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Abstract:This paper shows how we can study real life problems in economics, biology and engineering with tools
from differential geometry. Section 1 emphasizes the S-shaped time evolutions and underlines that the torse form-
ing vector field reflects economical phenomena. Section 2 analyzes the geometric dynamics on infinite dimensional
Riemannian manifolds produced by first order ODEs and the Euclidean metric. Section 3 introduces and studies a
least-curvature principle. Section 4 defines and studies the geometric dynamics on infinite dimensional Riemannian
manifolds produced by second order ODEs and by the Euclidean metric. Section 5 analyzes the least-curvature
principle of Gauss and Hertz in a general setting. Section 6 explores the controllability of the neoclassical growth
geometric dynamics and underlines that the theory can be extended to infinite dimensional manifolds. Section 7
contains conclusions.
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1 S-shaped time evolutions

S-shaped (or sigmoid) time evolutions[1] are fre-
quently observed in some dynamic economic phe-
nomena (product life cycles, the gradual diffusion of
technological innovations or long-term fluctuations in
income, productivity growth etc). It is also useful in
biology and demography dynamics. These S-shaped
evolutions are usually incorporated into formal mod-
els using autonomous ODE systems such asẋ(t) =
X(x(t)), where a solutionx(t) has aninflection point
x0 = x(t0). In other wordsx(t) must satisfy

ẍ(t0) = µẋ(t0)

or
DXX(x(t0)) = µX(x(t0))

andx′(t0), x′′′(t0) are linearly independent vectors.
This means thatX(x(t0)) is a proper vector of the
Jacobian matrixDX(x(t0)) with respect to the proper
valueµ.

The S-shaped evolutions degenerate in two ways:
(i) DXX(x(t)) = µ(t)X(x(t)),∀t ∈ I ⊂ R,

wherex(t) is a solution of (1); in this case the solution
x(t) of (1) is a straight line;

(ii) DXX(x(t)) = µ(x(t))X(x(t)), for any t ∈
I ⊂ R and for any solutionx(t) of (1); in this case
any solutionx(t) of (1) is a straight line.
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This remark suggests to introduce a vector
field X characterized by the relationDXX(x) =
µ(x)X(x),∀x ∈ Rn. Note that atorse forming vector
field has this property. Indeed, such a field is defined
by [2]

DZX = aZ + (Y, Z)X,

whereZ is an arbitraryC∞ vector field,a is a given
C∞ real function andY is a givenC∞ vector field.
On the other hand, in the case of torse forming vector
field, the relation

DXX = aX + (Y, X)X

is true everywhere, showing the collinearity between
DXX andX. In this way, a torse forming vector field
used till now only in differential geometry may reflect
phenomena from economics, biology, demographics
etc (Open Problems).

2 Geometric dynamics on infinite di-
mensional Riemannian manifolds
produced by first order ODEs

Thegeometric dynamics[2]-[4] induced by a flow

ẋ(t) = X(x(t), t), (1)

and by the Euclidean metric is described by the first
order Lagrangian

L1(x, ẋ, t) =
1
2
||ẋ−X(x, t)||2.

Let

F =
1
2
||X||2

be thepotential energyassociated toX. The second
order Euler-Lagrange ODE system associated toL1,
i.e.,

∂L1

∂x
− d

dt

∂L1

∂ẋ
= 0

or

ẍ(t) =
(
DX(x(t))−DXT (x(t))

)
ẋ(t)

+∇F (x(t)) +
∂X

∂t
, (2)

is an Euler-Lagrange prolongation of the system (1).
Introducing thegyroscopic vector field

Y (x(t), ẋ(t), t)

=
(
DX(x(t))−DXT (x(t))

)
ẋ(t)+∇F (x(t))+

∂X

∂t
,

the ODE (2) can be written in the general form of a
second order dynamical system.

A trajectory in the geometric dynamics (2) is fixed
either by initial conditions

x(0) = x0, ẋ(0) = v0

or by boundary conditions

x(0) = x0, x(t0) = xt0 .

If v0 = X(x(0)), then the trajectory in geometric dy-
namics coincides with a field line of the vector field
X, i.e., a solution of (1). Ifv0 6= X(x(0)), then
the corresponding trajectory is transversal to the field
lines. In [3, pag. 5], one asks what is the practical sig-
nificance of these transversal trajectories; in the Sec-
tions 3 and 5, possible answers will be given.

We admit that the theory in [3, pag. 137] can
be applied also to the first order differential systems
consisting from an infinity ofn-vector equations. For
that we use the Riemannian (Euclidean) manifold
(Rn × l2, δij + δαβ) to transform a local flow in a
geodesic motion in a gyroscopic field of forces. We
start from an arbitrary local flow described by

ẋα(t) = Xα(xα(t), t), xα(t) ∈ Rn, α ∈ N, (3)

on the Riemannian (Euclidean) manifold(Rn ×
l2, δij + δαβ). We introduce the least squares La-
grangian

L1
∞(xα, ẋα, t)

=
1
2
δijδ

αβ(ẋi
α −Xi

α(xα, t))(ẋj
β −Xj

β(xβ, t))

=
1
2

∑
α

||ẋα −Xα(xα, t)||2

and the associated action on the Sobolev space
W 1,2([a, b]). By the Euler-Lagrange ODEs, we obtain
an Euler-Lagrange prolongation of the system (3),

d2xα

dt2
= δβγ

(
∂Xα

∂xβ
− ∂Xβ

∂xα

)
dxγ

dt
+

∂f

∂xα
+

∂Xα

∂t
,

wheref =
1
2
δijδ

αβXi
αXj

β is a density of energy. This

prolongation determines a geometric dynamics, i.e., a
geodesic motion in a gyroscopic field of forces. Auto-
matically, the least squares Lagrangian determines the
Hamiltonian

H1
∞(xα, ẋα, t)

=
1
2
δijδ

αβ(ẋi
α −Xi

α(xα, t))(ẋj
β + Xj

β(xβ, t)).

Of course,L1
∞ andH1

∞ are sums of series of func-
tions. They ask the uniform convergence, and hence

lim
α→∞

(ẋα −Xα(xα, t)) = 0
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lim
α→∞

(ẋβ + Xβ(xβ, t)) = 0

along the trajectories in geometric dynamics.

3 The least-curvature principle
Suppose that, for each indexα ∈ N , the pointxα(t)
represents a particle involved in a first order dynami-
cal system at timet and that we have constraints de-
scribed by

Ak(x) = 0, x = (xα), α ∈ N, k = 1, ...,m,

whereAk areC1 functions. Admit that the particle is
”sensitive” to the velocity vector fieldXα(xα(t), t), in
the sense that without the constraints action, the par-
ticle would follow a field line. The velocity vector
ẋ(t) = (ẋα(t)) refers to any kinematically possible
path, i.e. solution of the constraints system, for which
coordinates at the instant considered are the same as
in actual trajectory.

Definition. The least squares Lagrangian (sum of
series of functions, uniform convergence)

L1
∞ =

1
2

∑
α

||ẋα(t)−Xα(xα(t), t)||2

is called the kinematic curvature of the pathx(t) =
(xα(t)) on the Riemannian (Euclidean) space(Rn ×
l2, δij + δαβ).

Theorem. From all paths consistent with the con-
straints, the actual trajectory is that which has the
least kinematic curvature.

Proof. Differentiating the constraints we respect
to t, we obtain

∂Ak

∂xi
α

(x(t))ẋi
α(t) = 0.

Let ẋi
α be a typical component of the velocity in the

path considered anḋxi
α0 be the corresponding compo-

nent of the velocity in the actual trajectory. Then, by
the previous equality,

∂Ak

∂xi
α

(x(t))(ẋi
α(t)− ẋi

α0(t)) = 0,

i.e., a small displacementδxi
α(t) of the system is pro-

portional to (ẋi
α(t) − ẋi

α0(t)). The components of
the velocities exercised by the curvature are typified
by (ẋi

α0(t)−Xi
α(xα0(t), t)). Since these components

must be normal to the submanifold defined by the con-
straints, we have (orthogonality condition)

δijδ
αβ(ẋi

α0(t)−Xi
α(xα0(t), t))(ẋ

j
β(t)− ẋj

β0(t)) = 0.

This relation can be written as follows∑
α

||ẋα(t)−Xα(xα0(t), t)||2

=
∑
α

||ẋα0(t)−Xα(xα0(t), t)||2

+
∑
α

||ẋα(t)− ẋα0(t)||2.

Consequently∑
α

||ẋα(t)−Xα(xα0(t), t)||2

>
∑
α

||ẋα0(t)−Xα(xα0(t), t)||2.

Now, the result from the statement of the theorem fol-
lows.

This result shows that the trajectories of the Euler-
Lagrange prolongation (2), which are not field lines
of (1), can be trajectories of the dynamical system
ẋ(t) = X(x(t), t) subject to some constraints.

4 Geometric dynamics on infinite di-
mensional Riemannian manifolds
produced by second order ODEs

The general form of a second order dynamical system
(Newton Law) is

ẍ(t) = Y (x(t), ẋ(t), t). (4)

A trajectory of this second order dynamical system is
fixed either by initial conditions

x(0) = x0, ẋ(0) = v0

or by boundary conditions

x(0) = x0, x(t0) = xt0 .

The second order ODEs (4) suggests that giving
a vector fieldY (x(t), ẋ(t), t), we can introduce a sec-
ond order least squares Lagrangian

L2 =
1
2
||ẍ(t)− Y (x(t), ẋ(t), t)||2,

using the Euclidean metric. The fourth order Euler-
Lagrange equations produced byL2, i.e.,

∂L2

∂x
− d

dt

∂L2

∂ẋ
+

d2

dt2
∂L2

∂ẍ
= 0

are Euler-Lagrange prolongations of a system of type
(4). To simplify, we accept

Y (x(t), ẋ(t), t) = Y (x(t))
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and we denoteF =
1
2
||Y ||2. Then the Euler-

Lagrange prolongation of the system (4) is

x(4)(t) =
(
DX(x(t))−DXT (x(t))

)
ẍ(t)

+ẋT (t) (Hess(Y)(x(t))) ẋ(t)−∇F (x(t)).

This prolongation determines a geometric dynamics.
We admit that the theory in [3, page. 137] can

be applied also to the second order differential sys-
tems consisting from an infinity ofn-vector equations.
For that we use the Riemannian (Euclidean) manifold
(Rn × l2, δij + δαβ) to transform a Newton law in
an Euler-Lagrange prolongation of fourth order. We
start from an arbitrary local second order dynamical
system described by

ẍα(t) = Yα(xα(t), ẋα(t), t), (5)

xα(t) ∈ Rn, α ∈ N,

on the Riemannian (Euclidean) manifold(Rn ×
l2, δij + δαβ). We introduce the second order least
squares Lagrangian

L2
∞(xα, ẋα, ẍα, t)

=
1
2
δijδ

αβ(ẍi
α − Y i

α(xα, ẋα, t))(ẍj
β − Y j

β (xβ, ẋβ, t))

=
1
2

∑
α

||ẍα − Yα(xα, ẋα, t)||2

and the associated action on the Sobolev space
W 1,2([a, b]). By the Euler-Lagrange ODEs, we ob-
tain an Euler-Lagrange prolongation of the system (3),
which is a fourth order system. This prolongation de-
termines a geometric dynamics. Automatically, the
geometric dynamics determines the Hamiltonian

H2
∞(xα, ẋα, ẍα, t)

=
1
2
δijδ

αβ(ẍi
α−Y i

α(xα, ẋα, t))(ẍj
β + Y j

β (xβ, ẋβ, t)).

Of course,L2
∞ andH2

∞ are sums of series of func-
tions. They ask the uniform convergence, and hence

lim
α→∞

(ẍα − Yα(xα, ẋα, t)) = 0

lim
α→∞

(ẍβ + Yβ(xβ, ẋα, t)) = 0

along the trajectories in geometric dynamics.

5 The least-curvature principle of
Gauss and Hertz

Suppose that, for each indexα ∈ N , the pointxα(t)
represents a particle involved in a second order dy-
namical system at timet. Admit that the constraints
are described by Pfaff equations

δαβAαki(x)dxi
β = 0, x = (xα),

α, β ∈ N, k = 1, ...,m, i = 1, ..., n,

where the coefficientsAαki areC1 functions. We add
the external forceYα(xα(t), ẋα(t), t) which acts on
the particle. The acceleration vectorẍ(t) = (ẍα(t))
refers to any kinematically possible path, i.e. solution
of the previous Pfaff system, for which coordinates
and velocities at the instant considered are the same
as in actual trajectory.

Definition. The least squares Lagrangian (sum of
series of functions, uniform convergence)

L2
∞ =

1
2

∑
α

||ẍα(t)− Yα(xα(t), ẋ(t), t)||2

is called the Gauss-Hertz curvature [5] of the path
x(t) = (xα(t)) on the Riemannian (Euclidean) space
(Rn × l2, δij + δαβ).

Theorem. From all paths consistent with the con-
straints, the actual trajectory is that which has the
least Gauss-Hertz curvature.

Proof. Differentiating the constraints

δαβAαki(x(t))ẋi
β = 0

we respect tot, we obtain

δαβ

(
Aαki(x(t))ẍi

β(t) +
∂Aαki

∂xj
γ

(x(t))ẋi
β(t)ẋj

γ(t)

)
= 0.

Let ẍi
α be a typical component of the acceleration

in the path considered and̈xi
α0 be the corresponding

component of the acceleration in the actual trajectory.
Then, by the previous equality,

δαβAαki(x(t))(ẍi
β(t)− ẍi

β0(t)) = 0,

i.e., a small displacementδxi
α(t) of the system is pro-

portional to(ẍi
α(t)− ẍi

α0(t)). The components of the
forces exercised by the Gauss-Hertz curvature are typ-
ified by (ẍi

α0(t)− Y i
α(xα0(t), ẋα0(t), t)). Since these

forces do no work, we must have (orthogonality con-
dition)

δijδ
αβ(ẍi

α0(t)− Y i
α(xα0(t), ẋα0(t), t))

(ẍj
β(t)− ẍj

β0(t)) = 0.
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This relation can be written as follows∑
α

||ẍα(t)− Yα(xα0(t), ẋα0(t), t)||2

=
∑
α

||ẍα0(t)− Yα(xα0(t), ẋα0(t), t)||2

+
∑
α

||ẍα(t)− ẍα0(t)||2.

Consequently∑
α

||ẍα(t)− Yα(xα0(t), ẋα0(t), t)||2

>
∑
α

||ẍα0(t)− Yα(xα0(t), ẋα0(t), t)||2.

Now, the result from the statement of the theorem fol-
lows.

6 Neoclassical growth geometric
dynamics

We start with theneoclassical growth flow

k̇(t) = X(k(t))− δk(t)− c(t), k(0) = k0 > 0,

wherek = (k1, ..., kn) is thecapital intensity vector,
c = (c1, ..., cn) is thecontrol vectorandδ is a real
number. The Jacobian matrix of the growth vector
field isDX − δI. Therefore, the geometric dynamics
induced by the growth vector field and the Euclidean
metric is described by the second order ODE system

k̈(t) =
(
DX(k(t))−DXT (k(t))

)
k̇(t)

+∇F (k(t))− ċ(t),

where

F =
1
2
||X(k)− δk − c||2.

Obviously, the geometric dynamics is controlled by
the commandc(t) and its derivativėc(t).

Now, we underline that the growth flow can be
analyzed as in Sections 2-5 (see also [3]), but the sense
of indexα is still an open problem.

7 Conclusions
The S-shaped evolutions, the geometric dynamics on
infinite dimensional Riemannian manifolds, the least-
curvature principles and the neoclassical growth flow
are suitable mathematical objects and models for de-
scribing the real life problems in economics, biology
and engineering with tools from differential geometry.

As example, the least-curvature principles, in fact the
distance between a point and a subset, can describe
the evolution of a dynamical system subject to some
constraints.
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