðq; _q; tÞ is an n-vector describing the nature of the non-ideal constraints,
which is determined by themechanician and could be obtained by experimentation
and/or observation (see Udwadia & Kalaba 2001 for details). The virtual
displacement vector, w(t), is any non-zero n-vector that satisfies (Udwadia &
Kalaba 1996; Udwadia et al. 1997)

Aðq; _q; tÞw Z 0: ð2:7Þ



Solving equation (2.7), the n-vectorw can bewritten as (we suppress the arguments
for clarity)

w Z ðIKACAÞg; ð2:8Þ
where g is any arbitrary n-vector, and AC is the Moore Penrose inverse of the
matrix A.

Substituting equation (2.8) in equation (2.6), we obtain

gTðIKACAÞQcðq; _q; tÞZgTðIKACAÞCðq; _q; tÞ: ð2:9Þ
Since each component of the vector g can be independently chosen, equation
(2.9) yields

ðIKACAÞQcðq; _q; tÞZ ðIKACAÞCðq; _q; tÞ: ð2:10Þ
Premultiplying equation (2.5) by IKACA and using equation (2.10), we get

ðIKACAÞM €q Z ðIKACAÞðQCCÞ: ð2:11Þ
Equations (2.11) and (2.4) can now be written together as

ðIKACAÞM
A

" #
€q Z

ðIKACAÞðQCCÞ
b

" #
: ð2:12Þ

Defining

M Z
ðIKACAÞM

A

" #
ðmCnÞ!n

; ð2:13Þ

we can solve equation (2.12) to get

€q Z
ðIKACAÞM

A

" #C
QCC

b

" #
CðIKM

C
MÞh; ð2:14Þ

where h is an arbitrary n-vector.
Equation (2.14) is the general, explicit equation of motion for constrained

mechanical systems with non-ideal constraints. Here, we do not have any
restriction regarding the positive definiteness of the symmetric mass matrix M. It
is allowed to be singular. We state this as our first result.

Result 1. The general equation of motion of a constrained mechanical system
described by relations (2.1) (2.3), whether or not the matrix M that arises in the
description of the unconstrained motion of the system is singular, is given by

€q ZM
C QCC

b

" #
CðIKM

C
MÞh;

where M is given by relation (2.13), and h(t) is an arbitrary n-vector.
We note that, in general, because of the second member on the right-hand side

of equation (2.14), the acceleration of a system with a singular mass matrix is not
necessarily unique. However, when the (mCn) by n matrix M has full rank
(rankZn), this second member in equation (2.14) vanishes for then M

CZ
ðMT

MÞK1M
T
so that M

C
MZI ; and so the equation of motion becomes unique.

Hence, we have the following important result.



Result 2. When the matrix M has full rank, the equation of motion of the
constrained system is unique and is given by the equation

€q ZM
C QCC

b

" #
d

ðIKACAÞM
A

" #C
QCC

b

" #
: ð2:15Þ

Next, we provide a necessary and sufficient condition for the matrix M to have
full rank.
3. The necessary and sufficient condition for M to have full rank

When M has full rank, the equation of motion of the constrained system is
unique and is given by relation (2.15). We present the necessary and sufficient

condition for M to have full rank in lemma 3.1.

Lemma 3.1. The matrix

M Z
ðIKACAÞM

A

" #

has full rank if and only if the matrix

M̂ Z
M

A

" #

has full rank. That is, M has full rank5M̂ has full rank.

Proof. (a) We first prove that if M̂ does not have full rank, then M does not
have full rank. If

M̂ Z
M

A

" #

does not have full rank, there exists an n-vector ws0 such that

M

A

" #
w Z

Mw

Aw

" #
Z 0: ð3:1Þ

Thus, there exists a ws0 such that

ðIKACAÞMw

Aw

" #
Z

ðIKACAÞM
A

" #
w ZMw Z 0: ð3:2Þ

This implies that if M̂ does not have full rank, then M does not have full rank.
(b) We next show that if M does not have full rank, then M̂ does not have full

rank. If the matrix M does not have full rank, there exists an n-vector ws0 such
that

ðIKACAÞM
A

" #
w Z 0; ð3:3Þ

which can also be written as the two relations

ðIKACAÞMw Z 0 ð3:4Þ



and
Aw Z 0: ð3:5Þ

Solving equation (3.5), we have

w Z ðIKACAÞd; ð3:6Þ
where d is any arbitrary n-vector.

Substituting equation (3.6) in equation (3.4), we obtain

ðIKACAÞMðIKACAÞdZ 0; ð3:7Þ
from which it follows that

dTðIKACAÞM 1=2M 1=2ðIKACAÞdZ 0: ð3:8Þ
Since relation (3.8) can be rewritten as

ðM 1=2ðIKACAÞdÞTðM 1=2ðIKACAÞdÞZ 0; ð3:9Þ
we must then have, by equation (3.6),

M 1=2ðIKACAÞdZM 1=2w Z 0; ð3:10Þ
so that

Mw Z 0: ð3:11Þ
Hence, by equations (3.11) and (3.5) there exists an n-vector ws0 such that
MwZ0 and AwZ0, so that M̂wZ0. We have thus shown what we set out to: M
does not have full rank0M̂ does not have full rank.

Combining the results proved in parts (a) and (b) above, we have thus
deduced that M does not have full rank if and only if M̂ does not have full rank.
And hence, the matrix M has full rank if and only if M̂ has full rank. &

Lemma 3.1 gives us the following important result.
Result 3. The equation of motion of the constrained mechanical system

described by relations (2.1) (2.3) is unique if and only if the matrix

M̂ Z
M

A

" #

has full rank, n. Equation (2.15) gives the uniquely determined acceleration of
the constrained system when M̂ has full rank.

Corollary 3.2. A simple corollary of the above result is that when the matrix M
is non-singular, the equation of motion of the constrained system is unique and is
given by equation (2.15). This follows from the fact that the matrix M̂ is then of
full rank.

Remarks on Result 3

(i) In general, when the mass matrix is singular, the acceleration vector of the
constrained system may not be unique. The acceleration of the constrained
system is unique if and only if the matrix M̂ has full rank. Since for most
practical systems in classical mechanics a unique acceleration vector is
experimentally observed, and therefore expected from our theoretical
models, the rank of M̂ may be used as a check to assess the reasonableness
of a given method of modelling, or a model that is obtained, for a complex
multi-body system.



(ii) Even when M̂ has full rank, the presence of semi-definite, symmetric
(singular) mass matrices in the description of the unconstrained motion of
systems causes conceptual differences from the situation when the mass
matrices are invertible. When the mass matrix is invertible, once Q c is
determined (see equation (2.5)), the acceleration of the constrained system
can be explicitly found from equation (2.5), since M is invertible. Not so,
when the mass matrix is singular. Even if Q c is known, the acceleration of
the constrained system cannot be directly determined from equation (2.5).
The determination of the acceleration of the constrained system requires
both equations (2.4) and (2.5) to be used, as in (2.12).
4. Equivalence with previous results for symmetric, positive definite
mass matrices

In this section, we will show that when the mass matrix M is symmetric and
positive definite (and hence, non-singular), the equation of motion given by
relation (2.15) reduces to that given in Udwadia & Kalaba (2001).

Since M is symmetric and positive definite, M̂ has full rank and the second
member on the right in equation (2.14) disappears since M

C
MZI . Also, since

M 1/2 is well defined, we have

ðAMK1=2ÞðM 1=2ðIKACAÞÞZ 0; ð4:1Þ
so that

BV Z 0; ð4:2Þ
where

B ZAMK1=2 ð4:3Þ
and

V ZM 1=2ðIKACAÞ: ð4:4Þ
When M is non-singular, the ranks of B and V are k and nKk, respectively.
Hence, because of equation (4.2),

B

VT

" #
ðmCnÞ!n

has full rank.

Lemma 4.1. Provided BVZ0 and

B

VT

" #

has full rank, then

BCZ ðBTBCVVTÞK1BT; ð4:5Þ
where BC is the Moore Penrose inverse of the matrix B.

Proof. Since
B

VT

" #



has full rank,

½BT V �
B

VT

" #
ZBTBCVVT ð4:6Þ

has an inverse.
Therefore, we have

ðBTBCVVTÞK1ðBTBCVVTÞZ I : ð4:7Þ
Let us define

J Z ðBTBCVVTÞK1; ð4:8Þ
so that

JBTBCJVVT Z I : ð4:9Þ
Postmultiplying equation (4.9) by BC, we have

JBTBBCCJVVTBCZBC: ð4:10Þ
Since BVZ0,

VTBCZ 0: ð4:11Þ
And we know that BTBBCZBTðBBCÞTZBTðBCÞTBTZBTðBTÞCBTZBT.
Thus, equation (4.10) yields

BCZ JBT Z ðBTBCVVTÞK1BT: ð4:12Þ
&

As a known property of generalized inverses (Udwadia & Kalaba 1996), we have

M
CZ ðMT

MÞCMT ZUM
T
; ð4:13Þ

where we have denoted

U Z ðMT
MÞCZ ½MTðIKACAÞ AT�

ðIKACAÞM
A

" # !C

Z ðMðIKACAÞðIKACAÞM CATAÞC; ð4:14Þ

which can be rewritten as

U Z ðM 1=2ðM 1=2ðIKACAÞðIKACAÞTM 1=2CMK1=2ATAMK1=2ÞM 1=2ÞC: ð4:15Þ
By relations (4.3), (4.4) and (4.8), we get

U Z ðM 1=2ðBTBCVVTÞM 1=2ÞCZ ðM 1=2JK1M 1=2ÞCZMK1=2JMK1=2; ð4:16Þ
where the last equality follows because the matrices M1/2 and J 1 are both
invertible. Thus, equation (4.13) yields

M
CZ

ðIKACAÞM
A

" #C
ZUM

T ZMK1=2JMK1=2½MðIKACAÞ AT�: ð4:17Þ

Substituting equation (4.17) in equation (2.15), we get

€q ZMK1=2JMK1=2½MðIKACAÞ AT�
QCC

b

" #
: ð4:18Þ



Expanding equation (4.18) gives the relation

€q ZMK1=2JM 1=2ðIKACAÞðQCCÞCMK1=2JMK1=2ATb; ð4:19Þ
which can be also rewritten as

€q ZMK1=2JM 1=2ðIKACAÞðIKACAÞM 1=2MK1=2ðQCCÞ
CMK1=2JMK1=2ATb: ð4:20Þ

By equations (4.4) and (4.3), we obtain

€q ZMK1=2JVVTMK1=2ðQCCÞCMK1=2JBTb: ð4:21Þ
Using relation (4.9) in the first member on the right in equation (4.21), we then
have

€q ZMK1=2ðIKJBTBÞMK1=2ðQCCÞCMK1=2JBTb; ð4:22Þ
which, upon noting from lemma 4.1 that BCZJBT, becomes

€q ZMK1QKMK1=2BCðAMK1=2ÞMK1=2QCMK1=2ðIKBCBÞMK1=2C

CMK1=2BCb: ð4:23Þ
Denoting the acceleration of the unconstrained system by aZM 1Q, we get

€q Z aCMK1=2BCðbKAaÞCMK1=2ðIKBCBÞMK1=2C ; ð4:24Þ
which is the same as the result obtained in Udwadia & Kalaba (2001). We note
that when the matrix M is singular, M 1/2 does not exist, and the explicit
equation of motion obtained earlier (Udwadia & Kalaba 2001), and given by
equation (4.24), becomes inapplicable.
5. Examples

In this section, three examples shall be provided to show how systems with
singular mass matrices can occur in the formulation of problems in classical
mechanics and how they can be handled by equation (2.14).
(a ) Example 1

Consider a wheel of mass m and radius R rolling on an inclined surface without
slipping, as shown in figure 1, with the gravitational acceleration g downwards.
The angle of the inclined surface is a, where 0!a!p=2.

The system clearly has just one degree of freedom. Its kinetic energy is

T Z
1

2
mðR _qÞ2C 1

2
Ic _q

2
; ð5:1Þ

where Ic is the moment of inertia around the centre of the wheel.
If y is the vertical displacement of the centre of the wheel as it rolls down the

inclined plane, the wheel’s potential energy can be simply expressed as

V ZKmgy: ð5:2Þ
Were we to take q and y as the independent generalized coordinates and use the
Lagrangian

Lðy; _y; q; _qÞZTKV Z
1

2
mðR _qÞ2 C 1

2
Ic _q

2
Cmgy



m g

a

y

x

R

Figure 1. A wheel rolling down an inclined plane under gravity.
to obtain Lagrange’s equations of motion for the unconstrained system (since we
are assuming the coordinates are independent), we would get the relations

ðmR2CIcÞ€q Z 0 ð5:3Þ
and

0€yKmg Z 0; ð5:4Þ
which can be written in matrix form as

mR2CIc 0

0 0

" #
€q

€y

" #
Z

0

mg

� �
: ð5:5Þ

Comparing with equation (2.1), here we have

M Z
mR2 CIc 0

0 0

" #
; ð5:6Þ

and the impressed force vector

QZ
0

mg

� �
: ð5:7Þ

Note that the mass matrix M describing the unconstrained motion is singular
now. This singularity is a consequence of the fact that in reality the system has
only one degree of freedom and we are using more than the minimum number of
generalized coordinates to describe the system, and pretending that these
coordinates are independent. The advantage of doing this is that the
unconstrained equations of motion, (5.5), can be trivially written down.
However, the two coordinates y and q are in reality not independent of one
another, since the wheel rolls down without slipping. They are related through
the equation of constraint

y ZRq sin a ð5:8Þ
that must be added to the formulation in order to model the dynamics of the
physical situation properly. Differentiating equation (5.8) twice, we obtain

½KR sin a 1�
€q

€y

" #
Z 0; ð5:9Þ

so that
AZ ½KR sin a 1� ð5:10Þ



and
bZ 0: ð5:11Þ

Since in this problem the system is ideal and the constraint forces do no work
under virtual displacements,

C Z 0: ð5:12Þ
By equation (5.10) we have

ACZ
1

1CR2sin2a

KR sin a

1

" #
; ð5:13Þ

so that

ðIKACAÞM Z
mR2 CIc

1CR2sin2a

1 0

R sin a 0

" #
ð5:14Þ

and

M Z
ðIKACAÞM

A

" #
Z

mR2 CIc
1CR2sin2a

0

ðmR2 CIcÞR sin a

1CR2sin2a
0

KR sin a 1

2
6666664

3
7777775
: ð5:15Þ

Since the rank of

M̂ Z
M

A

" #

is 2, M̂ has full rank, and the equation of motion of the constrained system is
unique and is given by relation (2.15), so that we have

€q

€y

" #
ZM

C Q

b

" #
Z

mR2CIc
1CR2sin2a

0

ðmR2 CIcÞR sin a

1CR2sin2a
0

KR sin a 1

2
6666664

3
7777775

C

0

mg

0

2
64

3
75;

Z
1

mR2CIc

1 R sin a 0

R sin a R2sin2a 1

" # 0

mg

0

2
64

3
75; ð5:16Þ

€q

€y

" #
Z

1

mR2 CIc

mgR sin a

mgR2sin2a

" #
; ð5:17Þ

which is the correct equation of motion for the constrained system.
Example 1 illustrates the following general, practical principle related to the

modelling of many complex, multi-body engineering systems.
It may be appropriate to model a mechanical system in this case, for

illustration, a single degree of freedom system in terms of more than the
minimum number of coordinates required to describe its configuration in this
case, in terms of the two coordinates (y, q). We proceed by pretending that these



coordinates are independent, because doing this will generally lead to a simpler
procedure for writing out Lagrange’s equations when we are dealing with
complex, mechanical systems. However, to represent the physical situation
properly (the fact that coordinates are indeed not independent), we must add to
the model the constraints between the redundant coordinates in this case,
relation (5.8) , thereby treating it as a problem of constrained motion. The
system’s explicit equation of motion is then obtained through the use of equation
(2.15). Whether the modelling procedure is appropriate or not that is, whether
the choice of the additional coordinates used in the formulation of the problem
beyond the minimum number required to describe the configuration of the
system, and the requisite constraints used, are suitable to describe the dynamics
correctly , is dictated by whether the matrix M̂ has full rank (see Remarks on
Result 3). When it does, the unique equation of motion for the system is correctly
obtained.

For the choice that has been made in this example of the coordinates (y, q),
and of the constraint (5.8), this is so, and we obtain the correct equations of
motion, as shown in (5.17).

It should be noted that the process of obtaining a Lagrangian could be the
most difficult, tricky task in having the correct equation of motion of a
constrained (especially complicated) system. By employing more than the
minimum number of required coordinates properly, one can significantly simplify
the process of deriving the Lagrangian and the equation of motion for the
unconstrained system. Then, one can put the information of the unconstrained
system and constraints in equation (2.14) and let a computer do the rest for us,
determining the equation of motion for the constrained system.
(b ) Example 2

Were we to add a zero mass particle (a virtual particle) moving in the
x-direction to the system given in example 1, we would have

M Z

mR2 CIc 0 0

0 0 0

0 0 0

2
64

3
75; ð5:18Þ

AZ ½KR sin a 1 0�; ð5:19Þ

QZ

0

mg

0

2
64

3
75; ð5:20Þ

and the equation of motion for the unconstrained system now becomes

mR2 CIc 0 0

0 0 0

0 0 0

2
64

3
75

€q

€y

€x

2
64
3
75Z

0

mg

0

2
64

3
75: ð5:21Þ

The last equation simply says that there can be no force exerted in classical
mechanics on a particle whose mass is zero.

We note now that the matrix M̂ no longer has full rank. The equation of
motion is therefore now given by relation (2.14); it is no longer unique. We next



determine

M Z
ðIKACAÞM

A

" #
Z

ðmR2CIcÞ=ð1CR2sin2aÞ 0 0

½ðmR2 CIcÞR sin a�=ð1CR2sin2aÞ 0 0

0 0 0

KR sin a 1 0

2
666664

3
777775; ð5:22Þ

and the vectors b and C, which are given, as before, by equations (5.11) and
(5.12), respectively.

Using equation (2.14) we then obtain the constrained equation of motion of the
system to be

€q

€y

€x

2
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75Z

1

mR2CIc

mgR sin a

mgR2sin2a

0

2
664

3
775C

0

0

h

2
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75; ð5:23Þ

where h is arbitrary. Equation (5.23) is essentially the same as the equation of
motion (5.17) for the system without the virtual particle. The last equation in the
set (5.23) simply states that the acceleration of a particle of mass zero (to which
only a zero force can be applied) is indeterminate.

(c ) Example 3

A system of two masses, m1 and m2, connected with springs, k1 and k2, is
shown in figure 2. We shall model this system by decomposing it into two
separate sub-systems that is, we consider it as a multi-body system as shown
in figure 3. The two sub-systems are then connected together by the ‘connection
constraint’, q1Zx1Cd, where d is the length of mass m1. We use the coordinates
x1, q1 and q2 to describe the configuration of the two sub-systems, and first treat
these coordinates as being independent in order to get the unconstrained
equations of motion. We then ‘connect’ the two sub-systems by imposing the
constraint q1Zx1Cd to obtain the equation of motion of the composite system
shown in figure 2.

Consider figure 3. For sub-system 1, the kinetic energy and the potential
energy are given by

T1 Z
1

2
m1 _x

2
1

and

V1 Z
1

2
k1ðx1Kl10Þ2;

where l10 is the unstretched length of the spring k1.
For sub-system 2, the kinetic energy and the potential energy are given by

T2 Z
1

2
m2ð _q1 C _q2Þ2

and

V2 Z
1

2
k2ðq2Kl20Þ2;

where l20 is the unstretched length of the spring k2.
Thus, for the two sub-systems, the total kinetic energy becomes

T ZT1 CT2 Z
1

2
m1 _x

2
1 C

1

2
m2ð _q1C _q2Þ2; ð5:24Þ
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x2

Figure 2. A two degree of freedom multi body system.

m1

m2
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k2
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q1 q2

sub-system 1

sub-system 2

d

Figure 3. Decomposition of the multi body system shown in figure 2 using more than two
cooridinates.
and the total potential energy is

V ZV1CV2 Z
1

2
k1ðx1Kl10Þ2C

1

2
k2ðq2Kl20Þ2: ð5:25Þ

Defining x1Zx1Kl10, and q2Zq2Kl20, by equations (5.24) and (5.25) we get

T Z
1

2
m1

_x
2
1C

1

2
m2ð _q1C _q2Þ2 ð5:26Þ

and

V Z
1

2
k1x

2
1C

1

2
k2q

2
2: ð5:27Þ

Using Lagrange’s equation with the Lagrangian Lðx1; q1; q2; _x1; _q1; _q2ÞZTKV ,
the equations of motion for the unconstrained system can be written as

m1
€x1 Ck1x1 Z 0; ð5:28Þ

m2€q1Cm2
€q2 Z 0 ð5:29Þ

and
m2€q1 Cm2

€q2 Ck2q2 Z 0; ð5:30Þ



which can be put in the form
m1 0 0

0 m2 m2

0 m2 m2

2
64

3
75

€x 1

€q1

€q2

2
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Kk1x1

0

Kk2q2

2
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3
75: ð5:31Þ

Note that these equations for the unconstrained system are almost trivial to
obtain. To model the system shown in figure 2 using these two separate sub-
systems, we connect the two sub-systems by using the constraint
q1Zx1CdZx1C l10Cd. Differentiating this constraint twice we get

½1 K1 0�

€x 1

€q1

€q2

2
664

3
775Z 0: ð5:32Þ

By equations (5.31) and (5.32), we thus have

M Z

m1 0 0

0 m2 m2

0 m2 m2

2
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3
75; ð5:33Þ

QZ

Kk1x1

0

Kk2q2

2
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3
75; ð5:34Þ

AZ ½1 K1 0� ð5:35Þ
and

bZ 0: ð5:36Þ
Note that in choosing more than the minimum number of coordinates to describe
the configuration of the system, and treating them as being independent, we
obtain a mass matrix, M, that is singular.

We assume that the constraint is ideal so that CZ0.
Since

ACZ
1

2

1

K1

0

2
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3
75; ð5:37Þ

we have

M Z
ðIKACAÞM

A

" #
Z

m1=2 m2=2 m2=2

m1=2 m2=2 m2=2

0 m2 m2

1 K1 0

2
66664

3
77775: ð5:38Þ

We next obtain the equations of motion for the constrained systems for three
different cases.

Case 5.1. m1, m2O0
Note that although the matrix M is singular, the matrix M̂ has full rank.

Therefore, the equation of motion of the composite system is unique and is



explicitly given by equation (2.15). Our modelling of the two degree of freedom
system shown in figure 2 in terms of the three chosen coordinates is appropriate.

We now obtain the equation of motion for the constrained system as

€q Z
ðIKACAÞM

A

" #C
Q

b

" #
Z

m1=2 m2=2 m2=2

m1=2 m2=2 m2=2

0 m2 m2

1 K1 0

2
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3
77775

C Kk1x1

0

Kk2q2

0

2
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3
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Z

Kk1x1 Ck2q2
m1

Kk1x1 Ck2q2
m1

K
Kk1x1 Ck2q2

m1

!
K

k2q2
m2

2
6666666664

3
7777777775
; ð5:39Þ

which is the same as the one obtained by other methods (without
decomposition).

Case 5.2. m1Z0, m2O0
Since in this case m1Z0, M given by equation (5.38) does not have full rank.

However, as noted from the physical system, the equation of motion must be
unique. In order to get a unique equation of motion, our attention is drawn to the
need for an additional constraint, so that the resulting M matrix has full rank.
Considering the location where m1Z0, we obtain the following constraint
relation

k1x1 Z k2q2: ð5:40Þ

Differentiating equation (5.40) twice with respect to time t and then putting it
together with equation (5.32), we get

1 K1 0

k1 0 Kk2

" # €x 1

€q1

€q2

2
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3
775Z

0

0

" #
: ð5:41Þ

From equation (5.41) we have

AZ
1 K1 0

k1 0 Kk2

" #
ð5:42Þ

and

bZ
0

0

" #
: ð5:43Þ



Since A has full rank,

ACZATðAATÞK1 Z
1

k21 C2k22

k22 k1

Kðk21 Ck22Þ k1

k1k2 K2k2

2
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775; ð5:44Þ

we have

M Z
ðIKACAÞM
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" #

Z

0 m2k2ðk1Ck2Þ=ðk21 C2k22Þ m2k2ðk1 Ck2Þ=ðk21 C2k22Þ
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0 m2k1ðk1Ck2Þ=ðk21 C2k22Þ m2k1ðk1 Ck2Þ=ðk21 C2k22Þ
1 K1 0

k1 0 Kk2

2
666666664

3
777777775
; ð5:45Þ

which now has full rank. This may be easier to see from the matrix

M̂ Z
M

A

" #
Z

0 0 0

0 m2 m2

0 m2 m2

1 K1 0

k1 0 Kk2

2
66666664

3
77777775
; ð5:46Þ

which now has full rank.
Hence, the equation of motion for the system can be expressed as

€q Z

€x 1

€q1

€q2
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C Q
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" #
Z ðMT

MÞK1M
T

Kk1x1
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Kk2q2
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0

2
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Kk1k
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Kk1k
2
2ðx1Cq2Þ

Kk21k2ðx1Cq2Þ

2
664

3
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Since in this case m1Z0, one can imagine that the system is now composed of
only the mass m2, and the springs k1 and k2 connected to it in series. To see that
equation (5.47) is correct, it may be easier to see the equation of motion in terms
of x2. By equation (5.47), the acceleration €x 2 of the mass m2 is given by

€x 2 Z €q1 C €q2 Z €q1C €q2 Z
1

m2

k1k2
ðk1 Ck2Þ

ðx1 Cq2Þ; ð5:48Þ



which is, as anticipated, the correct equation, where x1Cq2 is the total extension
of both the springs k1 and k2. The first equation in the set (5.47) simply states
that €x1Zðk2=k1Þ€q2, as is obvious from equation (5.40).

Case 5.3. m1O0, m2Z0
Since m2Z0, M given by equation (5.38) does not have full rank. But for the

equation of motion to be unique, as shown before, the matrices M̂ and M must
have full rank, and so one constraint is additionally required. It is given by

k2q2 Z 0; ð5:49Þ
because when the mass m2 is zero, there can be no force in the spring with
stiffness k2. Differentiating equation (5.49) twice with respect to time t and
writing it together with equation (5.32) in matrix form, we obtain

1 K1 0

0 0 k2

" # €x 1

€q1

€q2
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so that we have

AZ
1 K1 0
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" #
ð5:51Þ

and

bZ
0

0

" #
: ð5:52Þ

Since
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we obtain M as

M Z
ðIKACAÞM

A

" #
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2
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3
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and M̂ as

M̂ Z
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" #
Z

m1 0 0

0 0 0

0 0 0

1 K1 0

0 0 k2

2
66666664

3
77777775
: ð5:55Þ

We note that M̂ now has full rank, as does M .



Therefore, the equation of motion of the composite system with m2Z0
becomes
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which, as expected, is the correct equation of motion.
6. Conclusions

The main contributions of this paper are as follows.

(i) The explicit equations of motion that are available (Udwadia & Kalaba
2001, 2002) to date are not applicable to mechanical systems whose
unconstrained equations of motion have singular mass matrices. In this
paper, we present a new, general and explicit form of the equations of
motion for constrained mechanical systems applicable to such systems
with singular mass matrices. These equations explicitly provide the
acceleration of the constrained system and apply to systems with
holonomic and/or non-holonomic constraints, as well as constraints that
may or may not be ideal. It may be noted that our entire development
does not require, nor use, the notion of Lagrange multipliers.

(ii) We show that, in general, when the mass matrix is singular, the
acceleration vector of the constrained system may not be unique. As
shown in one of the examples, this can occur with the addition of a zero
mass particle to a mechanical system.

(iii) When the mass matrix is singular, a unique equation of motion is obtained
if and only if M has full rank. Since M involves the determination of
generalized inverses, we show that this condition is equivalent to the matrix

M̂ Z
M

A

" #

having full rank. Hence, for a system whose unconstrained equation of
motion has a singular mass matrix to have a unique equation of motion we
require that it be suitably constrained so that the columns of M̂ are linearly
independent.



(iv) As shown in the examples, mass matrices could be singular when (i) the
number of generalized coordinates used is more than the minimum number
necessary to describe the configuration of the system, and when (ii) we
include particles with zero mass. Both conditions can be handled by using
the new, explicit equations of motion. As illustrated in an example, the
former situation may arise when a complex multi-body mechanical system
is sub-structured into its component sub-systems. It is because of this that
the new equation of motion developed here has immediate applicability to
engineering systems.

(v) The equation obtained herein leads to the following principle that is of
considerable practical value in the modelling of complex multi-body
systems met with in civil, mechanical and aerospace engineering where
zero-mass particles generally do not occur, and in which we expect the
equation of motion to be unique.

It may be appropriate to model a given complex mechanical system by
using more than the minimum number of coordinates required to describe
its configuration, pretending that these coordinates are independent, and
therefore that the system is unconstrained. Doing this for complex
systems will generally lead to a much simpler procedure for writing out
Lagrange’s equations for the unconstrained system. To model the given
physical system properly, one must then add to these equations the
requisite constraints between the redundant coordinates and treat the
problem as one of constrained motion. The explicit equation describing
the motion of the system is then given by (2.15). Whether the modelling
procedure is appropriate or not that is, whether the choice of
coordinates and the corresponding constraints that are used in the
mathematical formulation are suitable for correctly describing the
dynamics , is shown to be dictated by whether the matrix M̂ has full
rank (see Remarks on Result 3). If M̂ has full rank, the correct, unique
equations of motion will result, and the mathematical model will correctly
describe the motion of the given multi-body system.

(vi) The methodology proposed herein allows complicated mechanical systems
to be decomposed into smaller sub-systems that are suitably connected
together through appropriate constraints to yield the composite system.
The new equation can deal with all these constituent sub-systems,
whether or not their mass matrices are singular, to obtain the explicit
equation for the acceleration, €qðtÞ, of the composite system in a simple,
systematic and straightforward manner that is readily suitable for
computer implementation. Hence, new ways of modelling complex mechan-
ical systems, hereto not available, are opened up.

(vii) The general, explicit equation of motion obtained in this paper that is
applicable to systems with singular mass matrices with general, holonomic
and non-holonomic constraints that may or may not be ideal, appears to be
first of a kind in classical mechanics. It is shown to reduce to the known and
familiar explicit equations of motion (Udwadia & Kalaba 2001, 2002) when
the mass matrices are restricted to being symmetric and positive definite.
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