
HAL Id: hal-01393968
https://hal.science/hal-01393968

Submitted on 8 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Group Non-Negative Matrix Factorisation With Speaker
And Session Similarity Constraints For Speaker

Identification
Romain Serizel, Slim Essid, Gael Richard

To cite this version:
Romain Serizel, Slim Essid, Gael Richard. Group Non-Negative Matrix Factorisation With Speaker
And Session Similarity Constraints For Speaker Identification. IEEE International Conference on
Acoustics, Speech, and Signal Processing, Mar 2016, Shangai, China. �hal-01393968�

https://hal.science/hal-01393968
https://hal.archives-ouvertes.fr


GROUP NON-NEGATIVE MATRIX FACTORISATION WITH SPEAKER AND SESSION

SIMILARITY CONSTRAINTS FOR SPEAKER IDENTIFICATION

Romain Serizel, Slim Essid, Gaël Richard
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ABSTRACT

This paper presents a feature learning approach for speaker

identification that is based on non-negative matrix factorisa-

tion. Recent studies have shown that in methods such as non-

negative matrix factorisation, the dictionary atoms can repre-

sent well the speaker identity and that Using speaker identity

to induce group similarity can proven to improve further the

performance. However, the approaches proposed so far fo-

cused only on speakers variability and not on sessions vari-

ability. However, this later point is a crucial aspect in the suc-

cess of the I-vector approaches that is now the state-of-the-art

in speaker identification.

This paper proposes an approach that relies on group-

NMF and that is inspired that the I-vector training procedure.

By doing so this approach intends to capture both the speaker

variability and the session variability. Results on a small cor-

pus prove the proposed approach to be competitive with the

state-of-the-art I-vector approach.

Index Terms— Non-negative matrix factorisation, group

similarity, spectrogram factorisation, speaker identification

1. INTRODUCTION

The main target of speaker identification is to assert whether

or not the speaker of a test segment is known and if he/she

is known, to find his/her identity. Applications of speaker

identification are numerous, among which speaker dependent

automatic speech recognition and subject identification based

on biometric information. In this later case, the sentence pro-

nounced by the subject can be unknown and the recordings

can be of various quality. Therefore the process of speaker

identification can become highly challenging.

Since their emergence almost five years ago, the I-

vectors [1] have become the state-of-the-art approach for

speaker verification and by extension for speaker identifica-

tion [2]. A typical speaker identification system is composed

of I-vector extraction, I-vector normalisation [3, 4] and I-

vector classification with probabilistic linear discriminant

analysis (PLDA) [5]. Research on the tandem I-vector/PLDA

has focused a lot of attention during the past years and speaker
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verification systems have now reached a high level of perfor-

mance on databases such as the National Institute of Stan-

dards and Technology (NIST) Speaker recognition evaluation

(SRE) campaigns [2, 6].

On the other hand, recent studies have shown that ap-

proaches such as non-negative matrix factorisation [7] can be

successfully applied to spectrogram factorisation [8, 9, 10] or

to multimodal co-factorisation [11] to retrieve speaker iden-

tity. Therefore indicating that the activations of dictionary

atoms can represent well the speaker identity [10]. Using

speaker identity to induce group sparsity or groups similarity

has then proven to improve further the performance of NMF-

based approaches to speaker identification. NMF therefore

offer a credible alternative to i-vectors that takes advantage of

the intrinsic sparsity of speech [9, 12]. However, to our best

knowledge, none of these approaches take the recording ses-

sions information into account, yet this is a crucial point in

the success of I-vectors.

This paper proposes an approach to speaker identifica-

tion that relies on group-NMF and that is inspired that the

I-vector training procedure. Given data measured with several

subject, the key idea in group-NMF is to track inter-subjects

and intra-subjects variations by constraining a set of common

bases across subjects in the decomposition dictionaries [13].

The approach presented here extends this idea and proposes to

capture inter-speakers and inter-sessions variabilities by con-

straining a set of speaker depend bases across sessions and

a set of sessions dependent bases across speakers. This ap-

proach is inspired by I-vectors as it takes both speaker vari-

ability and session variability into account. In this sense, it

differs from previous approaches based on NMF [8, 9, 12] that

takes only speaker variability into account. Besides, in these

previous works similarity constraints were imposed on acti-

vations while in the approach proposed here the constraints

are on the dictionary.

The paper is organised as follows. The problem, the nota-

tions and the general NMF approach for speaker recognition

are introduced, in Section 2. The proposed approach is de-

scribed in Section 3. Experiment results on a toy example are

presented in Section 4. Finally, conclusions are exposed in

Section 5.



2. PROBLEM STATEMENT

2.1. Notations

We consider the (positive) time-frequency representation of

an audio signal V ∈ R
F×N
+ . Where F is the number of

frequency components and N the number of frames. V is

composed of data collected during S recordings sessions with

speech segments originating fromC speakers. In each session

several speakers can be present and a particular speaker can

be present in several sessions. Let C denote the set of speakers

class and S the set of sessions.

c ∈ C = J1 ; CK and s ∈ S = J1 ; SK

Let Cs denote the subset of speakers that appear in the session

s and Sc the subset of session in which the speaker c appears.

Sc ⊂ S and Cs ⊂ C

In the remainder of this paper, superscript c and s will denotes

the current speaker and session, respectively.

2.2. NMF with Kullback-Leibler divergence

The goal of NMF [7] is to find a factorisation of V of the form:

V ≈WH (1)

where W ∈ R
F×K
+ and H ∈ R

K×N
+ and K is the number of

elements in the decomposition. Given a divergence D, NMF

can be formulated as the following optimisation problem:

min
WH

D(V|WH) s.t.W ≥ 0, H ≥ 0

When considering audio signals, D is often chosen to be

the Kullback-Leibler divergence (denoted DKL here) [14].

The multiplicative update rules for the matrices W and H can

then be expressed as follows [15, 16]:

H← H⊙
WT

[

(WH)−1 ⊙ V
]

WT 1
(2)

W←W⊙

[

(WH)−1 ⊙ V
]

HT

1HT
(3)

where⊙ is the element-wise product (Hadamard product) and

division and power are element-wise. 1 is a matrix of dimen-

sion F ×N with all its coefficient equal to 1.

2.3. NMF for features learning in speaker recognition

In this paper, NMF is used for feature learning in a speaker

recognition framework. The factorisation is first learnt on a

training set and activations are used as input feature to train a

general classifier. The dictionaries W obtained on the training

set are then used to extract features (activations) on a test set.

These features are used as input to the general classifier to

perform speaker identification.

3. GROUP NMF WITH SPEAKER AND SESSION

SIMILARITY

In the approach presented above, the feature learning step is

totally unsupervised and does not account for speaker vari-

ability or session variability. The approach introduced here

intends to take these variabilities into account. It derives

from group-NMF [13] is inspired by exemplar-based ap-

proaches [8, 9]. The idea of a decomposition across speaker

was originally used in Saeidi et al. [10] but session variability

was not considered since.

3.1. NMF on speaker utterances for speaker recognition

We now consider the portion of V recorded in session s in

which only speaker c is active. This is denoted V(cs) its length

is N (cs) and it can be decomposed according to (1):

V(cs) ≈W(cs)H(cs) ∀ (c, s) ∈ C × Sc

We define a global cost function which is the sum of all

local divergences:

Jglobal =

C
∑

c=1

∑

s∈Sc

DKL(V
(cs)|W(cs)H(cs)) (4)

Each V(cs) can be decomposed independently with standard

multiplicative rules (2, 3). The bases learnt on the training set

are then concatenated to form a global basis. This later basis

is used to produce features on test sets.

3.2. Class and session similarity constraints

In order to take the session and speaker variabilities into ac-

count we propose to further decompose the dictionaries W

similarly as in Lee et al. [13]. The matrix W(cs) can indeed

be arbitrarily decomposed as follows:

W(cs) = [ W
(cs)
SPK

←KSPK→

| W
(cs)
SES

←KSES→

| W
(cs)
RES

←KRES→

]

with

KSPK +KSES +KRES = K

The first target is to capture speaker variability. This is

related to finding vectors for the speakers bases W
(cs)
SPK that are

as close as possible for each speaker c across all the sessions

in which the speaker is present, leading to the constraint:

JSPK =
1

2

C
∑

c=1

∑

s∈Sc

∑

s1∈Sc
s1 6=s

‖W
(cs)
SPK −W

(cs1)
SPK ‖

2 < α1 (5)

The second target is to capture session variability. This in

turn is similar to finding vectors for the sessions bases W
(cs)
SES



W
(cs)
SPK ←W

(cs)
SPK ⊙

[

(W(cs)H(cs))−1 ⊙ V(cs)
]

H
(cs)
SPK

T

+ λ1

∑

s1∈Sc
s1 6=s

W
(cs1)
SPK

1H
(cs)
SPK

T

+ λ1 (Card(Sc)− 1)W
(cs)
SPK

(8)

W
(cs)
SES ←W

(cs)
SES ⊙

[

(W(cs)H(cs))−1 ⊙ V(cs)
]

H
(cs)
SES

T

+ λ2

∑

c1∈Cs
c1 6=c

W
(c1s)
SES

1H
(cs)
SES

T

+ λ2 (Card(Cs)− 1)W
(cs)
SES

(9)

W
(cs)
RES ←W

(cs)
RES ⊙

[

(W(cs)H(cs))−1 ⊙ V(cs)
]

H
(cs)
RES

T

1H
(cs)
RES

T
(10)

that are as close as possible across each session s across all the

speaker that speaks in the session, leading to the constraint:

JSES =
1

2

S
∑

s=1

∑

c∈Cs

∑

c1∈Cs
c1 6=c

‖W
(cs)
SES −W

(c1s)
SES ‖

2 < α2 (6)

The vectors composing the residual bases W
(cs)
RES are left

unconstrained to represent characteristics that depend neither

the speaker nor the session.

Minimizing the global divergence (4) subject to con-

straints (5) and (6) results in the following dual problem:

min
W,H

Jglobal + λ1JSPK + λ2JSES s.t.W ≥ 0, H ≥ 0 (7)

which in turn leads to the multiplicative update rules for the

dictionaries (W(cs)) that are given in equations (8-10). Note

that the update rules for the activations (H(cs)) are left un-

changed.

4. EXPERIMENTS

4.1. Experimental setup and corpus

This paper is intended mainly as a proof of concept. The ap-

proach presented here is tested on a toy example: a subset of

the ESTER corpus [17]. Only speaker with at least 10 sec-

onds of training data are selected from ESTER to compose

the subset corpus. Speakers utterances are split in 10 sec-

onds segments in order to obtain enough segments to train

the back-end classifier. The amount of training data is limited

to 6 minutes per speaker. When there is more than 6 min-

utes of speech for a speaker, 10 seconds segments are selected

randomly to compose a 6 minutes subset. The resulting cor-

pus is composed of 6 hours and 11 minutes of training data

and 3 hours 40 minutes of test data both distributed among

95 speakers. The amount of training data per speaker ranges

from 10 seconds to 6 minutes (Table 1).

Duration < 1min 1min – 5min > 5min

Number of speakers 25 26 44

Table 1. Speakers repartition according to the amount of

available training data.

A baseline I-vectors system is trained with LIUM speaker

diarisation toolkit [18]. The acoustic features are 20 mel fre-

quency cepstral coefficients (MFCC) [19], including the en-

ergy coefficient. They are computed on 32ms frames with

16ms overlap. The MFCC are augmented with their first and

second derivatives to form a 60-dimensional features vector.

They are computed with Yaafe [20]. An universal background

model (UBM) with 256 Gaussian components per acoustic

features is trained on the full training set and the dimension

of the total variability space is set to 100. Eigen factor radial

normalisation is applied on I-vectors before classification [4].

The acoustic features for NMF based systems are 64 mel-

spectrum coefficients computed on 32ms frames with 16ms

overlap. NMF and group-NMF are initialised randomly six

times and trained independently for 1000 iterations. In each

case, the factorisation with the lowest cost function at the end

of the training is selected to extract features. All NMF-based

systems are trained on GPGPU with an in-house software1

based on Theano toolbox [21]. The number of components is

set to K = 100 and to (KSPK = 4, KSES = 2,KRES = 2)
for the NMF and the group-NMF, respectively. There are 236

unique couples (speaker, session) so the dimension of the fea-

tures vectors extracted with the group-NMF is 1888. The

weights λ1 and λ2 are normalised by the values of the cost

functions (4), (5) and (6) at convergence for the unconstrained

case. This way for λ1 = 1 the contribution from (4) and (5)

to (7) are equivalent, respectively λ2 = 1 and the contribu-

tions from (4) and (6). It does not make sense to apply EFR

to features extracted from NMF, therefore these features are

1Source code is available at https://github.com/rserizel/

groupNMF



❍
❍
❍
❍
❍

λ1

λ2
0 0.06 0.12 0.25

0 77.8% 76.5% 76.0% 76.7%

0.33 75.6% 80.2% 78.9% 79.7%

0.67 74.1% 77.3% 77.4% 75.1%

1.33 76.6% 74.7% 79.4% 80.5%

Table 2. Weighted F1-scores obtained for different values of

λ1 and λ2.

only scaled to unit variance before classification.

Normalised I-vectors and features vectors extracted with

NMF are classified with a multinomial logistic regression.

The logistic regression is preferred to PLDA as the later is

known to perform quite poorly when the number of sam-

ples becomes small compared to the features dimensional-

ity, which is the case here. In order to mitigate the effect

of the imbalance between speakers in the test set, the classifi-

cation performance is measured with weighted F1-score [22]

where the F1-score is computed for each class separately and

weighted by the number of utterances in the class. Both lo-

gistic regression and F1-scores are performed with the scikit

learn toolkit [23]. Variations in identification performance

were validated using the McNemar test [24] considered sig-

nificance levels were .01 and .001.

4.2. Discussion

The first experiment is to control that the constraints imposed

on the speaker bases W
(cs)
SPK and the sessions bases W

(cs)
SES

does not affect the stability of the NMF algorithm. Impos-

ing constraints on the costs function (7) does not seem to af-

fect the convergence of the global KL-divergence (Figure 1

(a)). However, the constraints are effective at reducing the

distance between the speaker bases (Figure 1 (b)) and the ses-

sions bases(Figure 1 (c)), respectively.

In a second experiment the proposed approach is tested

for different value of the weight applied to the constraints.

Weighted F1-score performance is presented in Table 2. A

few trends appear on this table. Firstly it seems clear now

that imposing constraint on the speaker bases W
(cs)
SPK and the

sessions bases W
(cs)
SES does have an impact on the performance

of the speaker identification. Secondly, it appears that there

is a trade-off between the weight λ1 and λ2. Indeed, for a

fixed λ1, the performance reaches a maximum for a particu-

lar value of λ2. Increasing λ2 beyond this value results in a

performance degradation.

Finally, the systems described above have been tested on

the subset the ESTER. Table 3 present the performance of

the systems. Two different configurations are considered for

the group-NMF approach. The first configuration is fully un-

constrained (λ1 = 0 and λ2 = 0). Both constraints are ac-

tive in the second configuration (λ1 = 0.33 and λ2 = 0.06).

Group-NMF

Features I-vector NMF λ11 = 0 λ1 = 0.33
λ2 = 0 λ2 = 0.07

F1-score 76.1% 70.7% 77.8% 80.2%

Table 3. Weighted F1-scores obtained for a classification

with multinomial logistic regression.

The first remarks is that all systems perform reasonably well

even if standard NMF is clearly behind the other approaches

(p < .001). The unconstrained NMF and the I-vector ap-

proach perform similarly (the difference is not statistically

significant). Imposing constraints on both the speaker bases

W
(cs)
SPK and the sessions bases W

(cs)
SES improves significantly

the performance compared to the I-vector approach and the

unconstrained group-NMF (p < .01 in both cases).

5. CONCLUSIONS

This paper introduced a new feature learning approach for

speaker identification that is based on NMF. Recent works on

exemplar based speaker recognition have shown that dictio-

nary atoms in a NMF system can represent well speaker iden-

tity. Capitalising on this statement, the authors proposed an

approach based on group-NMF that is inspired by the state-

of-the-art I-vector approach and tries to capture both speak-

ers variability and sessions variability. The central idea is to

impose similarity constraints on speaker bases and sessions

bases in the decomposition dictionaries. The proposed ap-

proach as proven to be competitive with I-vector on a small

corpus and future works should include extensive tests on

larger corpora and on a wider range of configurations.
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[16] Cédric Févotte and Jérôme Idier, “Algorithms for nonnegative

matrix factorization with the β-divergence,” Neural Computa-

tion, vol. 23, no. 9, pp. 2421–2456, 2011.

[17] G Gravier, J F Bonastre, E Geoffrois, S Galliano, K Mc Tait,

and K Choukri, “ESTER, une campagne d’évaluation des sys-
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