
HAL Id: hal-01394537
https://hal.science/hal-01394537

Submitted on 9 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boolean operations on arbitrary polygonal and
polyhedral meshes

Sâm Landier

To cite this version:
Sâm Landier. Boolean operations on arbitrary polygonal and polyhedral meshes. Computer-Aided
Design, 2016, p. 1-35. �10.1016/j.cad.2016.07.013�. �hal-01394537�

https://hal.science/hal-01394537
https://hal.archives-ouvertes.fr

Boolean operations on arbitrary polygonal and

polyhedral meshes.

Sâm Landiera,∗

aONERA, 29 avenue de la Division Leclerc, 92320 Châtillon, France

Abstract

An O(nlogn) floating-point arithmetic algorithm designed for solving
usual boolean operations (intersection, union, and difference) on arbitrary
polygonal and polyhedral meshes is described in this paper.
This methods does not approximate the inputs which can be both volume
meshes, both surface meshes or one of each. It provides exact and conformal
meshes upon exit. It can be used in many pre- and post-processing appli-
cations in computational physics (e.g. cut-cell volume mesh generation or
conservative remapping).
The core idea is to consider any configuration as a polygonal cloud. The po-
lygons are first triangulated, the intersections are solved, the polyhedral cells
are then reconstructed from the conformal triangles cloud and finally their tri-
angular faces are re-aggregated to polygons. This approach offers a great flexi-
bility regarding the admissible topologies : non-planar faces, concave faces or
cells and some non-manifoldness are handled. The algorithm is described in
details and some current results are shown.

Keywords: Boolean Operations, Polyhedral Meshes, Polygonal Meshes,
Mesh Intersection, Cell Reconstruction, Conformity, Conservative
Remapping, Cut-cell Meshing, Constrained Delaunay Triangulation, Flood
Fill Algorithm.

∗. Corresponding author
URL: sam.landier@onera.fr (Sâm Landier)

Preprint submitted to Computer-Aided Design 12 février 2016

1. Introduction

Considering two arbitrary polyhedral meshes M1 and M2 that are par-
tially or fully overlapping (e.g. one is fully immersed in the other one, or both
are representing the same computational domain) and a given tolerance, a
floating-point arithmetic method is proposed to solve the geometric intersec-
tions and retrieve a conformal polyhedral mesh upon exit that results from
the usual boolean operations (intersection, union and difference). A typical
target application is related to conservative remapping of some solution fields
from one mesh to another [1; 2; 3; 5; 12; 13; 14; 19]. In all these works it
is assumed that the source and the target are two meshes of the same do-
main. But if we want to do some conservative remapping in the Chimera
context [15], it is also required to handle partial overlapping, so a general
algorithm should not do such assumption and treat the fully-immersion or
same-boundary cases as particular cases of a partial overlapping as depicted
in Fig. 1.

Figure 1: Two overlapping meshes, their intersection zone in green.

The conservative remapping problem induces necessarily a high computa-
tion cost because all the intersections between the polygons must be resolved
in the intersecting zone (in green Fig. 1).

Figure 2: Two overlapping meshes the yellow mesh is prioritized, their intersection zone
in green.

Applications like conservative interfacing [6; 7] (cf. Fig. 2) for overlapping
grids require to build a conformal mesh of a domain where each subdomain

2

has been meshed separately. The conformal assembly is achieved prioritizing
some meshes that come fit into non-priority meshes. The intersection zone
is therefore reduced to a narrower region in the vicinity of the surface of the
prioritized meshes.
This is similar to cut-cell meshing (cf. Fig. 3) where the impact on the cut
mesh takes place in the vicinity of the cutting surface.

Figure 3: Cut-cell meshing : a surface mesh cuts a volume mesh (intersection zone in
green).

Some other applications like Chimera blanking [15] or Constructive Solid
Geometry evaluation [8; 9; 21; 22] works on a reduced sets of large polyhedra
(polygonal surface meshes) and their intersecting zone is inherently narrower
(cf. fig 4) compared to the same problem with volume meshes (even though
[21] solves very efficiently dense problems with 100,000 polyhedra having
millions of intersecting polygons).

Figure 4: Pure surface problem as in a CSG evaluation (intersecting zone in green).

All these different problems, as for CSG evaluation, can be expressed in
terms of boolean operations between two meshes :

• The conservative remapping problem is an intersection operation on meshes
without prioritization.

• The interfacing problem is a union with prioritization.

• The cut-cell meshing is a mixed-type difference between a volume mesh
and a surface mesh.

3

The proposed algorithm covers all these problems by defining boolean
operations on two arbitrary meshes operands :

• polyhedral vs polyhedral (with or without prioritization)

• polyhedral vs polygonal

• polygonal vs polygonal

When a mesh is prioritized, there are two steps in the process : first its
outer skin is processed considering the boolean operation between a polyhe-
dral mesh and a polygonal mesh. Then this modified skin is reattached to its
interior to get a conformal result (as explained in section 5.6).
As a closed surface mesh is a polyhedron, boolean calculation for pure poly-
gonal inputs is seamlessly handled.

2. Previous 3D works

Among the most recent 3D algorithms, Alauzet [19] focuses on pure te-
trahedral mesh intersections. The topological approach fits very well pure
tetrahedrons problems. For each pair of intersecting tetrahedrons, the 32
signed distances of each vertices of one tetrahedron versus the four facets
of the other one allow to build some topological information that reduces
the intersection tests, prevents inconsistencies and ensures robustness. Even
though this approach is pragmatic for simplices, pre-computing all the signed
distances might be cumbersome for larger polyhedra and not practicable at
all for surface mesh inputs since the number of signed distances to compute
grows exponentially (for a small polyhedra that is a triangulated hexahedron,
we should compute 192 signed distances).
Moreover, splitting the intersection zone into tetrahedrons leads potentially
to engender a lot of cells and therefore a higher memory usage compared to
a polyhedral approach if we want ouput the resulting conformal mesh. An
algorithmic advantage however is the fact that the tetrahedrons are convex
which greatly facilitates the recovery of intersecting areas (always convex
too) and computing the conservative field. In a polyhedral approach, the ne-
cessary handling of concavities increases the complexity of the algorithm.
Finally, since the geometric kernel (intersection computation) and the conser-
vative remapping are strongly linked as being part of the same iterative loop
for each pair of intersecting tetrahedrons, there is no need to keep a geome-
tric representation of the intersections : once two tetrahedrons are processed,
every data related to that pair is flushed. This is a good thing for coarse

4

grain multi-threading but induces redundant intersection calculations.
The algorithm described in this paper focuses on the geometric construction
so it aims at building an explicit polyhedral mesh representation available
upon exit. As it is designed, each polygon is processed once. This choice will
not prevent to multithread the current sequential implementation though.

Another 3D algorithm designed by Brenner [6; 7] deals with polyhedral (with
triangular faces only) mesh intersections over overlapping grids to solve the
conservative interfacing problem. It does not give an explicit representation
of the resulting mesh : surface vectors and centroids (faces and elements) are
instead provided. This is fair enough for the targeted conservative remapping
applications but it might be difficult to get to order higher than two or three
without the explicit representation. Moreover only few publications of this
algorithm are available so it is difficult to analyze it further.

Farrell et al. [1; 2] have proposed an algorithm to solve the conservative
remapping problem and their geometric kernel (which is separated from the
conservative calculations) has some similarities with the one discussed in this
paper, especially their 2D version [1] : they indeed solve first the edge inter-
sections, and the whole set of split edges is then processed by a constrained-
Delaunay triangulator to provide what is called a supermesh. The benefit
of this global approach is to avoid intersections calculation redundancy. It
might be not necessary though to keep the entire supermesh into memory
when the algorithm is purely dedicated to conservative remapping. The 3D
version adopts a local approach as in [19] (inducing redundancy) but deals
only with convex elements because the clipping Eberly′s algorithm [4] is used.

Following efforts have been made by Menon and Schmidt [3] to extend the
supermesh concept to 3D but the proposed algorithm is restricted to star-
shaped polyhedra because of their implementation of the algorithm require-
ment to break down the polyhedra into tetrahedrons. A similar requirement
is necessary for the algorithm proposed by Grandy [5].

The algorithm described in this paper can deal with almost any type of
polyhedral topologies (i.e. useful for practical applications as described in
the next section) by solving the intersection between faces avoiding the re-
quirement of such volume decomposition.

5

3. Admissible topologies

Here are the characteristics of the geometric entities handled by the al-
gorithm.

3.1. Admissible polygon (aPG)

An aPG is a 3D polygon with p vertices forming q edges satisfying the
following conditions :

• Its edges are not intersecting each other : it′s a conformal set (c1)

• Its boundary (its edges excluding the non-manifold bits) form a closed
contour confining a non-null surface (c2)

• Its boundary is made of a single connected polygonal line : there are no
holes nor separate subdomains (c3)

• A plane exists such the projected polygon has the same topology (c4)

• A triangulation of its boundary exists such all the p vertices lie on the
triangulated surface (c5)

Figure 5: (a) aPG ; (b) three non-admissible polygons.

Conditions (c1) (c2) (c4) are necessary and sufficient conditions to be able
to triangulate the polygon as it is required for the algorithm as explained la-
ter. Condition (c3) is not strictly necessary but added for convenience and to
ease the implementation : with this condition it is always possible to represent
the polygon as a sorted vertices list of size q such any two consecutive vertices
on this list forms a polygon edge (the first and last too). Condition (c5) is to
ensure consistency between the polygon and its triangulated representation.
Oddities such as in Fig. 5b are not admissible.

6

3.2. Admissible polyhedron (aPH)

An aPH is a polyhedron with f faces satisfying the following conditions :

• Its faces form a conformal set of aPGs (c6)

• Its boundary (its faces excluding the non-manifold bits) forms a closed
contour confining a non-null volume (c7)

• Its boundary is made of a single connected polygonal surface : there are
no holes (c8)

• Any non-manifold entity must be an aPG and has to share an edge with
the boundary (c9)

Figure 6: (a) and (b) some aPHs ; (c) non-admissible case : a tetrahedron with cubic hole.

Condition (c6) is necessary to build a one-to-one polygons neighborhood
information and condition (c8) (c9) ensure that one is able to use that in-
formation to traverse totally the polyhedron through its faces. So it implies
that if a face has a non-manifold edge, it must be the edge of another face.

We define a minimal aPH (maPH) as an aPH satisfying the following
extra condition :

• There are no separate subdomains : any two inside points can be linked
by a strictly interior polygonal line that does not intersect the faces (c10)

This condition (c10) is to define the polyhedra upon exit due to the
element building process explained later on. The cubes sharing an edge or a
face on Fig. 6a are four separate maPHs.

3.3. Admissible mesh (aMH) and minimal admissible mesh (maMH)

An aMH (maMH) is a mesh satisfying the following conditions :

• Its elements form a conformal set of aPHs (maPH) (c11)

7

• The intersection volume between two of its elements is null (i.e. no pene-
tration) (c12)

• The outer skin of the mesh (polygonal surface) is manifold in the outer
space (c13)

Condition (c13) means that for any polyhedron of the outer layer, its non-
manifoldness must be inside (like the Triskaidecahedron′s red face on figure
6a) because any outside one (quadrangular face on the cube Fig. 6b) will be
lost in the element building process. The algorithm handles as operands any
two aMH upon entry and creates a maMH upon exit. As a closed surface
mesh is a polyhedron, boolean calculation on surface meshes or mixed types
(volume vs. surface) admissible operands are a particular case seamlessly
handled.

4. Boolean operations

Considering two sets of arbitrary elements M1 and M2, let′s recall first
what is meant by boolean operation in algebra of sets :

• M1 ∩M2 : common elements to both M1 and M2

• M1 \M2 : elements inside M1 and outside M2

• M1 ∪M2 : elements inside M1 or M2

These definitions assume that an element can always be classified, i.e. one
can tell without any ambiguity this element is either inside or outside a set.
Boolean operations make only sense if a predicate “in or out” can be defi-
ned. But in our geometrical context dealing with Boundary-Representation
volume entities in arbitrary positions, we have to cope with ambiguity, i.e.
an entity will often be partially inside. Hence we need to transform the input
operands, and in fact the concatenation of them M1+M2, to make classifica-
tion possible before being able to answer to any boolean operation.
The first step of the transform is to make conformal all the polygons, i.e. sol-
ving all the intersections. The second step is to create from that conformal
cloud all the possible maPHs. The resulting set is a maMH created from the
input operands. Hence for any maPH created it is always possible to find an
element of M1 and/or M2 that geometrically includes it. A predicate defini-
tion P is then possible.
Let′s note ADM the operator that converts M1+M2 into a maMH. We will
see that we won′t define our predicate that way but for now, its existence is
enough to formalize in our context the boolean operations :

8

• M1∩M2 : elements e of ADM(M1+M2) / P(e, M1) and P(e, M2) are both
true.

• M1 \M2 : elements e of ADM(M1+M2) / P(e, M2) is false

• M1 ∪M2 : ADM(M1+M2)

The main difference with set algebra is hence the requirement of applying
the ADM operator to the concatenated mesh. Another difference with this
formalism is that upon exit we only have a set of volume entities. So for
instance if we compute the intersection of two polyhedra sharing a polygon
the result will be empty rather than giving the shared polygon. But this is
fine with the current target applications.
A common point between the two worlds, the union operation doesn′t need
a classification step : all considered elements are in the result.
Although we will define the ADM operator that turns some meshes into
minimal admissible ones, it cannot handle polygons with holes or polyhedra
with non-unique contour which won′t appear if they are not in the input, so
admissibility is a prerequisite to discard those topologies.

5. The algorithm

5.1. Overview

The concatenated mesh M1+M2 as global and unique input needs to be
transformed into a maMH. Defining the ADM operator is the main part of
the algorithm. Defining the predicate (based on normals orientations) and the
consequent classification is more straightforward. The ADM operator breaks
down into four steps.
The first step is an initialization that focuses on the intersecting zone by dis-
carding any non-colliding polyhedron. An additional but optional treatment
can be applied to ensure that the reduced set is oriented consistently meaning
that each polyhedra′s facet has a normal pointing outward. This treatment
is not applied if the input data set is known to be oriented properly.
The second step is to make conformal all the polygons seen as a cloud in ar-
bitrary position. Solving intersections for non-planar polygons leads to non-
unique solutions because of the multiple definitions of their surface support :
we′ve therefore made the usual choice to deal with intersections processing
at the triangle level and build a conformal triangles cloud first.
The third step is to reconstruct the polyhedral elements from the triangles

9

cloud. This is the key step that builds maPHs with triangular faces by de-
tecting any smallest enclosed cavity.
The last step is to aggregate the triangular faces to coming from the same
initial polygon as long as the aggregate is minimal admissible. These obtai-
ned polyhedra are therefore maPHs. The whole process is depicted in the
Fig. 7.

Figure 7: Algorithm′s scheme.

5.2. Initializing and Pre-conditioning

The two main purposes of this step are to focus on the intersecting zone
(keeping apart the elements which are not involved in the intersection) and
to prepare the classification step.
The latter requires to know which are the outer polygons (all of them in case
of a surface mesh, the ones that are not shared in case of a volume mesh)
and to have them consistently outward oriented.

A primary coarse decimation is done using the bounding box of the input
meshes : any element that is not intersecting or inside both boxes is discar-
ded.

10

A finer refinement is then applied to the remaining elements using a boun-
ding box tree constructed for the smallest mesh. It is indeed more efficient
to construct a small tree and query it intensively rather than the opposite.
Any element that is colliding with at least one other element is kept.
At the end we get a set of intersecting zones ; one of them is depicted on Fig.
8b.
Any outer polygon of these sets that is not already flagged as ”pure skin” is
flagged as ”connection skin” (meaning connected to a discarded set).
The discarded elements can already be classified as outside elements and will
be agglomerated after the classification step to generate the boolean opera-
tion ouput.

The final step of the initialization is to merge the coincident nodes in the
set of retained points using a kd-tree. This step facilitates the intersection
process by removing one type of degeneracies (cf. 5.4.1). But when two nodes
need to be merged, which one has to be moved ? We have chosen to preserve
one mesh with respect to the other one : its nodes are attractors in case of
merging. This is what is required for instance for a cut-cell mesh : the cutting
surface has to be preserved. For a conservative remapping, the target mesh
needs as well to be preserved with respect to the source mesh.

Optional reorientation step. Each individual set of skin polygons (pure
or connection) forming a closed surface is reoriented consistently (outward)
in regard with a reference polygon (one on each set) with a neighborhood
traversal algorithm : starting by the reference polygon, we reverse any neigh-
bor with the opposite orientation and so on. For a closed surface it is always
possible to find a polygon having a ray perpendicular to it and passing by
an arbitrary point on it that does not intersect the surface either above or
under the polygon : this indicates the outward so the polygon is flagged and
used as a reference after reorienting it properly. This reorientation is crucial
for the classification step.

The algorithmic complexity of this initialization step is in O(nlog(n)) (where
n is the number of kept cells) because of the bounding box tree constructions
and queries. An alternative to bounding box trees through the neighboring′s
information use is discussed in [2; 12] and might be more efficient for pre-
conditioning in the particular case of a boolean intersection of two meshes
of the same domain (which is the context of their conservative remapping).

11

They will be considered in future work.

Figure 8: (a) initial aMHs M1 and M2 ; (b) working set for intersection after initializing
a pre-conditioning for a pure polyhedral problem.

5.3. From the polygons to a conformal triangles cloud

Each polygon in the cloud is triangulated. Many strategies are available
but the choice to use a 2D-Constrained Delaunay approach [11] has been
made for its robustness dealing with any kind of polygons topology pro-
viding they fall into the admissible polygons family. Basic polygons (e.g.
convex quads) are obviously processed trivially. Cheaper and therefore faster
solutions will be applied in the future to eligible polygons in the cloud : a
star-shaped one can be triangulated by linking the centroid to the boundary
edges but this tends to produce more triangles and therefore more intersec-
tions computations. Other approaches like the Ear clipping algorithm [23; 24]
could generate less triangles with an acceptable efficiency. This preliminary
step is not a current bottleneck anyway. Once we have a triangle cloud and
built the mapping table ancPG giving for each triangle the polygon it belongs
to, we can go to the intersections solving process. When this process is done,
ancPG is updated accordingly to refer to the new set of triangles that will be
used to aggregate back the triangles to make aPGs from them as described
in 5.7.

12

5.4. Intersection solving process

If we consider a cloud of intersecting triangles in arbitrary positions (cf.
Fig. 9a), the intersection traces in each triangle are of two types : a point or
a segment. In case of overlapping, the trace is a polygon so a set of segments
too (cf. Fig. 9b).

Figure 9: (a) Triangles cloud ; (b) Intersections traces.

Rather than detecting and resolving on the go one intersection at a time
and putting the split triangles back to the pool of triangles to be processed,
we′ve chosen a two-step algorithm :

• Computing and storing the traces for each triangle

• Splitting each intersected triangle along the intersection traces

The drawback of this approach is the storage of the traces but the benefit
is to avoid an iterative algorithm that would imply redundant queries to the
localizing structure (e.g. a bounding box tree).
Here, each triangle has a data structure that stores the segments reflecting
the intersections traces and the isolated points (degenerated segments) for
each pair of intersecting triangles. Each edge has also a list of intersection
points that is appended during the process.
Once all the traces have been computed, the split can be done (cf Fig. 10a).

Storing the edges (rather than the intersection points only) are necessary
because we aim to deal with concave polyhedra, either as input, or as resulting
from e.g. a boolean difference between to input meshes having a convex outer
surface. It is not therefore possible to assume (as it is done in [19] that the
intersection traces and their resulting polygons are convex. This is only true
for a boolean intersection over convex polyhedra.

13

Figure 10: (a) Split triangle ; (b) Resulting conformal cloud.

5.4.1. Tolerance and degeneracies handling

An epsilon-approach is used to cope with numerical errors and an inter-
ference zone (noted Iz) surrounding any triangle is considered as in [10].

Figure 11: Interference zone for a triangle : the location of points at a distance less than
the tolerance. zN is a ball around each vertices, zE is a partial cylinder around each edges.

In order to get a robust answer and to minimize the point creation, it
is required to handle degeneracies carefully and to prioritize the tests by
detecting first if any intersection point is in zN , then in zE and finally in
zT . This is approach is opposed to [20] where degeneracies are rejected :
for an intersection problem, degeneracies contain the sufficient intersections
information (cf. Fig. 12).
The degenerated situations are :

• A vertex falling either on zN , zE or zT of another triangle

• An edge intersecting zE or lying on zT of another triangle

• Two triangles having their zT interfering (overlapping triangles)

14

Because of the initial nodes merging at the initialization step, if we have two
coincident vertices, it means that at least one of them is a created intersec-
tion point.

The five following algorithms are necessary and sufficient bricks to cope with
all degeneracies and construct a robust Triangle-Triangle intersection algo-
rithm.

Vertex-Inside Edge intersection (same support line). Let P0P1 be

the edge, L its length, Q the vertex and s = ||P0Q||
L

. As it is assumed that P0,
P1 and Q are aligned in this test,

Q ∈ Iz ⇐⇒ s ∈
]
− ε
L
, 1 + ε

L

[
Q ∈ zN ⇐⇒ s ∈

]
− ε
L
, ε
L

[
∪
]
1− ε

L
, 1 + ε

L

[
Q ∈ zE ⇐⇒ s ∈ Iz \ zE

There is no intersection otherwise.

Vertex-Inside Triangle intersection (coplanar case). The three signed
distances between the vertex Q and the edges are computed.

1. Q ∈ zN ⇐⇒ two of them have an absolute value lesser than ε.

2. Q ∈ zE ⇐⇒ one of them has an absolute value lesser than ε and the
two others are strictly greater than ε.

3. Q ∈ zT ⇐⇒ the three are strictly greater than ε.

4. There is no intersection otherwise.

Non coplanar Edge-Plane intersection. Let P0P1 be the edge, L its
length. Let′s note Q0 and n the director of the plane. The intersection point
I is then given by I = P0 + sP0P1, where s = n.Q0P0

n.P1P0
.

Then the edge intersects the plane if and only if s ∈
]
− ε
L
, 1 + ε

L

[
.

Overlapping Edge-Edge intersection. Assuming that four points are sup-
ported by the same line, two dot product allows to simply sort the vertices
on the line and to retrieve none, one or two vertices for respectively non-
overlapping, single-shared vertex (zN interference) and overlapping cases (zE

15

interference).

Coplanar Edge-Edge intersection. Let P0P1 and Q0Q1 be two edges, L1

and L2 their respective lengths. This algorithm is based on the traditional
parametric approach [25] for 3D lines :

1. Compute the cross product w = P0P1 × Q0Q1 and its square norm
w2.

2. If w2 <ε2 then the support lines are parallel, the distance between
them is then given by : µ = ||P0Q0 − Q0Q1.P0Q0

||Q0Q1|| ||
(a) if µ<ε the edges are supported by the same line. Do the overlap-

ping Edge-Edge test.
(b) Otherwise there is no intersection

3. Otherwise lines are intersecting at a unique point since they are assu-
med to be coplanar so it cannot be an agonic situation. Hence the two
following computed parameters s and t give the common intersecting
point :

P0 + sP0P1 = Q0 + tQ0Q1

s = (P0Q0 ×Q0Q1).w/w2

t = (P0P1 ×Q0P0).w/w2

(a) If s ∈
]
− ε
L1
, 1 + ε

L1

[
and t ∈

]
− ε
L2
, 1 + ε

L2

[
, there is an interfe-

rence (intersection or coincidence).

i. If s ∈
]
− ε
L1
, ε
L1

[
or t ∈

]
− ε
L2
, ε
L2

[
(zN interference), no point

creation is required and the corresponding vertex is returned
as intersecting point.

ii. If s ∈
]
ε
L1
, 1− ε

L1

[
and t ∈

]
ε
L2
, 1− ε

L2

[
(zE interference), the

intersecting point is created.

(b) In any case the intersecting point is appended to an edge′s node
list if it belongs strictly to its interior.

5.4.2. Triangle/Triangle intersection

The triangle/triangle intersection algorithm is inspired from the inter-
section predicate [16] extended to provide the intersection segments. The six
signed distances of each vertex to the planar support of the other triangle are
first computed. A quick analysis of these values allows discarding any non-
intersecting configuration : either one of the two triangles is at a distance

16

from the other triangle′s support plane greater than the given tolerance or
both are reciprocally positioned as in case b on Fig. 12 meaning that they
could share at best a vertex. Fig. 12 illustrates the six possible positions of
a triangle regarding the other triangle′s plane.
The algorithm deals with case f apart from the other cases.

Figure 12: one triangle′s entities (in red) that are considered for intersection tests with
any triangle supported by the plane.

Case b to e (non-overlapping supporting planes). For each triangle
we compute the segment trace by computing the required Plane-Edge inter-
section points. In case of degeneracies the segment is partially (case d) or
fully available (case b and c). So we basically need from zero to four points
to create using a Plane-Edge intersection test to get the right intersection
trace. We then do an Edge-Edge overlapping test, or a Vertex-Inside-Edge
test, or a Vertex-Inside-Triangle test to actually confirm the intersection and
update the trace data structure. The trace (point or segment) is appended
to the traces of the triangles falling in case d and e. The trace vertices are
appended to the appropriate edges′ nodes list.

Case f (both triangles having the same support plane). We first
compute the 18 signed distances between each vertex to the other triangle’s
edges. If none of the triangles is inside the other one, we compute the appro-
priate Coplanar Edge-Edge intersections to get the set of intersection points
and associated segments. This is the most costly case as we can proceed up
to 6 Edge-Edge intersection tests.
If any intersection point falls in the edge interior, it is appended to its list. If
any intersection point falls inside a triangle interior, the segment is appended
to its list as well.

17

5.4.3. Nodes merging

Coincident nodes need to be merged to ensure overall conformity. The in-
tersection process has produced many redundant points even if a special care
has been taken to avoid redundant point creation at the Triangle-Triangle
level. Two triangles sharing an edge will indeed produce twice the same inter-
section point if the shared edge intersects another triangle. This could have
been addressed by keeping a record of any Triangle-Edge intersection but
this solution is quite expensive in CPU. It has been chosen to proceed with
an overall nodes merging (based on a kd-tree structure).

The tolerance used for merging must be the same ε as for intersection tests
to avoid that any edge or triangle gets out of its initial interference zone. It is
ensured that way to not create new intersections due to the moving of nodes.
This is a major improvement since the initial version [26], the intersection
solving is no more iterative.

5.4.4. Splitting the triangles

The current implementation of this part is based on a constrained Delau-
nay triangulation [11] applied to each triangle to split with its traces. This
approach is very robust but too slow in regard with the targeted applications.
In the conclusion section the ideas of the future way of proceeding will be
given.

5.5. Building maPH elements with triangular faces

This geometrical step is done by traversing the conformal triangular cloud
and gathering the appropriate set of triangles forming enclosed volumes. Since
the cloud is conformal, we can create a neighborhood table that gives for any
triangle its neighbors sharing an edge with it. But most of the cloud′s edges
are non-manifold, i.e. shared by more than two triangles. So we need to select
for any triangle and for each orientation of it (both sides) the three right
neighbors that will contribute to an enclosed volume. These right neighbors
for a given oriented triangle t are those that minimize their dihedral angles
with t (cf. Fig. 13.a).

Rather than computing this minimum per edge and per triangle that
would lead to a lot of redundant calculations, we sort the triangles (taking
into account the two orientations) sharing an edge E0E1 (cf. Fig. 13b) like
the pages of a book taking arbitrarily one of them as page number one. In
this even sorted list, each pairs of consecutive elements gives the right mutual

18

Figure 13: (a) t′s right neighbors (green) ; (b) sorting the triangle sharing an edge.

neighbors. We also add to this list a pair joining the opposite triangles of the
first and the last one to close the loop like joining the book′s cover. If we
note t′ the opposite orientation of t, the five pairs for the case on Fig. 13b
will be : (t1, t2), (t′2, t3), (t′3, t

′
4), (t4, t

′
5), (t5, t

′
1).

For the sorting we need to build a monotonically increasing function q
for any triangle pair (ti, tj) sharing an edge E0E1. Let′s note ni and nj their
normals.
The algorithm proposed here is more robust than the one proposed in [26].
The split of triangle can indeed generate very poor quality triangles that
induce failure on normal computing (cross product error) and orientation
predicates. So we rather preserve normals computed on the initial triangles
(before splitting) and assign them to split triangles. The inputs for computing
the q function are therefore non-degenerated and produce valid results :

q = π + µ ∗ ATAN2(s, c) (1)

where :
nk = ni × nj
µ = SIGN(E0E1.nk)
s = ||nk||(sine)
c = ||ni.nj||(cosine)

19

Figure 14: monotonic angular function q.

Having a sorted list of triangle pairs, we can create a manifold neighboring
for the triangles in both orientations by mutually associating as neighbor the
triangles of each pair. This information is then used to traverse the triangles
cloud with a flood fill algorithm to gather the triangles by element : any
triangle set with the same color is a maPH.

5.6. Building maPH elements for a prioritized mesh

When a mesh is prioritized (the yellow mesh on Fig. 15), it means that
is has to be embedded into another mesh. In this case, only its outer skin
is involved in the intersection process with the entire embedding mesh (Fig.
15b) because it has to be preserved as much as possible. Once its skin has
been imprinted into the embedding mesh, its inner topology needs to be
modified in the vicinity of this new surface to match it (Fig. 15c) in order to
get a conformal result (Fig. 15d).

Figure 15: (a) a prioritized mesh hiding another mesh ; (b) polygon-polyhedron intersec-
tion process ; (c) gluing the new skin and the interior mesh ; (d) conformal result.

20

Rather than computing the intersections again between the new skin and
the interior mesh, a topological approach has been chosen : we gather the
triangles on the new skin coming from the same initial polygons. We can
then tap individually each open cell on the vicinity of the modified surface
by refining the outer contour of these open cells (Fig. 16).

Figure 16: Tapping the open cells to match the new polygonal surface.

5.7. Aggregating the triangles : building final aPH elements

For a given maPH with triangular faces, we want to aggregate its triangles
to get back to a polygonal representation. The resulting polygons must be
admissible and conformity between them must be preserved so we gather the
triangles satisfying the following rules :

1. They have the same polygon ancestor (using ancPG mapping, cf. 1.6)

2. They form a connected set with a single boundary loop

3. They are shared by the same two maPHs (for preserving conformity)

We first create a table giving the two polyhedral cells that share each triangle.
For each triangle set coming from the same initial polygon, we separate the
triangles into smaller subsets that share the same cells. A flood fill algorithm
ensures to have at the end only subsets with a single boundary loop.

Optional Concave polygons split. Because concavity can be an issue
for some applications (e.g. Finite Volume Method for CFD) requiring having
the center of the faces inside the face to be more accurate, an extra feature
has been added to optionally split the concave sets into convex ones. Because
the entities to split are triangulations rather than meshes the simple following
algorithm is enough to get a natural cut for the concave polygons.
The algorithm is depicted on Fig. 18 : it starts by finding the worst concavity
over the contour (point C). From the oriented edge E ending on C (orange
edge) the triangles sharing C are traversed to detect the best cutting edge :

21

Figure 17: (a) split triangles on a sphere colored by initial quads ; (b) convex aggregation
ensuring conformity with the imprinting mesh.

the one which makes an angle smaller but as close as possible to 180◦ with E
(green edge E′). If E′ ends on a contour node, a convex bit has been obtained
and we start again with the remaining contour. Otherwise E becomes E′ and
the cutting is carried on.
At the end of this aggregation step, elements are maPH with polygonal faces
and we have a new mapping ancPGa giving for each maPH face its original
polygon ancestor.

Figure 18: (a) getting the best cutting edge ; (b) split process.

22

5.8. Classification

The classification is not done individually for each maPH. This would
imply to geometrically localize the maPH which can be costly. We rather
classify them topologically in two steps. First maPHs attached to the pure
skin (cf. 1.5) are considered and classified and second the other elements are
straightforwardly classified by a flood fill algorithm for which the delimiting
boundaries are pure skin polygons (Fig. 19).

Figure 19: (a) skin elements classification ; (b) flood filling.

The classification predicate is based on skin′s normal orientation in re-
gards with the considered skin elements. If a skin element has the skin normal
inward (yellow and blue elements on Fig. 19), this element is localized without
ambiguity as being outside the mesh having the considered skin. Elements
sharing the skin face are therefore in the common part (green elements). If no
outside elements are found, it means that the input meshes are two meshes
of the same domain : their skin fully overlap. We can end up with two zones
(rather than three for a partial overlapping) if one mesh is fully inside the
other one or if they have a partial contact, i.e. their skin is locally supported
by the same surface (and none is inside the other one).

5.9. Conservative remapping

Let′s consider two intersecting meshes M1 and M2 (cf. Fig. 20a) and the
mesh M ′

1 = (M1 \M2) ∪ (M1 ∩M2) (cf. Fig. 20b). M ′
1 represents the new

mesh of the domain occupied by M1. Having the mapping ancPGa (cf. 5.7),
we can detect in M ′

1 any polygon bit from M1. We can then use the neighbor
graph for M ′

1 cells to retrieve the mapping M1 ↔M ′
1 using again a flood fill

algorithm for which the delimiting boundaries are M1 polygon bits. Swapping

23

indices in the preceding gives the M2 ↔M ′
2 mapping.

The break down for a given M1 cell is shown on figure 20c.

Figure 20: (a) Two intersecting octrees M1 and M2 ; (b)M ′
1 ; (c) one M1 cell′s break

down.

6. Applications and results

The method has been implemented in templatized C++ in the Cassiopee
Software [17]. This section gives some test results for several ascending size
problems covering the different boolean operations on different type of ope-
rands. All the test have been done using 1.e-13 as absolut tolerance and all
the polygonal aggregations are convex.
All the tests and performance measures have been done on a single Intel
Xeon core @ 2.8 GHz.

6.1. Prioritized union of two volume meshes

We consider a spherical boundary layer mesh immersed in a octal back-
ground mesh. This is the simplified typical configuration for a CFD viscous
external flow around a body (cf. Fig. 21a). Before processing it, the octree
has been decimated by discarding any cell having a node inside the inner
sphere because the interior of the boby is irrelevant for that kind of applica-
tions. The conformal result is depicted in Fig. 21b and the performances are
available in table 1.

24

Figure 21: (a) a spherical boundary layer mesh appended into an octree ; (b) conformal
union.

Step CPU time (s)

1) Init (16,182 polygons) 0.11
2) Triangulation (6,174 polygons) 0.09
3) Intersections(13,164 triangles) 0.30
4) Triangle split(39,208 triangles) 1.05
5) Cell construct (2,150 polyhedra) 1.07
6) Polygons Aggregation 0.64
7) Classification 0.27
Total 3.53

Table 1: Performances for the 6.1 case.

6.2. Intersection, two volume meshes

Let′s consider now two identical conformal polyhedral mesh operands M1

and M2 obtained from an octree having a refinement at its centroid (cf. Fig.
22) in an intersecting position. They both have 1,576 polyhedra.

The figures 23 shows the resulting volume meshes of the difference and
the non-prioritized intersection of them. It contains 4,821 polyhedra which
is less than the double of the initial number of elements. With a tetrahedral
approach (i.e. splitting all the polyhedra into tetraherdons first) we would
en up with an increase of at least one order of magnitude. The polyhedral
approach si therefore better fitted to ouput the resulting mesh for boolean
operations. The performance are shown in the table 2.

25

Figure 22: (a) Two intersecting octrees M1 (blue) and M2 (red) ;(b) octree operand′s
inner structure.

Figure 23: (a) M1 ∩M2 ; (b) M1 \M2.

6.3. Union of a surface mesh with a volume mesh

We consider a light triangulated cat surface with 740 triangles (Fig. 24a)
fully immersed in a Cartesian grid (29,440 hexs, 91,300 quads). The algorithm
generates here the conformal union, i.e. the surface is integrated into the
mesh. A view of the clipped mesh is depicted in Fig. 24b and the performance
details are given in table 3. A 5.8 speed-up factor has been obtained since
[26].

6.4. Union of two surface meshes

Even though this algorithm is more dedicated for cases with at least one
volume mesh input, it is interesting to compare it with a pure surface al-
gorithm [21]. We consider here a case that has been treated in the paper,

26

Step CPU time (s)

1) Init (11,784 polygons) 0.03
2) Triangulation (10,322 polygons) 0.21
3) Intersections(22,757 triangles) 0.67
4) Triangle split(58,207 triangles) 1.30
5) Cell construct (5,116 polyhedra) 1.35
6) Polygons Aggregation 0.6
7) Classification 0.18
Total 4.34

Table 2: Performances for the 6.2 case.

Step CPU time (s)

1) Init (92,000 polygons) 0.37
2) Triangulation (25,460 polygons) 0.02
3) Intersections(50,182 triangles) 1.29
4) Triangle split(111,098 triangles) 2.72
5) Cell construct (10,593 polyhedra) 2.48
6) Polygons Aggregation 1.4
7) Classification 1.03
Total 9.31

Table 3: Performances for the 6.3 case.

the union of a Buddha and a lion shown on Fig. 25a. The case is approxi-
matively 1.48 million triangles. In order to make a fair comparison, polygon
aggregation has been disabled as the the output mesh is triangular. The time
reported by the author for this case is 1.027 sec. for a multithreaded run (4
threads) on a slightly slower processor (@2.7 GHz). Considering that our im-
plementation is sequential, there code is around eight times faster (cf. table
4) than our current implementation. This is mainly due to the cell construct
and classification steps that are currently not optimized for surface meshes.
But one order of magnitude is acceptable regarding the versatility of our
algorithm and the remaining ways of improvement given in the conclusion.
The algorithm shows a good robustness with this case having triangles of
very different size at the bottom of the lion model (as depicted in 25b).

27

Figure 24: (a) triangular surface mesh ; (b) conformal union with a cartesian grid.

Step CPU time (s)

1) Init (1,487,474 triangles) 6.89
2) Triangulation (584,426 polygons) 0.00
3) Intersections(1,051,966 triangles) 7.15
4) Triangle split(3,441,290 triangles) 4.53
5) Cell construct 12.28
6) Classification 2.19
Total 32.04

Table 4: Performances for the 6.4 case.

6.5. Difference between a volume mesh and a surface mesh : cut-cell meshing
No 1

Here we present the bottom part of a landgear (cf. Fig. 26a), having
116,000 triangles immersed into an octal mesh with 303,000 polyhedra (1,067,178
polygons). The resulting cut-cell mesh is shown depicted in Fig. 27a. The per-
formances (cf. table 5 have been significantly improved (speed up factor 20)
since [26]. A lot of ways of improvement remains though as expressed in the
conclusion.

28

Figure 25: (a) Union of a Buddha and a lion (b) zoom on a critical region.

6.6. Difference between a volume mesh and a surface mesh : cut-cell meshing
No 2

This case is a more complex landgear model : 831,000 triangles (cf. Fig.
26b). The immersing octree has 127,000 polyhedra (450,000 polygons). The
resulting cut-cell mesh is shown depicted in Fig. 27b. It took 353 sec. to
compute this cut-cell mesh as shown in table 6.

29

Figure 26: (a) bottom part of a landgear (b) complete model.

Step CPU time (s)

1) Init (1,124,000 polygons) 3.11
2) Triangulation (584,426 polygons) 0.32
3) Intersections(1,051,966 triangles) 38.90
4) Triangle split(3,441,290 triangles) 101.84
5) Cell construct (218,951 polyhedra) 83.77
6) Polygons Aggregation 45.56
7) Classification 21.66
Total 295.16

Table 5: Performances for the 6.5 case.

Step CPU time (s)

1) Init (1,282,282 polygons) 4.3
2) Triangulation (1,223,998 polygons) 6.27
3) Intersections(1,664,962 triangles) 48.98
4) Triangle split(4,186,360 triangles) 113.98
5) Cell construct (161,192 polyhedra) 100.8
6) Polygons Aggregation 55.67
7) Classification 23.35
Total 353.35

Table 6: Performances for the 6.6 case.

30

Figure 27: clipped view of the cut-cell meshes

31

7. Conclusion and perspectives

An algorithm with a O(nlog(n)) algorithmic complexity has been descri-
bed to resolve boolean operations for arbitrary polyhedral meshes and has
been implemented successfully. The current tests have shown that even if
some good progresses have been made since the first implementation tests,
the current performances are roughly around 1,000 polyhedra constructed
per second which is not good enough to deal with transient industrial CFD
cases. As a Pre or Post tool, the performance can already be considered as
satisfactory though. But there are plenty of ways of improvements.

The first issue of this algorithm comes from the fact that the triangular
intersection kernel has been designed to handle any kind of configuration. So
it could handle upon entry some non-conformal meshes as long as they are
consistently oriented. This is because there are no assumption on the input
connectivity, the set of input triangles (once the polygons have been trian-
gulated) is treated as a soup. This is powerful and allows covering a wider
range of cases but efficiency would be significantly improved by using this
connectivity information for instance for the localization as described in [12]
or [2]. Almost all targeted 3D applications deal with conformal meshes upon
entry.

The second issue comes from the triangles split stage. Using a constrained-
Delaunay algorithm is obviously too heavy for the purpose and is the most
sensitive part to robustness issues. Using ear-clipping techniques could be
an improvement [ebe98, hel98], but the true enhancement will be to find a
solution that does not generate triangles at all. The polygons could still be
triangulated to compute the intersections in order to facilitate the intersec-
tion kernel design, but we could imagine other ways of cutting the polygons
along the intersection traces to work on a polygon cloud rather than a heavy
triangular cloud. This would remove the reaggregation stage, woud light the
polygon sorting and the cell construction stage would deliver directly the
maPHs.

Another way of improvement would be to somehow cut and classify simulta-
neously the polygon bits. This would avoid to create useless elements, mea-
ning elements rejected at the classification stage.

32

When all these algorithm changes will be implemented and validated, the
code will be multithreaded and specialized to focus on the conservative pro-
blem specifically, keeping as an option to output or not the geometry upon
exit.

8. References

[1] P.E. Farrell, M.D. Piggott, C.C. Pain, G.J. Gorman, C.R. Wilson,
Conservative interpolation between unstructured meshes via supermesh
construction, Comput. Methods Appl. Mech. Engrg., Vol. 198, pp. 2632-
2642 (2009).

[2] P.E. Farrell, J.R. Maddison, Conservative interpolation between volume
meshes by local Galerkin projection, Comput. Methods Appl. Mech.
Engrg. (2010).

[3] S. Menon, D.P. Schmidt, Conservative interpolation on unstructured
polyhedral meshes : An extension of the supermesh approach to cell-
centered finite-volume variables, Comput. Methods Appl. Mech. Engrg.,
Vol. 200, pp. 2797-2804 (2011).

[4] D.H. Eberly, 3D Game Engine Design : A Practical Approach to Real-
Time Computer Graphics, fist ed., Morgan Kaufmann, 2000, ISBN
1558605932.

[5] J. Grandy, Conservative Remapping and Region Overlays by Intersec-
ting Arbitrary Polyhedra, JCP, Vol. 148, pp. 433-466 (1999).

[6] P. Brenner, Three Dimensional Aerodynamics with Moving bodies ap-
plied to solid propellant, AIAA, 27th Joint Propulsion Conf. (1991).

[7] P. Brenner, Simulation du mouvement relatif de corps soumis un cou-
lement instationnaire par une mthode de chevauchement de maillages,
AGARD FDP Symposium on Progress and Challenges in CFD Methods
and Algorithms (1995).

[8] D. Badouel, G. Hgron, Opérations booléennes sur polyèdres : évaluation
d′arbres CGS. [Research Report] RR-0839 (1988).

33

[9] M.O. Benouamer. Opérations booléennes sur les polyèdres reprsentés par
leurs frontières et imprécisions numériques, Ph.D. Dissertation, Ecole
Nationale Supérieure des Mines de Saint-Etienne ; Université Jean Mon-
net - Saint-Etienne (1993).

[10] E.Levent Gursoz, Y. Choi, F.B. Prinz, Boolean set operations on non-
manifold boundary representation objects, Computer-Aided Design, Vol.
23, Issue 1, pp 33-39 (1991).

[11] H. Borouchaki, Paul L. George, Aspects of 2-D Delaunay mesh genera-
tion, IJNME, Vol. 40, pp. 1957-1975 (1997).

[12] F. Alauzet, M. Mehrenberger, P1-conservative solution interpolation
on unstructured triangular meshes, IJNME, Vol. 84, pp. 1552-1588,
10.1002/nme.2951 (2010).

[13] L.G. Margolin, Mikhail Shashkov, Second-order sign-preserving conser-
vative interpolation (remapping) on general grids, JCP, Vol. 184, pp.
266-298 (2003).

[14] R. Garimella, M. Kucharik, M. Shashkov, An efficient linearity and
bound preserving conservative interpolation (remapping) on polyhedral
meshes, Computer and Fluids, Vol. 36, pp. 224-237 (2007).

[15] Z.J. Wang, V. Parthasarathy, and N. Hariharan, A fully automated Chi-
mera methodology for multiple moving body problems, 36th AIAA Ae-
rospace Sciences Metting and Exhibit (1997).

[16] O. Devillers ; P. Guigue, Faster Triangle-Triangle Intersection Tests, RR-
4488 INRIA (2002).

[17] C. Benôıt, S. Peron, S. Landier, Cassiopee : a CFD pre- and post-
processing tool, Aerospace Science and Technology, Vol. pp. 45, 272-243
(2015).

[18] J.R. Schewchuk, Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates, Discrete and Computational Geometry,
Vol. 18, pp. 303-363 (1997).

[19] F. Alauzet, A parallel matrix-free conservative solution interpolation on
unstructured tetrahedral meshes, Comput. Methods Appl. Mech. Engrg.
(2015).

34

[20] H. Edelsbrunner, E.P. Mcke, Simulation of simplicity : a technique to
cope with degenerate cases in geometric algorithms, ACM Transactions
on Graphics (TOG), Vol. 9, no 1, pp. 66-104 (1990).

[21] M. Douze, J-S. Franco, B. Raffin, QuickCSG : Arbitrary and Fas-
ter Boolean Combinations of N Solids, Diss. Inria-Research Centre
GrenobleRhne-Alpes (2015).

[22] D. Pavi, M. Campen, L. Kobbelt, Hybrid booleans, Computer Graphics
Forum, Vol. 29, No. 1, Blackwell Publishing Ltd (2010).

[23] D. Eberly, Triangulation by ear clipping, Geometric Tools, LLC (1998).

[24] M. Held, Efficient and reliable triangulation of polygons, Computer Gra-
phics International, Proceedings IEEE (1998).

[25] R. Goldman, Graphics Gems, A. S. Glassner Ed., pp. 304 (1990).

[26] S. Landier, Boolean Operations on Arbitrary Polyhedral Meshes, Pro-
cedia Engineering, Vol. 124, pp. 200-212 (2015).

35

