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Abstract

In several standard models of dynamic programming (gambling houses, MDPs, POMDPs),
we prove the existence of a robust notion of value for the infinitely repeated problem,
namely the strong uniform value. This solves two open problems. First, this shows that
for any ε > 0, the decision-maker has a pure strategy σ which is ε-optimal in any n-stage
problem, provided that n is big enough (this result was only known for behavior strategies,
that is, strategies which use randomization). Second, for any ε > 0, the decision-maker can
guarantee the limit of the n-stage value minus ε in the infinite problem where the payoff
is the expectation of the inferior limit of the time average payoff.

Keywords: Dynamic programming, Markov decision processes, Partial Observation, Uniform
value, Long-run average payoff.

MSC2010: Primary: 90C39, Secondary: 90C40, 37A50, 60J20.

Introduction

The standard model of Markov Decision Process (or Controlled Markov chain) was introduced
by Bellman [4] and has been extensively studied since then. In this model, at the beginning
of every stage, a decision-maker perfectly observes the current state, and chooses an action
accordingly, possibly randomly. The current state and the selected action determine a stage
payoff and the law of the next state. There are two standard ways to aggregate the stream of
payoffs. Given a strictly positive integer n, in the n-stage MDP, the total payoff is the Cesaro
mean n−1

∑n
m=1 gm, where gm is the payoff at stage m. Given λ ∈ (0, 1], in the λ-discounted

MDP, the total payoff is the λ-discounted sum λ
∑
m>1(1−λ)m−1gm. The maximum expected

payoff that the decision-maker can obtain in the n-stage problem (resp. λ-discounted problem)
is denoted by vn (resp. vλ).

A huge part of the literature investigates long-term MDPs, that is, MDPs which are repeated
a large number of times. In the n-stage problem (resp. λ-discounted problem), this corresponds
to n being large (resp. λ being small). A first approach is to determine whether (vn) and (vλ)
converge when n goes to infinity and λ goes to 0, and whether the two limits coincide. When
this is the case, the MDP is said to have an asymptotic value. The asymptotic value represents
the long-term payoff outcome.

A second approach is to define the payoff in the infinite problem as the inferior limit of the
expectation of n−1

∑n
m=1 gm. In the literature, this is referred as the long-run average payoff

criterion 1 (see Arapostathis et al. [3] for a review of the subject). When the asymptotic value
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1In some papers, the decision-maker minimizes the cost: in this case, the long-run average payoff criterion

corresponds to the long-run average cost criterion.
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exists and coincides with the value in behavior (resp. pure) strategies of the infinite problem,
the MDP is said to have a uniform value in behavior (resp. pure) strategies.

A third approach is to define the payoff in the infinite problem as being the expectation of
lim infn→+∞ n−1

∑n
m=1 gm, as studied in Gillette [13]. Denote by w∞ the value of this problem.

When the asymptotic value exists, then w∞ 6 limn→+∞ vn. A natural question is whether the
equality holds. When this is the case, the decision problem is said to have a strong uniform
value. As we shall see, it is straightforward that the existence of the strong uniform value
implies the existence of the uniform value in pure strategies.

When the state space and action sets are finite, Blackwell [6] has proved the existence of a
pure strategy that is optimal for every discount factor close to 0, and one can deduce that the
strong uniform value exists.

In many situations, the decision-maker may not be perfectly informed of the current state
variable. For instance, if the state variable represents a resource stock (like the amount of oil in
an oil field), the quantity left, which represents the state, can be evaluated, but is not exactly
known. This motivates the introduction of the more general model of Partially Observable
Markov Decision Process (POMDP). In this model, at each stage, the decision-maker does not
observe the current state, but instead receives a signal which is correlated to it.

Rosenberg, Solan and Vieille [20] have proved that any POMDP has a uniform value in
behavior strategies, when the state space, the action set and the signal set are finite. In the
proof, the authors highlight the necessity that the decision-maker resort to behavior strategies,
and ask whether the uniform value exists in pure strategies. They also raise the question of the
long-term properties of the time average payoff. Renault [17] and Renault and Venel [18] have
provided two alternative proofs of the existence of the uniform value in behavior strategies in
POMDPs, and also ask whether the uniform value exists in pure strategies.

The main contribution of this paper is to show that any finite POMDP has a strong uniform
value, and consequently has a uniform value in pure strategies. In fact, we prove this result in
a much more general framework, as we shall see now.

The result of Rosenberg, Solan and Vieille [20] (existence of the uniform value in behavior
strategies in POMDPs) has been generalized in several dynamic programming models with
infinite state space and action set. The first one is to consider the model of gambling house.
Introduced by Dubins and Savage [10], a gambling house is defined by a correspondence from
a metric space X to the set of probabilities on X. At every stage, the decision-maker chooses
a probability on X which is compatible with the correspondence and the current state. A new
state is drawn from this probability, and this new state determines the stage payoff. When
the state space is compact, and the correspondence is 1-Lipschitz, and the payoff function is
continuous (for suitable metrics), the existence of the uniform value in behavior strategies stems
from the main theorem in [17]. One can deduce from this result the existence of the uniform
value in behavior strategies in MDPs and POMDPs, for a finite state space and any action and
signal sets. Renault and Venel [18] have extended the results of [17] to more general payoff
evaluations.

The proofs in Renault [17] and Renault and Venel [18] are quite different from the one of
Rosenberg, Solan and Vieille [20]. Still, they heavily rely on the use of behavior strategies
for the decision-maker, and they do not provide any results concerning the link between the
asymptotic value and w∞.

In this paper, we consider a gambling house with compact state space, closed graph corre-
spondence and continuous payoff function. We show that if the family {vn, n > 1} is equicon-
tinuous and w∞ is continuous, then the gambling house has a strong uniform value. This result
especially applies to 1-Lipschitz gambling houses. We deduce the same result for compact
MDPs with 1-Lipschitz transition, and POMDPs with finite set space, compact action set and
finite signal set.

Note that under an ergodic assumption on the transition function, like assuming that from
any state, the decision-maker can make the state go back to the initial state (see Altman [2]),
or assuming that the law of the state variable converges to an invariant measure (see Borkar
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[7, 8]), these results were already known. One remarkable feature of our proof is that we are
able to use ergodic theory without any ergodic assumptions.

The paper is organized as follows. The first part presents the model of gambling house
and recalls usual notions of value. The second part states our results, that is, the existence of
the strong uniform value in gambling houses, MDPs and POMDPs. The last three parts are
dedicated to the proof of these results.

1 Gambling houses

1.1 Model of gambling house

Let us start with a few notations. We denote by N∗ the set of strictly positive integers. If A
is a measurable space, we denote by ∆(A) the set of probability measures over A. If (A, d) is
a compact metric space, we will always equip (A, d) with the Borel σ-algebra, and denote by
B(A) the set of Borel subsets of A. The set of continuous functions from A to [0, 1] is denoted
by C(A, [0, 1]). The set ∆(A) is compact metric for the Kantorovich-Rubinstein distance dKR,
which metrizes the weak∗ topology. Recall that the distance dKR is defined for all z and z′ in
∆(A) by

dKR(z, z′) := sup
f∈E1

∣∣∣∣∫
A

f(x)z(dx)−
∫
A

f(x)z′(dx)

∣∣∣∣ = inf
π∈Π(z,z′)

∫
A×A

d(x, y)π(dx, dy),

where E1 ⊂ C(A, [0, 1]) is the set of 1-Lipschitz functions from A to [0, 1] and Π(z, z′) ⊂ ∆(A×A)
is the set of measures on A × A with first marginal z and second marginal z′. Because A is
compact, the infimum is a minimum. For f ∈ C(A, [0, 1]), the linear extension of f is the

function f̂ ∈ C(∆(A), [0, 1]), defined for z ∈ ∆(A) by

f̂(z) :=

∫
A

f(x)z(dx).

A gambling house Γ = (X,F, r) is defined by the following elements:

• X is the state space, which is assumed to be compact metric for some distance d.

• F : (X, d)⇒ (∆(X), dKR) is a correspondence with a closed graph and nonempty values.

• r : X → [0, 1] is the payoff function, which is assumed to be continuous.

Remark 1. Because the state space is compact, F is a closed graph correspondence if and only
if it is an upper hemicontinuous correspondence with closed values.

Let x0 ∈ X be an initial state. The gambling house starting from x0 proceeds as follows.
At each stage m > 1, the decision-maker chooses zm ∈ F (xm−1). A new state xm is drawn
from the probability distribution zm, and the decision-maker gets the payoff r(xm).

For the definition of strategies, we follow Maitra and Sudderth [15, Chapter 2]. First, we
need the following definition (see [9, Chapter 11, section 1.8]):

Definition 1. Let ν ∈ ∆(∆(X)). The barycenter of ν is the probability measure µ = Bar(ν) ∈
∆(X) such that for all f ∈ C(X, [0, 1]),

f̂(µ) =

∫
∆(X)

f̂(z)ν(dz).

Given M a closed subset of ∆(X), we denote by ScoM the strong convex hull of the set M ,
that is,

ScoM := {Bar(ν), ν ∈ ∆(M)} .
Equivalently, ScoM is the closure of the convex hull of M .
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For every m > 1, we denote by Hm := Xm the set of possible histories before stage m,
which is compact for the product topology.

Definition 2. A behavior (resp. pure) strategy σ is a sequence of mappings σ := (σm)m>1

such that for every m > 1,

• σm : Hm → ∆(X) is (Borel) measurable,

• for all hm = (x0, ..., xm−1) ∈ Hm, σm(hm) ∈ Sco(F (xm−1)) (resp. σm(hm) ∈ F (xm−1)).

We denote by Σ (resp. Σp) the set of behavior (resp. pure) strategies.

Note that Σp ⊂ Σ. The following proposition ensures that Σp is nonempty. This is a special
case of Kuratowski-Ryll-Nardzewski theorem (see [1, Theorem 18.13, p. 600].

Proposition 1. Let K1 and K2 be two compact metric spaces, and Φ : K1 ⇒ K2 be a closed
graph correspondence with nonempty values. Then Φ admits a measurable selector, that is, there
exists a measurable mapping ϕ : K1 → K2 such that for all k ∈ K1, ϕ(k) ∈ K2.

Proof. In [1], the theorem is stated for weakly measurable correspondences. By [1, Theorem
18.10, p. 598] and [1, Theorem 18.20, p. 606], any correspondence satisfying the assumptions
of the proposition is weakly measurable, thus the proposition holds.

Definition 3. A strategy σ ∈ Σ is Markov if there exists a measurable mapping f : N∗ ×X →
∆(X) such that for every hm = (x0, ..., xm−1) ∈ Hm, σ(hm) = f(m,xm−1). When this is the
case, we identify σ with f .

A strategy σ is stationary if there exists a measurable mapping f : X → ∆(X) such that for
every hm = (x0, ..., xm−1) ∈ Hm, σ(hm) = f(xm−1). When this is the case, we identify σ with
f .

Let H∞ := XN be the set of all possible plays in the gambling house Γ. By the Kolmogorov
extension theorem, an initial state x0 ∈ X and a behavior strategy σ determine a unique
probability measure over H∞, denoted by Pσx0

.
Let x0 ∈ X and n > 1. The payoff in the n-stage problem starting from x0 is defined for

σ ∈ Σ by

γn(x0, σ) := Eσx0

(
1

n

n∑
m=1

rm

)
,

where rm := r(xm) is the payoff at stage m ∈ N∗. The value vn(x0) of this problem is the
maximum expected payoff with respect to behavior strategies:

vn(x0) := sup
σ∈Σ

γn(x0, σ) = sup
σ∈Σp

γn(x0, σ). (1)

The fact that the supremum can be taken over pure strategies is a consequence of Feinberg [11,
Theorem 5.2].

Remark 2. For µ ∈ ∆(X), one can also define the gambling house with initial distribution µ,
where the initial state is drawn from µ and announced to the decision-maker. The definition of
strategies and values are the same, and for all n ∈ N∗, the value of the n-stage gambling house
starting from µ is equal to v̂n(µ).
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1.2 Long-term gambling houses

Definition 4. Let x0 ∈ X. The gambling house Γ(x0) has an asymptotic value v∞(x0) ∈ [0, 1]
if the sequence (vn(x0))n>1 converges to v∞(x0).

Definition 5. Let x0 ∈ X. The gambling house Γ(x0) has a uniform value v∞(x0) ∈ [0, 1] if
it has an asymptotic value v∞(x0) and

sup
σ∈Σ

(
lim inf
n→+∞

Eσx0

(
1

n

n∑
m=1

rm

))
= v∞(x0). (2)

Moreover, if the above equality also holds when the supremum on the left-hand side is taken
over pure strategies, Γ(x0) is said to have a uniform value in pure strategies.

Remark 3. Contrary to Equation (1), one can not directly replace the supremum over behavior
strategies by a supremum over pure strategies. It is a recurring open problem in the literature.
This question appears in Renault [17] for gambling houses, and in Rosenberg, Solan and Vieille
[20] for POMDPs.

To study long-term dynamic programming problems, an alternative to the uniform approach
is to associate a payoff to each infinite history. Given an initial state x0 ∈ X, the infinitely
repeated gambling house Γ∞(x0) is the problem with strategy set Σ, and payoff function γ∞
defined for all σ ∈ Σ by

γ∞(x0, σ) := Eσx0

(
lim inf
n→+∞

1

n

n∑
m=1

rm

)
.

This type of payoff has been introduced by Gillette [13] for zero-sum stochastic games. The
value of Γ∞(x0) is

w∞(x0) := sup
σ∈Σ

γ∞(x0, σ) = sup
σ∈Σp

γ∞(x0, σ). (3)

The supremum can be taken over pure strategies as a direct consequence of Theorem 5.2 in
Feinberg [11].

Definition 6. Let x0 ∈ X. The gambling house Γ(x0) has a strong uniform value v∞(x0) ∈
[0, 1] if it has an asymptotic value v∞(x0) and

w∞(x0) = v∞(x0).

This notion is similar to the notion of value defined in Mertens and Neyman [16] for zero-
sum stochastic games. When the strong uniform value exists, then the uniform value exists in
pure strategies, as the following proposition shows.

Proposition 2. The following inequalities always hold:

w∞(x0) 6 sup
σ∈Σp

(
lim inf
n→+∞

Eσx0

(
1

n

n∑
m=1

rm

))
6 sup
σ∈Σ

(
lim inf
n→+∞

Eσx0

(
1

n

n∑
m=1

rm

))
6 lim inf

n→+∞
vn(x0).

Consequently, if Γ(x0) has a strong uniform value, the above inequalities are equalities, and
Γ(x0) has a uniform value in pure strategies.

Proof. Let σ ∈ Σ and n ∈ N∗. By definition of vn(x0), we have

Eσx0

(
1

n

n∑
m=1

rm

)
6 vn(x0),
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and taking the liminf we get the right-hand side inequality. Moreover, by Fatou’s lemma,

Eσx0

(
lim inf
n→+∞

1

n

n∑
m=1

rm

)
6 lim inf

n→+∞
Eσx0

(
1

n

n∑
m=1

rm

)
, (4)

which yields the left-hand side of the inequality. The inequality in the middle holds because
Σp ⊂ Σ.

The following example shows that inequality (4) may be strict.

Example 1. There are two states, x and x∗, and F (x) = F (x∗) = {δx, δx∗}. Moreover,
r(x) = 0 and r(x∗) = 1. Thus, at each stage, the decision-maker has to choose between having
a payoff 0 and having a payoff 1. Obviously, this problem has a uniform value equal to 1. Let
ε > 0. Define the following strategy which plays by blocks. For every n ∈ N, denote by Bn the
set of stages between stage 22n

and stage 22n+1 − 1. With probability ε/2, the decision-maker
chooses to play δx during the whole block Bn and with probability 1− ε/2, he chooses to play δx∗

during the whole block Bn. Hence, the decision-maker chooses the same state during 22n+1−22n

stages. The strategy σ is uniformly ε-optimal: there exists n0 ∈ N∗ such that for all n > n0,

γn(x, σ) > 1− ε.

Nonetheless, by the law of large numbers, for any n0 ∈ N∗, there exists a random time T such
that Pσx-almost surely, T > n0 and

1

T

T∑
m=1

rm 6 ε.

Therefore, the strategy σ does not guarantee more than ε in Γ∞(x).

2 Main results

2.1 Gambling houses

We can now state our main theorem concerning gambling houses:

Theorem 1. Let Γ be a gambling house such that {vn, n > 1} is uniformly equicontinuous and
w∞ is continuous. Then Γ has a strong uniform value.

Corollary 1. Let Γ be a gambling house such that {vn, n > 1} is uniformly equicontinuous and
w∞ is continuous. Then Γ has a uniform value in pure strategies.

Definition 7. A gambling house Γ is 1-Lipschitz if its correspondence F is 1-Lipschitz, that
is, for every x ∈ X, every u ∈ F (x) and every y ∈ X, there exists w ∈ F (y) such that
dKR(u,w) 6 d(x, y).

The existence of the uniform value was shown in Renault and Venel [18] in any 1-Lipschitz
gambling house 2. We obtain the following stronger result.

Theorem 2. Let Γ be a 1-Lipschitz gambling house. Then Γ has a strong uniform value. In
particular, Γ has a uniform value in pure strategies.

In the next two subsections, we present similar results for MDPs and POMDPs.

2In fact, their model of gambling house is slightly different: they do not assume that F is closed-valued, but
instead assume that it takes values in the set of probability measures on X with finite support.
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2.2 MDPs

A Markov Decision Process (MDP) is a 4-uple Γ = (K, I, g, q), where (K, dK) is a compact
metric state space, (I, dI) is a compact metric action set, g : K × I → [0, 1] is a continuous
payoff function, and q : K × I → ∆(K) is a continuous transition function. As usual, the set
∆(K) is equipped wih the KR metric, and we assume that for all i ∈ I, q(., i) is 1-Lipschitz.
Given an initial state k1 ∈ K known by the decision-maker, the MDP Γ(k1) proceeds as follows.
At each stage m > 1, the decision-maker chooses im ∈ I, and gets the payoff gm := g(km, im).
A new state km+1 is drawn from q(km, im), and is announced to the decision-maker. Then,
Γ(k1) moves on to stage m + 1. A behavior (resp. pure) strategy is a measurable map σ :
∪m>1K × (I ×K)m−1 → ∆(I) (resp. σ : ∪m>1K × (I ×K)m−1 → I). An initial state k1 and
a strategy σ induce a probability measure Pk1σ on the set of plays H∞ = (K × I)N

∗
.

The notion of uniform value is defined in the same way as in gambling houses. We prove
the following theorem:

Theorem 3. The MDP Γ has a strong uniform value, that is, for all k1 ∈ K, the two following
statements hold:

• The sequence (vn(k1)) converges when n goes to infinity to some real number v∞(k1).

•

sup
σ∈Σ

Eσk1

(
lim inf
n→+∞

1

n

n∑
m=1

g(km, im)

)
= sup
σ∈Σp

Eσk1

(
lim inf
n→+∞

1

n

n∑
m=1

g(km, im)

)
= v∞(k1).

Consequently, the MDP Γ has a uniform value in pure strategies.

2.3 POMDPs

A Partially Observable Markov Decision Process (POMDP) is a 5-uple Γ = (K, I, S, g, q), where
K is a finite set space, I is a compact metric action set, S is a finite signal set, g : K×I → [0, 1]
is a continuous payoff function, and q : K × I → ∆(K × S) is a continuous transition function.
Given an initial distribution p1 ∈ ∆(K), the POMDP Γ(p1) proceeds as follows. An initial
state k1 is drawn from p1, and the decision-maker is not informed about it. At each stage
m > 1, the decision-maker chooses im ∈ I, and gets the (unobserved) payoff g(km, im). A pair
(km+1, sm) is drawn from q(km, im), and the decision-maker receives the signal sm. Then the
POMDP proceeds to stage m+1. A behavior strategy (resp. pure strategy) is a measurable map
σ : ∪m>1(I×S)m−1 → ∆(I) (resp. σ : ∪m>1(I×S)m−1 → I). An initial distribution p1 ∈ ∆(K)
and a strategy σ induce a probability measure Pp1σ on the set of plays H∞ := (K × I × S)N

∗
.

The notion of uniform value is defined in the same way as in gambling houses. We prove
the following theorem:

Theorem 4. The POMDP Γ has a strong uniform value, that is, for all p1 ∈ ∆(K), the two
following statements hold:

• The sequence (vn(p1)) converges when n goes to infinity to some real number v∞(p1).

•

sup
σ∈Σ

Eσp1

(
lim inf
n→+∞

1

n

n∑
m=1

g(km, im)

)
= sup
σ∈Σp

Eσp1

(
lim inf
n→+∞

1

n

n∑
m=1

g(km, im)

)
= v∞(p1).

Consequently, the POMDP Γ has a uniform value in pure strategies.

In particular, this theorem solves positively the open question mentioned in [20], [17] and
[18]: finite POMDPs have a uniform value in pure strategies.
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3 Proof of Theorem 1

Let Γ = (X,F, r) be a gambling house such that {vn, n > 1}∪{w∞} is uniformly equicontinuous.
Let v : X → [0, 1] be defined by v := lim supn→+∞ vn.

Let x0 ∈ X be an initial state. Let us prove that for all ε > 0, there exists a behavior
strategy σ such that

γ∞(x0, σ) = Eσx0

(
lim inf
n→+∞

1

n

n∑
m=1

rm

)
> v(x0)− ε.

Let us first give the structure and the intuition of the proof. It builds on three main ideas, each
of them corresponding to a lemma.

First, Lemma 1 associates to x0 a probability measure µ∗ ∈ ∆(X), such that:

• Going from x0, for all ε > 0 and n0 ∈ N∗, there exists a strategy σ0 and n > n0 such that
the occupation measure 1

n

∑n
m=1 zm ∈ ∆(X) is close to µ∗ up to ε (for the KR distance).

• r̂(µ∗) = v̂(µ∗) = v(x0)

• If the initial state is drawn according to µ∗, the decision-maker has a behavior stationary
strategy σ∗ such that for all m > 1, zm is distributed according to µ∗ (µ∗ is an invariant
measure for the gambling house).

Let x be in the support of µ∗. Building on a pathwise ergodic theorem, Lemma 2 shows that

1

n

n∑
m=1

rm → v(x) Pxσ∗ a.s.

Let y ∈ X be close to x. Lemma 3 shows that, if y ∈ X is close to x, then there exists a
behavior strategy σ such that γ∞(y, σ) is close to v(y).

These lemmas are put together in the following way. Lemma 1 implies that, going from
x0, the decision-maker has a strategy σ0 such that there exists a (deterministic) stage m > 1
such that with high probability, the state xm is close to the support of µ∗, and such that the
expectation of v(xm) is close to v(x0). Let x be an element in the support of µ∗ such that
xm is close to x. By Lemma 3, going from xm, the decision-maker has a strategy σ such that
γ∞(xm, σ) is close to v(xm). Let σ̃ be the strategy that plays σ0 until stage m, then switches
to σ. Then γ∞(x0, σ̃) is close to v(x0), which concludes the proof of Theorem 1.

3.1 Preliminary results

Let Γ = (X,F, r) be a gambling house. We define a relaxed version of the gambling house, in
order to obtain a deterministic convex gambling house H : ∆(X)⇒ ∆(X). The interpretation
of H(z) is the following: if the initial state is drawn according to z, H(z) is the set of all possible
measures on the next state that the decision-maker can generate by using behavior strategies.

First, we define G : X ⇒ ∆(X) by

∀x ∈ X G(x) := Sco(F (x)).

By [1, Theorem 17.35, p.573], the correspondence G has a closed graph, which is denoted
by GraphG. Note that a behavior strategy in the gambling house Γ corresponds to a pure
strategy in the gambling house (X,G, r). For every z ∈ ∆(X), we define H(z) by

H(z) :=

{
µ ∈ ∆(X) | ∃ σ : X → ∆(X) measurable s.t. ∀x ∈ X, σ(x) ∈ G(x) and

∀f ∈ C(X, [0, 1]), f̂(µ) =

∫
X

f̂(σ(x))z(dx)

}
.
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Note that replacing “∀x ∈ X, σ(x) ∈ G(x)” by “∀x ∈ X, σ(x) ∈ G(x) z−a.s.” does not change
the above definition (throughout the paper, “a.s.” stands for “almost surely”).

By Proposition 1, H has nonempty values. We now check that the correspondence H has a
closed graph.

Proposition 3. The correspondence H has a closed graph.

Proof. Let (zn, µn)n∈N ∈ (GraphH)N such that (zn, µn)n∈N converges to some (z, µ) ∈ ∆(X)×
∆(X). Let us show that µ ∈ H(z). For this, we construct σ : X → ∆(X) associated to µ in
the definition of H(z).

By definition of H, for every n ∈ N, there exists σn : X → ∆(X) a measurable selector of
G such that for every f ∈ C(X, [0, 1]),

f̂(µn) =

∫
X

f̂(σn(x))zn(dx).

Let πn ∈ ∆(GraphG) such that the first marginal of πn is zn, and the conditional distribution
of πn knowing x ∈ X is δσn(x) ∈ ∆(∆(X)). By definition, for every f ∈ C(X, [0, 1]), we have∫

X×∆(X)

f̂(p)πn(dx, dp) =

∫
X

(∫
∆(X)

f̂(p)δσn(x)(dp)

)
zn(dx)

=

∫
X

f̂(σn(x))zn(dx)

= f̂(µn).

The set ∆(GraphG) is compact, thus there exists π a limit point of the sequence (πn)n∈N.
By definition of the weak* topology on ∆(X) and on ∆(GraphG), the previous equation yields∫

X×∆(X)

f̂(p)π(dx, dp) = f̂(µ). (5)

To conclude, let us disintegrate π. Let z′ be the first marginal of π. The sets X and ∆(X)
are compact metric spaces, thus there exists a probability kernel K : X × B(∆(X)) → [0, 1]
such that

• for every x ∈ X, K(x, .) ∈ ∆(∆(X)),

• for every B ∈ B(∆(X)), K(., B) is measurable,

• for every h ∈ C(X ×∆(X), [0, 1]),∫
X×∆(X)

h(x, p)π(dx, dp) =

∫
X

(∫
∆(X)

h(x, p)K(x, dp)

)
z′(dx). (6)

Note that the second condition is equivalent to: “The mapping x → K(x, .) is measurable”
(see [5, Proposition 7.26, p.134]). For every n > 1, the first marginal of πn is equal to zn
that converges to z, thus z′ = z. Define a measurable mapping σ : X → ∆(X) by σ(x) :=
Bar(K(x, .)) ∈ ∆(X). Because π ∈ ∆(GraphG), we have σ(x) ∈ G(x) z − a.s. Let f ∈
C(X, [0, 1]). Using successively (5) and (6) yield

f̂(µ) =

∫
X×∆(X)

f̂(p)π(dx, dp)

=

∫
X

(∫
∆(X)

f̂(p)K(x, dp)

)
z(dx)

=

∫
X

f̂(σ(x))z(dx).

9



Thus, µ ∈ H(z), and H has a closed graph.

Let µ, µ′ ∈ ∆(X). Denote λ · µ+ (1− λ) · µ′ the probability measure µ′′ ∈ ∆(X) such that
for all f ∈ C(X, [0, 1]),

f̂(µ′′) = λf̂(µ) + (1− λ)f̂(µ′).

For (µm)m∈N∗ ∈ ∆(X)N
∗

and n ∈ N∗, the measure
1

n

n∑
m=1

µm is defined in a similar way.

Proposition 4. The correspondence H is linear on ∆(X):

∀z, z′ ∈ ∆(X), ∀λ ∈ [0, 1], H(λ · z + (1− λ) · z′) = λ ·H(z) + (1− λ) ·H(z′).

Proof. Let z, z′ ∈ ∆(X) and λ ∈ [0, 1], then the inclusion

H(λ · z + (1− λ) · z′) ⊂ λ ·H(z) + (1− λ) ·H(z′)

is immediate. We now prove the converse inclusion. Let µ ∈ λ · H(z) + (1 − λ) · H(z′). By
definition, there exists σ : X → ∆(X) and σ′ : X → ∆(X) two measurable selectors of G such
that for every f ∈ C(X, [0, 1]),

f̂(µ) = λ

∫
X

f̂(σ(x))z(dx) + (1− λ)

∫
X

f̂(σ′(x))z′(dx).

Denote by π (resp. π′), the probability distribution on X ×∆(X) generated by z and σ (resp.
z′ and σ′). Let π′′ := λ · π + (1 − λ) · π′, then π′′ is a probability on X × ∆(X) such that
π′′(Graph(G)) = 1, and the marginal on X is λ · z + (1 − λ) · z′. Let σ′′ : X → ∆(X) given
by the disintegration of π′′ with respect to the first coordinate. Let f ∈ C(X, [0, 1]). As in the
proof of Proposition 3 (see Equation (5)), we have

f̂(µ) = λ

∫
X×∆(X)

f̂(p)π(dx, dp) + (1− λ)

∫
X×∆(X)

f̂(p)π′(dx, dp)

=

∫
X×∆(X)

f̂(p)π′′(dx, dp)

=

∫
X

f̂(σ′′(x))z(dx),

thus µ ∈ H(λ · z + (1− λ) · z′).

3.2 Invariant measure

The first lemma associates a fixed point of the correspondence H to each initial state:

Lemma 1. Let x0 ∈ X. There exists a distribution µ∗ ∈ ∆(X) such that

• µ∗ is H-invariant: µ∗ ∈ H(µ∗),

• for every ε > 0 and N > 1, there exists a (pure) strategy σ0 and n > N such that σ is
0-optimal in Γn(x0), vn(x0) > v(x0)− ε and

dKR

(
1

n

n∑
m=1

zm(x0, σ), µ∗

)
6 ε,

where zm(x0, σ0) ∈ ∆(X) is the distribution of xm, the state at stage m, given the initial
state x0 and the strategy σ0.

• r̂(µ∗) = v̂(µ∗) = v(x0).
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Proof. The proof builds on the same ideas as in Renault and Venel [18, Proposition 3.24, p.
28]. Let n ∈ N∗ and σ0 be a pure optimal strategy in the n-stage problem Γn(x0).

Let

zn :=
1

n

n∑
m=1

zm(x0, σ0),

and

z′n :=
1

n

n+1∑
m=2

zm(x0, σ0).

By construction, for every m ∈ {1, 2, ..., n}, zm+1(x0, σ0) ∈ H(zm(x0, σ0)), therefore by
linearity of H (see Proposition 4)

z′n ∈ H(zn).

Moreover, we have

dKR(zn, z
′
n) 6

2

n
diam(X), (7)

where diam(X) is the diameter of X.
The set ∆(X) is compact. Up to taking a subsequence, there exists µ∗ ∈ ∆(X) such that

(vn(x0)) converges to v(x0) and (zn) converges to µ∗. By inequality (7), (z′n) also converges to
µ∗. Because H has a closed graph, we have µ∗ ∈ H(µ∗), and µ∗ is H-invariant. By construc-
tion, the second property is immediate.

Finally, we have a series of inequalities that imply the third property.

• v is decreasing in expectation along trajectories: the sequence
(v̂(zm(x0, σ0)))m>1 is decreasing, thus for every n > 1,

v(x0) >
1

n

n∑
m=1

v̂(zm(x0, σ0)) = v̂(zn).

Taking n to infinity, by continuity of v̂, we obtain that v(x0) > v̂(µ∗).

• We showed that µ∗ ∈ H(µ∗). Let σ∗ : X → ∆(X) be the corresponding measurable
selector of G. Let us consider the gambling house Γ(µ∗), where the initial state is drawn
from µ∗ and announced to the decision-maker (see Remark 2). The map σ∗ is a stationary
strategy in Γ(µ∗), and for all m > 1, zm(µ∗, σ∗) = µ∗. Consequently, for all n ∈ N∗, the
strategy σ∗ guarantees r̂(µ∗) in Γn(µ∗). Thus, we have

v̂(µ∗) > r̂(µ∗).

• By construction, the payoff is linear on ∆(X) and r̂(zn) = vn(x0). By continuity of r̂,
taking n to infinity, we obtain

r̂(µ∗) = v(x0).

In the next section, we prove that in Γ(µ∗), under the strategy σ∗, the average payoffs
converge almost surely to v(x), where x is the initial (random) state.
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3.3 Pathwise ergodic theorem

We recall here the ergodic theorem in Hernández-Lerma and Lasserre [14, Theorem 2.5.1, p.
37].

Theorem 5 (pathwise ergodic theorem). Let (X,B) be a measurable space, and ξ be a Markov
chain on (X,B), with transition probability function P . Let µ be an invariant probability mea-
sure for P . For every f an integrable function with respect to µ, there exist a set Bf ∈ B and
a function f∗ integrable with respect to µ, such that µ(Bf ) = 1, and for all x ∈ Bf ,

1

n

n∑
m=1

f(ξm)→ f∗(ξ0) Px − a.s.

Moreover, ∫
X

f∗(x)µ(dx) =

∫
X

f(x)µ(dx).

Lemma 2. Let x0 ∈ X and µ∗ ∈ ∆(X) be the corresponding invariant measure (see Lemma
1). There exist a measurable set B ⊂ ∆(X) such that µ∗(B) = 1 and a stationary strategy
σ∗ : X → ∆(X) such that for all x ∈ B,

1

n

n∑
m=1

rm → v(x) Pσ
∗

x − a.s.

Proof. Because µ∗ is a fixed point of H, there exists σ∗ : X → ∆(X) a measurable selector of
G (thus, a behavior stationary strategy in Γ) such that for all f ∈ C(X, [0, 1]),

f̂(µ∗) =

∫
X

f̂(σ∗(x))µ∗(dx).

Consider the gambling house Γ(µ∗). Under σ∗, the sequence of states (xm)m∈N is a Markov
chain with invariant measure µ∗. From Theorem 5, there exist a measurable set B0 ⊂ X such
that µ∗(B0) = 1, and a measurable map w : X → [0, 1] such that for all x ∈ B0, we have

1

n

n∑
m=1

r(xm) →
n→+∞

w(x) Pσ
∗

x − almost surely,

and
ŵ(µ∗) = r̂(µ∗).

We now prove that w = v Pµ
∗

σ∗ − a.s.. First, we prove that w 6 v Pσ∗µ∗ − a.s.. Let x ∈ B0.
Using first the dominated convergence theorem, then the definition of vn(x), we have

w(x) = Eσ
∗

x

(
lim

n→+∞

1

n

n∑
m=1

r(xm)

)

= lim
n→+∞

Eσ
∗

x

(
1

n

n∑
m=1

r(xm)

)
6 lim sup

n→+∞
vn(x) = v(x).

Moreover, we know by Lemma 1 that r̂(µ∗) = v̂(µ∗), therefore

ŵ(µ∗) = r̂(µ∗) = v̂(µ∗).

This implies that w = v Pσ∗µ∗ − a.s., and the lemma is proved.
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3.4 Junction lemma

By assumption, {vn, n > 1} ∪ {w∞} is uniformly equicontinuous. Therefore, there exists an
increasing modulus of continuity η : R+ → R+ such that

∀x, y ∈ X, |w∞(x)− w∞(y)| 6 η(d(x, y)),

and for all n > 1,
∀x, y ∈ X, |vn(x)− vn(y)| 6 η(d(x, y)).

Then, v is also uniformly continuous with the same modulus of continuity.

Lemma 3. Let ε > 0, x, y ∈ X and σ∗ be a strategy such that

1

n

n∑
m=1

rm → v(x) Pσ
∗

x a.s.

Then there exists a strategy σ such that

Eσy

(
lim inf
n→+∞

1

n

n∑
m=1

rm

)
> v(y)− 2η(d(x, y))− ε.

Proof. By assumption, we have

Eσ
∗

x

(
lim inf
n→+∞

1

n

n∑
m=1

rm

)
= Eσ

∗

x (v(x)) = v(x),

therefore v(x) > w∞(x). Moreover, by Fatou’s lemma, w∞(x) 6 v(x). Thus, w∞(x) = v(x).

Let ε > 0. By definition of w∞(y), there exists a strategy σ such that

Eσy

(
lim inf
n→+∞

1

n

n∑
m=1

rm

)
> w∞(y)− ε,

> w∞(x)− η(d(x, y))− ε,
= v(x)− η(d(x, y))− ε,
> v(y)− 2η(d(x, y))− ε.

We can now finish the proof of Theorem 1.

3.5 Conclusion of the proof

Proof of Theorem 1. We can now put Lemma 1, 2 and 3 together to finish the proof of Theo-
rem 1. Fix an initial state x0 ∈ X and ε > 0. We will define a strategy σ̃ as follows: start by
following a strategy σ0 until some stage n3, then switch to another strategy depending on the
state xn3

. We first define the stage n3, then build the strategy σ̃ and finally check that this
strategy indeed guarantees v∞ in the infinitely repeated gambling house Γ∞.

By assumption, the family (vn)n>1 is uniformly equicontinuous. Consequently, there exists
n0 ∈ N∗ such that for all n > n0 and for all x ∈ X,

vn(x) 6 v(x) + ε.
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We first consider Lemma 1 for x0, ε′ = ε3 and N = 2n0. There exists µ∗ an invariant
measure, σ0 a (pure) strategy and n1 > 2n0 such that µ∗ satisfies the conclusion of Lemma 1
and

dKR

(
1

n1

n1∑
m=1

zm(x0, σ0), µ∗

)
6 ε3.

Let B be given by Lemma 2. In general, there is no hope to prove the existence of a stage
m such that zm(x0, σ0) is close to µ∗. Instead, we prove the existence of a stage n3 such that
under the strategy σ0, xn3

is with high probability close to B, and v(zn3
(x0, σ0)) is close to

v(x0).
Let n2 = bεn1c + 1, A = {x ∈ X|d(x,B) 6 ε} and Ac = {x ∈ X|d(x,B) > ε}. We denote

µn1
= 1

n1

∑n1

m=1 zm(x0, σ0). By property of the KR distance, there exists a coupling γ ∈
∆(X ×X) such that the first marginal of γ is µn1

, the second marginal is µ∗, and

dKR(µn1
, µ∗) =

∫
X2

d(x, x′)γ(dx, dx′).

By definition of A, for all (x, x′) ∈ Ac×B, we have d(x, x′) > ε. Thus, Markov inequality yields∫
X2

d(x, x′)γ(dx, dx′) > εγ(Ac ×B)

= εµn1
(Ac).

We deduce that µn1(Ac) 6 ε2. Because the n2 first stages have a weight of order ε in µn1 , we
deduce the existence of a stage m such that zm(Ac) 6 ε:

µn1
(Ac) =

1

n1

n1∑
m=1

zm(Ac)

=
1

n1

n2∑
m=1

zm(Ac) +
1

n1

n1∑
m=n2+1

zm(Ac)

> ε min
16m6n2

zm(Ac),

and thus

zn3
(Ac) := min

16m6n2

zm(Ac) 6 ε. (8)

Moreover, v̂(zn3(x0, σ0)) is greater than v(x0) up to a margin ε. Indeed we have

v̂(zn3(x0, σ0)) > vn1−n3+1(zn3(x0, σ0))− ε

> vn1
(x0)− n3 − 1

n1
− ε

> v(x0)− 2ε− ε.
> v(x0)− 3ε.

Using Equation (8) and the last inequality, we deduce that

Eσ0
x0

(1Av(xn3)) > Eσ0
x0

(v(xn3
))− zn3

(Ac) > v(x0)− 4ε.

We have defined both the initial strategy σ0 and the switching stage n3. To conclude, we
use Lemma 3 in order to define the strategy from stage n3. Note that in Lemma 3, we did
not prove that the strategy σ could be selected in a measurable way with respect to the state.
Thus, we need to use a finite approximation. The set X is a compact metric set, thus there
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exists a partition {P1, ...,PL} of X such that for every l ∈ {1, ..., L}, P l is measurable and
diam(P l) 6 ε. It follows that there exists a finite subset {x1, ..., xL} of B such that for every
x ∈ A∩P l, d(x, xl) 6 3ε. We denote by ψ the application which associates to every x ∈ A∩P l
the state xl.

We define the strategy σ̃ as follows:

• Play σ0 until stage n3.

• If xn3 ∈ A, then there exists l ∈ {1, ..., L} such that xn3 ∈ P l. Play the strategy given by
Lemma 3, with x = xl and y = xn3 . If xn3 /∈ A, play any strategy.

Let us check that the strategy σ̃ guarantees a good payoff with respect to the long-run
average payoff criterion. By definition, we have

γ∞(x0, σ̃) = Eσ̃x0

(
lim inf
n→+∞

1

n

n∑
m=1

rm

)

= Eσ̃x0

(
Eσ̃x0

(
lim inf
n→+∞

1

n

n∑
m=1

rm

∣∣∣∣∣xn3

))
> Eσ0

x0
([v(xn3

)− 2η(d(xn3
, ψ(xn3

)))− ε]1A)

> v(x0)− 5ε− 2η(3ε).

Because η(0) = 0 and η is continuous at 0, the gambling house Γ(x0) has a strong uniform
value, and Theorem 1 is proved.

4 Proofs of Theorem 2, Theorem 3 and Theorem 4

This section is dedicated to the proofs of Theorem 2, Theorem 3 and Theorem 4. Theorem 2
and Theorem 3 stem from Theorem 1. Theorem 4 is not a corollary of Theorem 1. Indeed,
applying Theorem 1 to the framework POMDPs, would only yield the existence of the uniform
value in pure strategies and not the existence of the strong uniform value.

4.1 Proof of Theorem 2

Let Γ := (X,F, r) be a gambling house such that F is 1-Lipschitz. Without loss of generality,
we can assume that r is 1-Lipschitz. Indeed, any continuous payoff function can be uniformly
approximated by Lipschitz payoff functions, and dividing the payoff function by a constant does
not change the decision problem.

In order to prove Theorem 2, it is sufficient to prove that for all n > 1, vn is 1-Lipschitz, and
w∞ is 1-Lipschitz. Indeed, it implies that the family {vn, n > 1} is uniformly equicontinuous
and w∞ is continuous. Theorem 2 then stems from Theorem 1.

Recall that G : X ⇒ ∆(X) is defined for all x ∈ X by G(x) := ScoF (x).

Lemma 4. The correspondence G is 1-Lipschitz.

Proof. Let x and x′ be two states in X. Fix µ ∈ G(x). Let us show that there exists µ′ ∈ G(x′)
such that dKR(µ, µ′) 6 d(x, x′).

By definition of G(x), there exists ν ∈ ∆(F (x)) such that for all g ∈ C(X, [0, 1]),

ĝ(µ) =

∫
∆(X)

ĝ(z)ν(dz).

Let M = F (x) ⊂ ∆(X). We consider the correspondence Φ : M ⇒ ∆(X) defined for z ∈M by

Φ(z) := {z′ ∈ F (x′) | dKR(z, z′) 6 d(x, x′)}.
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Because F is 1-Lipschitz, Φ has nonempty values. Moreover, Φ is the intersection of two
correspondences with a closed graph, therefore it is a correspondence with a closed graph.
Applying Proposition 1, we deduce that Φ has a measurable selector ϕ : M → ∆(X).

Let ν′ ∈ ∆(∆(X)) be the image measure of ν by ϕ. Throughout the paper, we use the
following notation for image measures:

ν′ := ν ◦ ϕ−1.

By construction, ν′(F (x′)) = 1 and for all h ∈ C(∆(X), [0, 1]),∫
∆(X)

h(ϕ(z))ν(dz) =

∫
∆(X)

h(u)ν′(du).

Let µ′ := Bar(ν′) and f ∈ E1. The function f̂ is 1-Lipschitz, and∣∣∣f̂(µ)− f̂(µ′)
∣∣∣ =

∣∣∣∣∣
∫

∆(X)

f̂(z)ν(dz)−
∫

∆(X)

f̂(u)ν′(du)

∣∣∣∣∣
=

∣∣∣∣∣
∫

∆(X)

f̂(z)ν(dz)−
∫

∆(X)

f̂(ϕ(z))ν(dz)

∣∣∣∣∣
6
∫

∆(X)

∣∣∣f̂(z)− f̂(ϕ(z))
∣∣∣ ν(dz)

6 d(x, x′).

Because G is 1-Lipschitz, given (x, u) ∈ GraphG and y ∈ X, there exists w ∈ G(y) such
that dKR(u,w) 6 d(x, y). For our purpose, we need that the optimal coupling between u and
w can be selected in a measurable way. This is the aim of the following lemma:

Lemma 5. There exists a measurable mapping ψ : GraphG ×X → ∆(X ×X) such that for
all (x, u) ∈ GraphG, for all y ∈ X,

• the first marginal of ψ(x, u, y) is u,

• the second marginal of ψ(x, u, y) is in G(y),

•
∫
X×X

d(s, t)ψ(x, u, y)(ds, dt) 6 d(x, y).

Proof. Let S := Graph(G)×X, X ′ := ∆(X ×X) and Ξ : S ⇒ X ′ the correspondence defined
for all (x, u, y) ∈ S by

Ξ(x, u, y) = {π ∈ ∆(X ×X) | π1 = u, π2 ∈ G(y)} ,

where π1 (resp. π2) denotes the first (resp. second) marginal of π. The correspondence Ξ has
a closed graph. Let f : X ′ → R defined by

f(π) :=

∫
X×X

d(s, t)π(ds, dt).

The function f is continuous. Applying the measurable maximum theorem (see [1, Theorem
18.19, p.605]), we obtain that the correspondence s → argmin

π∈Ξ(s)

f(π) has a measurable selector,

which proves the lemma.

Proposition 5. Let x, y ∈ X and σ be a strategy. Then there exist a probability measure Pσx,y
on H∞ ×H∞, and a strategy τ such that:
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• Pσx,y has first marginal Pσx,

• Pσx,y has second marginal Pτy ,

• The following inequalities holds: for every n > 1

Eσx,y

(
1

n

n∑
m=1

|r(Xm)− r(Ym)|

)
6 d(x, y),

and

Eσx,y

(
lim sup
n→+∞

1

n

n∑
m=1

|r(Xm)− r(Ym)|

)
6 d(x, y),

where Xm (resp. Ym) is the m-th coordinate of the first (resp. second) infinite history.

Proof. Define the stochastic process (Xm, Ym)m>0 on (X × X)N such that the conditional
distribution of (Xm, Ym) knowing (Xl, Yl)06l6m−1 is

ψ(Xm−1, σ(X0, ..., Xm−1), Ym−1),

with ψ defined as in Lemma 5. Let Pσx,y be the law on H2
∞ induced by this stochastic process

and the initial distribution δ(x,y). By construction, the first marginal of Pσx,y is Pσx .

For m ∈ N∗ and (y0, ..., ym−1) ∈ Xm, define τm(y0, ..., ym−1) ∈ ∆(X) as being the law of
Ym, conditional to Y0 = y0, ..., Ym−1 = ym−1. By convexity of G, this defines a (behavior)
strategy τ in the gambling house Γ. Moreover, the probability measure Pτy is equal to the
second marginal of Pσx,y.

For all m ∈ N∗, we have Pσx,y-almost surely

Eσx,y (d(Xm, Ym)|Xm−1, Ym−1) =

∫
X×X

d(s′, t′)ψ(Xm−1, σ(X0, ..., Xm−1), Ym−1)(ds′, dt′),

6 d(Xm−1, Ym−1).

The random process (d(Xm, Ym))m>0 is a positive supermartingale. Therefore, we have

Eσx,y

(
1

n

n∑
m=1

|r(Xm)− r(Ym)|

)
6 Eσx,y

(
1

n

n∑
m=1

d(Xm, Ym)

)
,

=
1

n

n∑
m=1

Eσx,y (d(Xm, Ym)) ,

6 d(x, y).

Moreover, the random process (d(Xm, Ym))m>0 converges Pσx,y-almost surely to a random
variable D, such that Eσx,y(D) 6 d(x, y). For every n > 1, we have

1

n

n∑
m=1

|r(Xm)− r(Ym)| 6 1

n

n∑
m=1

d(Xm, Ym)

and the Cesàro theorem yields

lim sup
n→+∞

1

n

n∑
m=1

|r(Xm)− r(Ym)| 6 D Pσx,y a.s.

Integrating the last inequality yields the proposition.

Proposition 5 implies that for all n > 1, vn is 1-Lipschitz, and that w∞ is 1-Lipschitz. Thus,
Theorem 2 holds.
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4.2 Proof of Theorem 3 for MDPs

In this subsection, we consider a MDP Γ = (K, I, g, q), as described in Subsection 2.2: the state
space (K, dK) and the action set (I, dI) are compact metric, and the transition function q and
the payoff function g are continuous. As in the previous section, without loss of generality we
assume that the payoff function g is in fact 1-Lipschitz.

In the model of gambling house, there is no explicit set of actions. In order to apply Theorem
1 to Γ, we put the action played in the state variable. Indeed, we consider an auxiliary gambling
house Γ̃, with state space K× I ×K. At each stage m > 1, the state xm in the gambling house
corresponds to the state (km, im, km+1) in the MDP. Formally, Γ̃ is defined as follows:

• The state space is X := K × I ×K, equipped with the distance d defined by

∀(k, i, l), (k′, i′, l′) ∈ X, d((k, i, l), (k′, i′, l′)) = max(dK(k, k′), dI(i, i
′), dK(l, l′)).

• The payoff function r : X → [0, 1] is defined by: for all (k, i, k′) ∈ X, r(k, i, k′) := g(k, i).

• The correspondence F : X → ∆(X) is defined by:

∀(k, i, k′) ∈ K × I ×K, F (k, i, k′) := {δk′,i′ ⊗ q(k′, i′) : i′ ∈ I} ,

where δk′,i′ is the Dirac measure at (k′, i′), and the symbol ⊗ stands for product measure.

Fix some arbitrary state k0 ∈ K and some arbitrary action i0 ∈ I. Given an initial state k1

in the MDP Γ, the corresponding initial state x0 in the gambling house Γ̃ is (k0, i0, k1). By

construction, the payoff at stage m in Γ̃(x0) corresponds to the payoff at stage m in Γ(k1).
Now let us check the assumptions of Theorem 1. The state space X is compact metric.

Because g is continuous, r is continuous, and the following lemma holds:

Lemma 6. The correspondence F has a closed graph.

Proof. Let (xn, un)n∈N ∈ (Graph F )N be a convergent sequence. By definition of F , for every
n > 1, there exist (kn, in, k

′
n) ∈ K × I ×K and i′n ∈ I such that

xn = (kn, in, k
′
n),

and
un = δk′n,i′n ⊗ q(k

′
n, i
′
n).

Moreover, the sequence (kn, in, k
′
n, i
′
n)n>1 converges to some (k, i, k′, i′) ∈ K×I×K×I. Because

the transition q is jointly continuous, we obtain that (un) converges to δ(k′,i′) ⊗ q(k′, i′), which
is indeed in F (k, i, k′).

We now prove that for all n ∈ N∗, vn is 1-Lipschitz, and that w∞ is 1-Lipschitz. It is more
convenient to prove this result in the MDP Γ, rather than in the gambling house Γ̃. Thus, in
the next proposition, H∞ = (K × I)∞ is the infinite history in Γ, a strategy σ is a map from
∪m>1K× (I×K)m−1 to ∆(I), and Pk1σ denotes the probability over H∞ generated by the pair
(k1, σ). This proposition is similar to Proposition 5.

Proposition 6. Let k1, k
′
1 ∈ K and σ be a strategy. Then there exist a probability measure

Pσk1,k′1 on H∞ ×H∞, and a strategy τ such that:

• Pσk1,k′1 has first marginal Pσk1 ,

• Pσk1,k′1 has second marginal Pτk′1 ,
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• The following inequalities hold: for every n > 1,

Eσk1,k′1

(
1

n

n∑
m=1

|g(Km, Im)− g(K ′m, I
′
m)|

)
6 dK(k1, k

′
1),

and

Eσk1,k′1

(
lim sup
n→+∞

1

n

n∑
m=1

|g(Km, Im)− g(K ′m, I
′
m)|

)
6 dK(k1, k

′
1),

where Km, Im (resp. K ′m, I
′
m) is the m-th coordinate of the first (resp. second) infinite

history.

• Under Pσk1,k′1 , for all m > 1, Im = I ′m.

Proof. Exactly as in Lemma 5, one can construct a measurable mapping ψ : K × K × I →
∆(K×K) such that for all (k, k′, i) ∈ K×K×I, ψ(k, k′, i) ∈ ∆(K×K) is an optimal coupling
between q(k, i) and q(k′, i) for the KR distance.

We define a stochastic process on I×K×I×K, in the following way: given an arbitrary action
i0, we set I0 = I ′0 = i0, K1 = k1, K ′1 = k′1. Then, for all m > 2, given (Im−1,Km, I

′
m−1,K

′
m),

we construct (Im,Km+1, I
′
m,K

′
m+1) as follows:

• Im is drawn from σ(K1, I1, ...,Km),

• (Km+1,K
′
m+1) is drawn from ψ(Km,K

′
m, Im),

• we set I ′m := Im.

By construction, Pσk1,k′1 has first marginal Pσk1 . For m > 1 and hm = (k′1, i
′
1, ..., k

′
m) ∈ Hm,

define τ(hm) ∈ ∆(I) as being the law of I ′m, conditional to K ′1 = k′1, I
′
1 = i′1, ...,K

′
m = k′m. This

defines a strategy. Moreover, for all m > 1, we have

Eσk1,k′1(dK(Km+1,K
′
m+1)|Km,K

′
m) 6 dK(Km,K

′
m).

The process (dK(Km,K
′
m))m>1 is a positive supermartingale, thus it converges almost surely.

We conclude exactly as in the proof of Proposition 5.

The previous proposition implies that the value functions vn and w∞ are 1-Lipschitz. There-
fore, the family {vn, n > 1} is equicontinuous, and w∞ is continuous. By Theorem 1, the

gambling house Γ̃ has a strong uniform value. It follows that the MDP Γ has a strong uniform
value, and Theorem 3 holds.

Remark 4. Renault and Venel [18] define slightly differently the auxiliary gambling house
associated to a MDP. Instead of taking K × I × K as the auxiliary state space, they take
[0, 1] × K, where the first component represents the stage payoff. In our framework, applying
this method would lead to a measurability problem, when trying to transform a strategy in the
auxiliary gambling house into a strategy in the MDP.

4.3 Proof of Theorem 4 for POMDPs

In this subsection, we consider a POMDP Γ = (K, I, S, g, q), as described in Subsection 2.3:
the state space K and the signal space S are finite, the action set (I, dI) is compact metric,
and the transition function q and the payoff function g are continuous.

A standard way to analyze Γ is to consider the belief pm ∈ ∆(K) at stage m about the
state as a new state variable, and thus consider an auxiliary problem in which the state is

19



perfectly observed and lies in ∆(K) (see [19], [21], [22]). The function g is linearly extended to
∆(K)×∆(I), in the following way: for all (p, u) ∈ ∆(K)×∆(I),

g(p, u) :=
∑
k∈K

∫
I

g(k, i)u(di).

Let q̃ : ∆(K)× I → ∆(∆(K)) be the transition on the beliefs about the state, induced by q: if
at some stage of the POMDP, the belief of the decision-maker is p, and he plays the action i,
then his belief about the next state will be distributed according to q̃(p, i). We extend linearly
the transition q̃ on ∆(K)×∆(I), in the following way: for all f ∈ C(∆(K), [0, 1]),∫

∆(K)

f(p) [q̃(p, u)](dp) =

∫
I

∫
∆(K)

f(p) [q̃(p, i)](dp)u(di).

We can also define an auxiliary gambling house Γ̃, with state space [0, 1] × I × ∆(K): at
stage m, the auxiliary state xm corresponds to the triple (g(pm, im), im, pm+1). Formally, the

gambling house Γ̃ is defined as follows:

• State space X := [0, 1]× I ×∆(K): the set ∆(K) is equipped with the norm 1 ‖.‖K , and
the distance d on X is d := max(|.|, dI , ‖.‖K).

• Payoff function r : X → [0, 1] such that for all x = (a, i, p) ∈ X, r(x) := a.

• Correspondence F : X → ∆(X) defined for all x = (a, i, p) ∈ X by
F (x) := {g(p, i′)⊗ δi′ ⊗ q̃(p, i′) : i′ ∈ I}.

Fix some arbitrary a0 ∈ [0, 1] and i0 ∈ I. To each initial belief p1 ∈ ∆(K) in Γ, we associate

an initial state x0(p) in Γ̃ by:
x0(p1) := (a0, i0, p1).

By construction, the payoff at stage m in the auxiliary gambling house Γ̃(x0(p1)) corresponds
to the payoff g(pm, im) in the POMDP Γ(p1). In particular, for all n ∈ N∗, the value of the

n-stage gambling house Γ̃(x(p1)) coincides with the value of the n-stage POMDP Γ(p1), which
is denoted by vn(p1).

One could check that Γ̃ satisfies the assumptions of Theorem 1 and therefore has a strong
uniform value. This would especially imply that Γ̃ has a uniform value in pure strategies, and
it would prove that Γ has a uniform value in pure strategies. Indeed, let p1 ∈ ∆(K) and σ̃ be

a strategy in Γ̃(x0(p1)). Let σ be the associated strategy in the POMDP Γ(p1). For all n > 1,
we have

Eσ̃x0

(
1

n

n∑
m=1

r(xm)

)
= Eσp1

(
1

n

n∑
m=1

g(pm, im)

)

= Eσp1

(
1

n

n∑
m=1

g(km, im)

)
.

Consequently, the fact that Γ̃(x0(p1)) has a uniform value in pure strategies implies that Γ(p1)
also has a uniform value in pure strategies.

Unfortunately, this approach does not prove Theorem 4, i.e. the existence of the strong
uniform value in Γ, due to the following problem:

Problem It may happen that

Eσ̃x0(p1)

(
lim inf
n→+∞

1

n

n∑
m=1

r(xm)

)
> Eσp1

(
lim inf
n→+∞

1

n

n∑
m=1

g(km, im)

)
.
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Indeed, r(xm) is not equal to g(km, im): it is the expectation of g(km, im) with respect to pm.

Consequently, the fact that σ̃ is an ε-optimal strategy in Γ̃∞(x0(p1)) does not imply that σ is
an ε-optimal strategy in Γ∞(p1).

To prove Theorem 4, we adapt the proof of Theorem 1 to the framework of POMDPs. Recall
that the proof of Theorem 1 was decomposed into three lemmas (Lemmas 1, 2 and 3) and a
conclusion (Subsection 3.5). We adapt the three lemmas, and the conclusion is similar.

In order to obtain the first lemma, we check that F has a closed graph.

Proposition 7. The correspondence F has a closed graph.

Proof. Let (xn, un)n∈N ∈ (Graph F )N be a sequence that converges to (x, u) ∈ X ×∆(X). By
definition of F , for every n > 1 there exists (an, in, pn, i

′
n) ∈ ([0, 1]× I ×∆(K)× I) such that

xn = (an, in, pn),

and
un = g(pn, i

′
n)⊗ δi′n ⊗ q̃(pn, i

′
n).

It follows that the sequence (an, in, pn, i
′
n)n>1 converges to some (a, i, p, i′) ∈ [0, 1]×I×∆(K)×I

and x = (a, i, p).

By Feinberg [12, Theorem 3.2], the function q̃ is jointly continuous. Because the payoff
function g is also continuous, we obtain that un converges to u = q(p, i′)⊗ δi′ ⊗ q̃(p′, i′) which
is indeed in F (x).

Now we can apply Lemma 1 to the gambling house Γ̃. For p ∈ ∆(K), define v(p) :=
lim supn→+∞ vn(p). Note that for all x = (a, i, p) ∈ X, the set F (x) depends only on the third
component p. Thus, Lemma 1 implies the following lemma for the POMDP Γ:

Lemma 7. Let p1 ∈ ∆(K). There exists a distribution µ∗ ∈ ∆(∆(K)) and a stationary strategy
σ∗ : ∆(K)→ ∆(I) such that

• µ∗ is σ∗-invariant: for all f ∈ C(∆(K), [0, 1]),∫
∆(K)

f̂(q̃(p, σ∗(p))µ∗(dp) = f̂(µ∗)

• For every ε > 0 and N > 1, there exists a (pure) strategy σ in Γ and n > N such that σ
is 0-optimal in Γn(p1) and

dKR

(
1

n

n∑
m=1

zm(p1, σ), µ∗

)
6 ε,

where zm(p1, σ) is the distribution over ∆(K) at stage m, starting from p1,

•
∫

∆(K)

g(p, σ∗(p))µ∗(dp) = v̂(µ∗) = v(p1).

We can now state a new lemma about pathwise convergence in Γ. This replaces Lemma 2.

Lemma 8. Let p1 ∈ ∆(K) and µ∗ be the corresponding measure in the previous lemma. There
exists a measurable set B ⊂ ∆(K) such that µ∗(B) = 1 and for all p ∈ B,

Eσ
∗

p

(
lim inf
n→+∞

1

n

n∑
m=1

g(km, im)

)
= v(p) Pσ

∗

p − a.s.
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Proof. It is not enough to apply Birkhoff’s theorem to the Markov chain (pm)m>1, due to the
problem mentioned previously. Instead, we consider the random process (ym)m>1 on Y :=
K × I × ∆(K), defined for all m > 1 by ym := (km, im, pm): (current state, action played,
belief about the current state). Under Pσ∗µ∗ , this is a Markov chain. Indeed, given m > 1 and
(y1, y2, ..., ym) ∈ Y m, the next state ym+1 is generated in the following way:

• a pair (km+1, sm) is drawn from q(km, im),

• the decision-maker computes the new belief pm+1 according to pm and sm,

• the decision-maker draws an action im+1 from σ∗(pm+1).

By construction, the law of ym+1 depends only on ym, and (ym)m>1 is a Markov chain. Define
ν∗ ∈ ∆(Y ) such that the third marginal of ν∗ is µ∗, and for all p ∈ ∆(K), the conditional law
ν∗(.|p) ∈ ∆(K×I) is p⊗σ(p). Under Pσ∗µ∗ , for all m > 1, the third marginal of ym is distributed
according to µ∗. Moreover, conditional on pm, the random variables km and im are independent,
the conditional distribution of km knowing pm is pm, and the conditional distribution of im
knowing pm is σ∗(pm). Thus, ν∗ is an invariant measure for the Markov chain (ym)m>1. Define
a measurable map f : Y → [0, 1] by: for all (k, i, p) ∈ Y , f(k, i, p) = g(k, i). Now we can apply
Theorem 5 to (ym)m>1, and deduce that there exist B0 ⊂ ∆(K) and w : Y → [0, 1] such that
for all p ∈ B0,

1

n

n∑
m=1

f(ym) →
n→+∞

w(k1, i1, p) Pσ
∗

p − almost surely, (9)

and
ŵ(ν∗) = f̂(ν∗).

By definition of f , for all m > 1, f(ym) = g(km, im). Moreover, by definition of ν∗, we have

f̂(ν∗) =

∫
∆(K)

g(p, σ∗(p))µ∗(dp),

and by Lemma 7, we deduce that f̂(ν∗) = v̂(µ∗). Consequently, ŵ(ν∗) = v̂(µ∗). Given p ∈ B0,
denote by w0(p) the expectation of w(., p) with respect to Pσ∗p . By Equation (9), we have

Eσ
∗

p

(
lim

n→+∞

1

n

n∑
m=1

g(km, im)

)
= w0(p).

Let us prove that w0 = v Pσ∗µ∗ -almost surely. Note that ŵ0(µ∗) = ŵ(ν∗) = v̂(µ∗). Conse-

quently, it is enough to show that w0 6 v Pσ∗µ∗ -almost surely. By the dominated convergence
theorem and the definition of v, we have

Eσ
∗

p

(
lim

n→+∞

1

n

n∑
m=1

g(km, im)

)
= lim

n→+∞
Eσ
∗

p

(
1

n

n∑
m=1

g(km, im)

)
6 v(p),

and the lemma is proved.

For every n > 1, the value function vn is 1-Lipschitz, as a consequence of the following
proposition.

Proposition 8. Let p, p′ ∈ ∆(K) and σ be a strategy in Γ. Then, for every n > 1,∣∣∣∣∣Eσp
(

1

n

n∑
m=1

g(km, im)

)
− Eσp′

(
1

n

n∑
m=1

g(km, im)

)∣∣∣∣∣ 6 ‖p− p′‖1.
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This proposition is proved in Rosenberg, Solan and Vieille [20, Proposition 1]. In their
framework, I is finite, but the fact that I is compact does not change the proof at all.

Last, we establish the junction lemma, which replaces Lemma 3.

Lemma 9. Let p, p′ ∈ ∆(K) and σ be a strategy such that

Eσp

(
lim

n→+∞

1

n

n∑
m=1

g(km, im)

)
= v(p).

Then, the following inequality holds:

Eσp′

(
lim inf
n→+∞

1

n

n∑
m=1

g(km, im)

)
> v(p′)− 2 ‖p− p′‖1 .

Proof. Let k ∈ K and p1 ∈ ∆(K). Denote by Pσp1(h∞|k) the law of the infinite history h∞ ∈
(K × I × S)N

∗
in the POMDP Γ(p1), under the strategy σ, and conditional to k1 = k. Then

Pσp (h∞|k) = Pσp′(h∞|k) and

Eσp′

(
lim inf
n→+∞

1

n

n∑
m=1

g(km, im)

)
> v(p)− ‖p− p′‖1 .

For every n > 1, vn is 1-Lipschitz, thus the function v is also 1-Lipschitz, and the lemma is
proved.

The conclusion of the proof is similar to Section 3.5. Note that apart from the three
main lemmas, the only additional property used in Section 3.5 was that the family (vn)n>1 is
uniformly equicontinuous. For every n > 1, vn is 1-Lipschitz, thus the family (vn)n>1 is indeed
uniformly equicontinuous.

5 Possible extensions

We discuss here several possible extensions of our results to more general models.

Let us first focus on gambling houses. In this paper, we have considered gambling houses
with a compact metric state space. Renault [17] does not assume compactness of the state
space. Instead, he assumes that some set of value functions is precompact3, and prove the
existence of the uniform value. For this purpose, he defines the topology on the state space
induced by this set of functions. It is unclear whether we could follow this approach and drop
the compactness assumption. As a matter of fact, Renault [17] focuses on probabilities with
finite support and mainly uses topological arguments. This is in sharp contrast with our proof,
which involves several probabilistic arguments, such as Birkhoff’s ergodic theorem.

An intermediary step would be to consider a precompact state space. An important issue is
that the invariant measure in Subsection 3.2 may fail to exist. One way to avoid this problem
could be to extend the correspondence to the adherence of X, and apply the main theorem to
the auxiliary gambling house associated to the extended correspondence. Nonetheless, it is not
obvious that a strategy in the auxiliary gambling house could be approximated in a proper way
by a strategy in the original gambling house.

In the same spirit, it is natural to ask if the assumption that F has closed values can be
dropped. The same problem arises for the existence of the invariant measure. Moreover, our
selection theorem does not hold. Last, the boundedness assumption on the payoff function is

3For every pair of integers (m,n), Renault introduces the value wm,n of the gambling house where the

decision maker maximizes inf16l6n l−1
∑m+l−1

t=m gm and consider the set of functions {wm,n,m, n ∈ N2}.
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necessary to build the invariant measure.

Generalizing our results to precompact gambling houses would allow to consider more general
MDPs and POMDPs models. Indeed, one may wonder if our results extend to MDPs with
precompact state space and noncompact action set. Our approach does not cover these two
cases because the auxiliary gambling house defined in Subsection 4.2 would only be defined on
a precompact state space, and may not have closed values.

Another extension could be to allow for state-dependent action sets. Following our proof, the
state space of the auxiliary gambling house in Subsection 4.2 would then be K×

∏
k∈K I(k)×K.

It is not obvious to see which kind of assumption has to be made on the transition and payoff
function to make this auxiliary state space into a compact metric space such that the auxiliary
gambling house satisfies the assumptions of Theorem 1.

As far as POMDPs are concerned, we assumed in Theorem 4 that the state space and the
signal set are finite. If we assume instead that the state space is compact metric, it is not clear
which kind of assumption on the transition function should be made in order that Lemma 9 is
satisfied. Moreover, if we assume that the signal set is compact metric, then the correspondence
of the auxiliary gambling house may not be upper hemicontinuous, as Example 4.1 in Feinberg
[12] shows.
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