Experimental study of non-linear air flow through a single concrete crack characterised geometrically by X-ray microtomography

Xavier Jourdain, Giuseppe Rastiello

To cite this version:
Xavier Jourdain, Giuseppe Rastiello. Experimental study of non-linear air flow through a single concrete crack characterised geometrically by X-ray microtomography. 13èmes Journées d’études des Milieux Poreux 2016, Oct 2016, Anglet, France. hal-01394451

HAL Id: hal-01394451
https://hal.archives-ouvertes.fr/hal-01394451
Submitted on 9 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Experimental study of non-linear air flow through a single concrete crack characterised geometrically by X-ray microtomography

X. Jourdaina, G. Rastielloa,b

aLMT Cachan, ENS Cachan/CNRS/Université Paris Saclay, 61 a. du président Wilson, 94235 Cachan Cedex, France
bGeM, UMR CNRS 6183, École Centrale de Nantes, 1 rue de la Noé, 44321 Nantes, France

Keywords: air flow, single concrete crack, experimental study, non-linear flow, X-Ray 3D tomography

Quantitative predictions of air flow rates through cracked concrete and reinforced concrete structural elements are crucial in many engineering applications. One can cite, among others, air leakage through cement paste layers injected around tubing for gas extractions, or air leakage through concrete walls of nuclear containment structures in the absence of steel liner. This second application is extremely important in France, where many nuclear power plants of such kind (REP 1300 P4, REP 1300 P’4, REP 1450 N4) are still in service. In these applications, air leakage rate estimations are often carried out by considering Loss of Coolant Accident (LOCA) conditions. In that situation, the absolute pressure (p_1) inside the containment building is supposed to reach about 520 kPa and the temperature (T_1) 140 °C, while external pressure (p_2) and temperature (T_2) remains at ambient conditions. The resulting pressure and temperature gradients across the wall induce air flow from inside the containment structure to the external environment. Under these conditions, localized macro-cracks represent preferential pathways for fluid flow and could increase the leakage rate with respect to undamaged or diffusely damaged conditions strongly.

1. State of the art

Several studies aiming to predict structural transfer properties evolution in the presence of one or more macro-cracks were published in the literature (e.g. air flow [6, 8, 7, 1, 2], water flow [4, 5]). In most of these works, the flow was supposed to behave according to the Poiseuille model. For air flows under isothermal quasi-incompressible conditions, this leads to assume that the specific mass flow rate (Q) is a linear function of the square pressure drop (Δp^2) between the inlet and outlet crack sections. The proportionality coefficient between them depends linearly on the so-called crack permeability, conventionally computed according to the parallel plates model as $k_c = \xi a^2/12$. Here, a denotes a representative crack opening value and $\xi \leq 1$ is a phenomenological corrective factor accounting for the reduction in flow rate due to the roughness of crack walls, tortuosity of flow paths and contact areas inside the crack space. Factor ξ is typically assumed as a constant with values ranging in a wide interval ($\xi = 0.5 \div 0.001$). Figure 1 compares mass flow rate values computed using definitions of ξ proposed in cited works and considering LOCA conditions (at least in terms of pressures). Such a comparison put into evidence that there is no consensus on the quantitative estimation of air flow through a single concrete crack. One could expect that this is partly due to some differences in tested materials. Limitations associated with the adopted experimental protocols and results treatment could, however, play an important role. This second aspect is crucial, because recirculation phenomena and fluid compressibility effects can induce the relationship $Q = Q(\Delta p^2)$ to become non-linear even for small Reynolds values (i.e., under laminar conditions). Under these conditions the Poiseuille flow assumption is not still valid, and non-linear Forchheimer-like models could be more pertinent.

2. Experimental protocol coupling flow measurements and X-ray microtomography

Some theoretical studies of nonlinear flow models accounting for compressibility effects in parallel plates channels under different thermodynamic conditions were published. At the same time, some
Mass flow rate \[\text{[kg/s]} \]

For water flows were retained for sake of comparison a purely geometrical properties. For that reason, also relationships proposed by 3D X-ray tomography to quantify the local apertures distribution with high spatial resolution (4 \(\mu \text{m} \)) then performed under squared pressure gradients close to LOCA conditions. The crack is then scanned together using a special experimental procedure as describe on the figure. Air flow measurements are finally put into relation with crack geometrical properties. The experimental procedure is applied to different samples. This finally allows for proposing some enhancements to classic non-linear compressible flow models.

References

Figure 1: Flow rate estimations for a REP 1450 N4 containment building wall (thickness = 1.20 m) under LOCA pressure conditions. Note that \(\xi \) should be a purely geometrical properties. For that reason, also relationships proposed for water flows were retained for sake of comparison.

Figure 2: Schematic view of the experimental device and geometry of the cylindrical sample.