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A formula for mass of Standard Model Higgs boson is derived by considering 

certain asymptotic behavior for singular solution of equation of motion (EOM) 

of Higgs field via Euler-Lagrange equation, in which MH
0
 is shown as a rest 

mass of Higgs boson mass of the field, which maintains Lorentz invariance. 

Where the asymptotic formula extracts a proper information near the singular 

solution (vacuum expectation value (vev)) from EOM. By modifying the mass 

formula to ‘mass triangle’ with H
0 

production scheme of W/Z-fusion process and 

by obtaining mass representation at a stationary point, the value of MH
0
 is 

determined at 120.611 GeV/c
2
, which is not excluded by latest experimentally 

preferred mass, and is consistent with simulation result for vector boson fusion.  

 

 

 

 

1. INTRODUCTION 

 

  The value of Higgs boson mass has long been sought by both theoretically and experimentally until 

now. At this time, the values of  100 < MH < 130 GeV/c
2
  with radiative correction (theoretically 

1)
 

for MSSM Higgs boson) and  114 < MH
0
 < 123 GeV/c

2
  (experimentally 

2)
 (68%CL), for SM Higgs 

boson), are known. However any theoretically exact formula or definite value for SM Higgs boson 

mass has not been shown yet, that is mainly from difficulty of obtaining the value of quartic 

(self-coupling) constant .  

Therefore, here we try to give a formula of SM Higgs boson mass by studying, at first, asymptotic 

behavior of singular solution for equation of motion (EOM) near vev, which is derived from Lagrangian 

density of Higgs scalar field ( ). This EOM is, mathematically, one of nonlinear Klein-Gordon equation 

(NLKG).
3)  

Since EOM should have a unique singular solution  ( 0)  of the field at vev where the Higgs 

scalar field has been extended, we study its behavior near the solution by considering certain asymptotic 

formula for it. Then we will extract an information without from EOM as the asymptotic behavior, 

introducing an infinitesimal Grassmann number. And we express a formula of Higgs boson mass of the 

field ( )m


, keeping Lorentz invariance, in which MH
0
 is shown as a rest mass. The formula is modified to 

‘mass triangle’ with the relation of H0 production scheme of W/Z-fusion processes which have been already 

described by Feynman diagram, to formulate a mass equation by certain parameter. Then by differentiating 

the mass formula regarding the parameter to obtain the mass representation at a stationary point, we can now 

get an expected solution  2 2

0 0H

M 2 2   
W Z W Z

M M M M v   which shows that the mass value is at 120.611 

GeV/c
2
, then 4

0 0.119975 c  , which is not excluded by Large Electron Positron Collider (LEP)'s latest 

preferred value and also is consistent with simulation results of A Toroidal LHC Apparatus (ATLAS), etc. for 

vector boson fusion (VBF).
4), 5)

 And we compute respective W - and Z -gauge boson fields with the value 
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of this singular solution, and describe the potential V with Higgs scalar fields. Finally, canonical 

quantization and renormalizability of Higgs field are briefly reviewed. 

 

2. FORMULATION AND THE RESULT 

2.1. LAGLANGIAN DENSITY OF GAUGE FIELD AND EOM OF HIGGS FIELD  

  Since we will later treat the case of VBF in which only weak bosons relate, we start with well known 

Lagrangian density for gauge field of 
W YSU(2) U(1)  after spontaneous symmetry breaking and with 

unitary condition as follows
 6)

, to make a gauge invariant formulation of the theory where the gauge-boson 

masses arise. 
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3
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          (3)  

            and 

                2;  =0 3a aD igW T ig B Y        

                     ,  : gauge fields which belong to (2), (1) respectivelyaW B SU U   

                      1 2 :  1 3,  a a
aT    

                          :  2 2 Hermite matrices which have same form of Pauli matricesa   

                     ,  :  gauge coupling constants of (2), (1) respectivelyg g SU U  

                     1,  for complex scalar field Y   

                :  structure constant of the Lie group (2)abcf SU  

                2 2  : cf. eq.(1),  : self-coupling constant of v     ,  : Weinberg angleW   (3)
’
 

  As it is hard to directly solve m  from eq.(2) itself, let us apply Euler-Lagrange equation onto L of eq.(2) 

regarding  , and then try to solve it; i.e., 

                           
 

    0, 
L L

x x 


   
   
     

                                (4) 

Thus, after calculation, we get an EOM of NLKG for Higgs scalar field ( ); 

2 2
3 2 2 2 2 2 2

2

1 1
3 (Z ) (Z ) 0

2 4 2
 W Z

g
v m W W G gM W W GM

t

 

          
      

            
       

 

                                (5) 
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2.2. DERIVATION OF HIGGS MASS FORMULA 

  Though EOM (eq.(5)) above is consistent with the type of PDE form: Klein-Gordon equation, which 

describes equation of motion of boson particle, still now there is no mathematically systematic method to 

calculate an exact solution for the NLKG yet.
3)

 Therefore we shall from now on study an asymptotic 

behavior near its certain singular solution. While we will later see that this approach is sufficient within our 

purpose. Since EOM should have a singular solution of 0  as explained above, let us take an asymptotic 

form of the solution near vev point to be connected smoothly to it as follows. (Where though we will find 

another singular solution that 3v    by factorization of eq.(5), we shall abandon it because of its 

inconsistency with Lorentz invariance of Lagrangian (eq.(2)).) 

                               3

0
0

( ) 1 e x p ,  
s

s a v s s s


                            (6) 

   2 2where   : relativistically invariant distance from world origini

is c t x x  ,   : velocity of lightc , 

     :  time,      ,  :  coordinates of Minkowski spacei

it x x ,  : cf. eq,(3)' v ,  
0,  :  constantsa s  

So we may expect that (0) 0,  (0) 0  , and having a finite value at infinitely far point.          (7) 

Thus eq.(6) asymptotically satisfies eq.(5) at world origin. Then by expanding near 0s , 

                               3 2

0 10 00
( ) 1 1

s ss
s avs s s a vs

 
     

                                  2 2 2

1 1 0 00
    ,   where  ,  , 0< 1.v a s a as s


 


           (8) 

Hence we can take an asymptotic form near singular solution ( 0  ) as 

                                   2 ,  ( 0)v                                         (9) 

By inserting eq.(9) into eq.(5) and using Higgs mass definition, etc. of eq.(3), we are able to have a Higgs 

mass formula without as 

           
2 2 2

2 2 2

0

 2 (Z ) ,      where   2 2m W W g G

  


     



 
      

 
   (10)                                              

 Here we understood that eq.(10) expresses one of elliptic curves with coordinates of 

 ,  ZW W 

 

  . It is noteworthy that   still has a finite and larger value than 2 at very near vev 

point ( 2 0 ), because the power of   is always a half power of 2 (that is, equals to 1), describing a 

micro elliptic mass curve even by very near this point. Further, if we introduce an infinitesimal 

Grassmann number (  ) for   by putting    , then eqs.(9),(10) are elegantly represented as 

                                 ( ) 0 ,                                       (9’) 

      
2

2 22 2 2 2 2 (Z ) 2 ,  from nilpotent property that 0.m W W g G

         
   

 
 (10’) 

After all, we now could have an asymptotic behavior of eq.(10’) for eq.(9’), as shown in Fig.B1.  

Since dimensions of two terms in right-side of eq.(10’) are to be both square of mass, we can put as 

   
2

2 2

0

2 , W Wc W W g m

 
                              (11) 

                      
22 2

0(Z ) 2 ,    where    ,  : constantZ Z W Zc G m c c               (12) 

at certain point ( designated by 0 ) in respective gauge field. Mathematically, eq.(10’) is one of the 

elliptic curves with  ,  ZW W 

 

 
-coordinates. So eqs.(11) and (12) are understood as they fix a 

coordinate of certain point on the micro elliptic mass curve in the first quadrant. Thus we rewrite 

eq.(10’);          
2

2 22

0
0

2 2 (Z ) 2m W W g G

       
  

 
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          
2 2

2 2 2 2 2

2

2 1
 2  ,      where  we put as    W Z

W Z W Z

W Z

m m
k m m c c

c c k
      


,  (13) 

where  : constant.  Furthermore we can write as 
7)

 

             

   
2 2

1 1
,   ;     ,  ,

1 1
W W W W Z Z Z Z

W Z

m M m M
u c u c

      
 

       (14), (15) 

                         where   , : rest mass of vector bosons,W ZM M  

                                 ,  : velocity of vector bosons,W Zu u  

                                 : velocity of light.c  

Then we are able to write as 

                    2 22 2 W W Z Zm k M M      

                                2 2 2 22  ,W W Z Z Z W W Z H Hk M M M               (16) 

To maintain Lorentz invariance of m in eq.(16), it should be that;  . W Z                (17) 

Then we can write as, 

          0 0

2 2 2 2 2 2 2 2

H H
2  M ,     where   M 2W Z W Zm k M M k M M                (18), (19) 

Since the value of MH
0
 above is supposed to be in the range of 'intermediate mass' from the results of 

LEP, let us consider H
0
 production scheme of W/Z-fusion processes which is most expected to meet 

with above mass formula.
8),9)

  As these processes are described by Feynman diagram as shown in 

Fig.1, we here study the case of that wn -W fusions and zn -Z fusions are simultaneously occurred. 

Then 
w z(N n n )  H

0
's may be produced after these graphs. On the other hand, from eq.(19); 

                    0

22 2

H
 1 M 2 W Zk M k M                              (20) 

Where eq.(20) forms 'mass triangle'. We will see that two Feynman diagrams (Fig.1) give each factor 

for three sides of mass triangle (Fig.2) by recognizing that we can apply eq.(20) onto two fusion 

diagrams, as explained in APPENDIX -A. So, by comparing Figs.2 and Fig.A1(b) of APPENDIX -A, 

 
 

            
w z w z

1
 2  2 ,    2              Thus,      

22
k k k


    

 
       

 
        (21), (22) 

Fig.1 H
0 

production scheme of W/Z fusion 

process. 

Fig.2 Mass triangle. 
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Also, for H
0 

particle, from above discussion and mass triangle it must be kept that 

                       

1

w z

1
 ( )  1              Thus,    

22
k


 



 
    

 
              (23), (24) 

Inserting eq.(24) into eq.(19), we obtain Higgs mass curve; 

 

0

2 2
1 1

2 2

H

1 1
M ( ) 2  

2 22 2
W ZM M

 
 

       
                  

             (25) 

 As shown in Fig.3, where the value of MH
0
( )  runs from  2 0WM    to  2 ZM    via the 

value of stationary point. Here   is physically interpreted as a parameter related to effective rate of 

W and Z boson masses into Higgs boson mass in VBF process. Therefore, we will find  -value at 

stationary point to differentiate eq.(25) regarding  , and to put zero;  

                  
0H

M ( )
0,  

d

d




  then  

2

22 2 c o sW
W

Z

M

M
 

 
  

 
 1.09934 ,         (26) 

w

    as, 
W : Weinberg angle. 

Hence we now have a form of stationary 

value as an expected Higgs mass solution 

from eqs.(25),(26) and then we get the 

value of rest mass for SM Higgs boson by 

inserting experimental values 
2)

, of 

WM and 
ZM : 

                    

0H 2 2 2

2 2
M

1 cos

W W Z

W W Z

M M M

M M
 

 
  

 
0.023 2

0.022120.611  GeV  , c


         (27) 

 

which is not excluded by LEP's latest  

preferred value for SM Higgs boson mass 
2)

, and is in accordance with the simulation results for VBF of 

ATLAS and CMS which appear to show around 120 GeV/c
2 

the best significance both in Higgs boson 

decays into -pairs and into  -pairs respectively, in the low-mass region:110 < MH
0
 < 140 GeV/c

2 
.
 

4),5)
   Then, from eq.(27) and the value of GF in v

 10)
, 

 
0

2

0.000047 4H
0 0.000045

M
0.119975  ,

2 
c

v
  



 
     

 
  2

0  where   ,        (28); (29)                                                 

from eqs.(3),(18) and (28).  

 

Respective W - and Z -gauge boson fields are computed at a point of the singular solution
0 , and the 

potential V is described with scalar Higgs   and   fields, in APPENDICES-B and -C. Finally, canonical 

quantization and renormalizability of Higgs field are shortly touched on in APPENDIX-D. 

 

3. CONCLUDING REMARKS 
 

  So far, we have derived a formula and shown a value of mass of SM Higgs boson via an asymptotic 

Fig.3 Higgs mass 
0H

(M ( ))  curve. 

Fig.3 Higgs mass 0H
(M ( ))  curve. 
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behavior of a singular solution for the Euler-Lagrange equation, which extracts a proper information without 

  from EOM. The result is to be strongly expected to examine under the forthcoming experiments. And, 

SM Higgs Mass form (eq.(27); symmetrical between W and Z with a factor of 2 (twice)) appears to show the 

possibility that the Higgs particle is to be composite, as supposed, which is now proceeded to study, and will 

be discussed elsewhere. 

 

 

4. APPENDICES  

 

 -A:  Relation between Mass triangle and VBF triangles 

 

 Since we have seen that W, Z and H
0
 particles 

should have both equal   to maintain Lorentz 

invariance as eq.(17), we also should consider the 

case in which they still have both equal   in VBF 

process. Therefore we shall hereafter discuss with 

their rest masses, dropping out  's from their 

relativistic masses, in VBF triangles below, etc. with 

remembering eqs.(14) and (15). 

 Because numbers of consuming W and Z particles 

are 2nW WM  and 2nZ ZM in Feynman diagram  

(Fig.1) at each event time and all related 's are both 

Fig.A1  VBF triangles.                equal, we can write next formulae after N n nW Z   

events;  

 

        -consuming mass: 2n ;  2nW W Z ZM M ,   -producing mass: 0 0 0H H H
n M n M N MW Z  . 

 

From Fig.2, it will be understood that each mass quantity of W and Z boson sides, to which cos  and 

sin  are multiplied respectively, contributes to Higgs mass. Therefore we can generally write VBF process 

for producing one Higgs mass as, with referring to Fig.A1(a), 

0
(1) (1)H

M (2 )cos (2 )sin ,W W Z ZM M         
( 1 ) ( 1 )

( 1 ) ( 1 )

n n
where   ,  

N N

W Z

W Z       (A1) 

  When these 
(1) (1)

( , ) W Z  are equal to 
( 2) ( 2)

( , )W Z  as shown in Fig.A1(b), the Mass triangle (Fig.2) and 

VBF triangle should be equivalent since these right-angled triangles both should have an equal angle    

to make same rate of contribution to Higgs mass, and have an equal side 0H
 (M ) . Thus the remainder sides 

should also be equal. In fact, once we later see that 

    1 1'
tan tan cos 41.402 deg ,

2 '

Z
W

W

k M

k M


   

 
      

 

             (A2) 

as ‘VBF angle’, then we will get always an equal value: 120.611 GeV/c
2 

for MH
0 

regarding all- 
(1) (1)

,W Z   

values from eq.(A1). 

 

-B:  Calculation of W - and Z - boson fields 

We now understand that W - and Z -boson field each takes such an asymptotic coordinate value at this 

singular solution for   as follows.  From eqs.(11)-(15),  

Fig.A1 VBF triangles. 
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0( )
,

2  
W W W

g W W
m M

k










 

 


      (B1) 

                                              

0 (Z )

 2
Z Z Z

G
m M

k






 

 


            (B2) 

 Therefore, 

     
2 2

1 2

0
0

1
( )

2
W W W W

  

     

                                                       

2
,  W W

W

M
k k v

g




 
     
 

 

   1 2

0 0
Hence,    WW W k v                            

(B3), (B4) 

 

3

0
2 2

0

2
Similarly,    (Z ) ,Z Z

Z

gW g B M
k k v

Gg g

 




  

   
           

               (B5) 

 where   
1 2

1 2 2 1 2
k k    

 

  
             

                      (B6) 

 Finally 
W , 

Z above should be equal (= ) so as eq.(17) at this singular solution for  . Hence the mass 

formula of eq.(10’) is described as Fig.B1, in which W and Z bosons should have energies of k v  and 

k v   respectively at the condition of eq.(13). 

 

-C:  Description of potential V with scalar Higgs (
1  and  ) fields 

 We here describe the potential V with scalar 

Higgs fields in which the position of singular 

solution 2( 0)v    is shown. We 

consider an isospinor scalar field (the Higgs 

field)   as 
11) 

 

 

3 4

0

1 2

1

2
,

1

2

i

i

 





 



 
  

   
    
 

        (C1) 

                           

Then †   in potential V of eq.(1) is 

  
† * 0 * 0( ) ( ) ( ) ( )         

                              

2 2 2 2

1 2 3 4

1
( )

2
                  (C2) 

  Fig.C1  Potential V with 
1  and   fields. 

                                                When we choose as 
2 3 4 0      at lowest 

Fig.B1 Micro elliptic mass curve in W - and Z -field.  



8 

 

energy state, 

                         
1 ,v    

2 2
†

Lowest Energy Stateas   ( )
2 2

v
 


                        (C3) 

Therefore we can write for ( )x , under local symmetry, at every point as 

                          
01

( )
( )2

x
v x




 
  

 
                                     (C4) 

After all, we may describe potential V with 
1  and   fields as Fig.C1, in which 

 
4 4

0( ) 2 ( 3 ),   9
4 4

r v r v v

v v
V V 

 
   

 
   

 
                        (C5) 

where r  is cross-sectional radius of potential V at each point of 
1 . Thus we see that the point of e.g. 

v   has twice of radius for the Lowest Energy Point ( 0)  . 

 

-D:  Canonical quantization and renormalizability of Higgs field 

 Canonical quantization of Higgs scalar field ( ( ))x which derives the NLKG above can be furnished by 

computing the canonically conjugate momentum 0 0 ( ( ) ( , ) ( , ) ( ( )) ( )j jx t x L t x L x x              

( ))x , and by describing the Hamiltonian (H) with the Lagrangian density (L). After setting the same-time 

canonical commutation relation between ( )x  and ( )x , we are able to calculate the Heisenberg’s 

equation of motion     0 0( ), ( ),( ) ,   ( )x H x Hi x i x       which re-produces the NLKG and the 

momentum ( ( ))x  above.
12)

 

 Renormalizability (and unitary property) of massive vector field under gauge symmetry  SU(2) U(1)  

has been firstly confirmed by t’ Hooft.
13)

 Later, Fujikawa et al.
14)

 developed R -gauge theory. The 

renormalizability of Higgs field under BRS-symmetry
15)

 was shown, using the R -gauge, also by 

Fujikawa.
16)
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