F. F. Abdi, L. Han, A. H. Smets, M. Zeman, B. Dam et al., Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode, Nature Communications, vol.115, pp.2195-2195, 2013.
DOI : 10.1038/ncomms3195

K. S. Joya, Y. F. Joya, K. Ocakoglu, and R. Van-de-krol, Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move, Angewandte Chemie International Edition, vol.47, issue.40, pp.10426-10437, 2013.
DOI : 10.1002/anie.201300136

F. F. Abdi, N. Firet, and R. Van-de-krol, Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W-doping, ChemCatChem, vol.5, issue.2, pp.490-496, 2013.
DOI : 10.1002/cctc.201200472

M. Gratzel, Photoelectrochemical cells, Nature, vol.414, pp.338-344, 2001.
DOI : 10.1142/9789814317665_0003

J. P. Mcevoy and G. W. Brudvig, Water-Splitting Chemistry of Photosystem II, Chemical Reviews, vol.106, issue.11, pp.4455-4483, 2006.
DOI : 10.1021/cr0204294

D. G. Nocera, Personalized Energy: The Home as a Solar Power Station and Solar Gas Station, ChemSusChem, vol.120, issue.82, pp.387-390, 2009.
DOI : 10.1002/cssc.200900040

K. Sivula, Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis, The Journal of Physical Chemistry Letters, vol.4, issue.10, pp.1624-1633
DOI : 10.1021/jz4002983

T. W. Hamann, Splitting water with rust: hematite photoelectrochemistry, Dalton Transactions, vol.48, issue.26, pp.7830-7834
DOI : 10.1039/c1ee2567h

J. Gan, X. Lu, Y. Tong, K. Sivula, F. Le-formal et al., Towards Highly Efficient Photoanodes: Boosting Sunlight- Driven Semiconductor Nanomaterials for Water Oxidation Solar Water Splitting: Progress Using Hematite (?-Fe2o3) Photoelectrodes Charge Carrier Trapping, Recombination and Transfer in Hematite Water Splitting Photoanodes Photoelectrolysis of Water Using Iron Titanate Anodes, Nanoscale 2014 Chemsuschem Chem. Sci. J, vol.6, issue.4, pp.7142-7164, 2011.

. P. Appl, A. Fujishima, K. Honda, A. J. Cowan, J. Tang et al., Electrochemical Photolysis of Water at a Semiconductor Electrode Water Splitting by Nanocrystalline Tio2 in a Complete Photoelectrochemical Cell Exhibits Efficiencies Limited by Charge Recombination Hydrogen Production by Photocatalytic Water-Splitting Using Cr-or Fe-Doped Tio2 Composite Thin Films Photocatalyst, Mechanism of Photocatalytic Water Splitting in Tio2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry, pp.2019-2021, 1972.

M. D. Stamate, Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system, Thin Solid Films, vol.372, issue.1-2, pp.246-249, 2000.
DOI : 10.1016/S0040-6090(00)01027-0

L. Formal, F. Pendlebury, S. R. Cornuz, M. Tilley, S. D. Grätzel et al., Back Electron-Hole Recombination in Hematite Photoanodes for Water Splitting Preparation, Characterization and Photocatalytic Activity of in Situ Fe-Doped Tio2 Thin Films, Z., Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films, pp.2564-2574, 2004.

S. Saremi-yarahmadi, K. G. Wijayantha, A. A. Tahir, and B. Vaidhyanathan, Electrodes for Solar Driven Water Splitting: Effect of Doping Agents on Preparation and Performance, The Journal of Physical Chemistry C, vol.113, issue.12, pp.4768-4778, 2009.
DOI : 10.1021/jp808453z

Z. Longo, C. Zhao, W. Li, Y. Zhang, M. Chen et al., Direct Microwave Hydrothermal Synthesis of Fe-Doped Titania with Extended Visible-Light Response and Enhanced H2-Production Performance Preparation of Photocatalytic Fe2o3-Tio2 Coatings in One Step by Metal Organic Chemical Vapor Deposition, Synthesis, Photoelectric Properties and Photocatalytic Activity of the Fe2o3/Tio2 Heterogeneous Photocatalysts, pp.5555-5561, 2008.

E. Courtin, G. Baldinozzi, M. T. Sougrati, L. Stievano, C. Sanchez et al., New Fe2TiO5-based nanoheterostructured mesoporous photoanodes with improved visible light photoresponses, Fe2o3-Tio2 Nanocomposites for Enhanced Charge Separation and Photocatalytic Activity, pp.6567-6577, 2014.
DOI : 10.1039/c4ta00102h

URL : https://hal.archives-ouvertes.fr/hal-00975353

D. W. Bahnemann, A Facile Surface Passivation of Hematite Photoanodes with Tio2 Overlayers for Efficient Solar Water Splitting, ACS Appl. Mater. Interfaces, vol.7, pp.24053-24062, 2015.

S. Melissen, F. Labat, P. Sautet, T. Le-bahers, S. Melissen et al., Electronic Properties of Pbx3ch3nh3 (X = Cl, Br, I) Compounds for Photovoltaic and Photocatalytic Applications The Relationship between Carbon Nitride Structure and Exciton Binding Energies: A Dft Perspective, Phys. Chem. Chem. Phys. J. Phys. Chem. C. Bhunia, M. K.; Melissen, S.; Parida, M. R. Basset, J.-M, vol.17, issue.31, pp.2199-2209, 2015.

O. F. Mohammed, P. Sautet, T. Le-bahers, and K. Takanabe, Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity, Chem. Mater, vol.27, pp.8237-8247, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01282423

L. Bahers, T. Haller, S. Le-mercier, T. Barboux, P. D. Sautet et al., Assessing the Use of Bicuos for Photovoltaic Application: From Dft to Macroscopic Simulation Electronic Structure and Photocatalytic Activity of Wurtzite Cugaas Nanocrystals and Their Zn Substitution Size Tailoring of Tio2 Anatase Nanoparticles in Aqueous Medium and Synthesis of Nanocomposites. Characterization by Raman Spectroscopy Microwave-Hydrothermal Synthesis of ?-Fe2o3 Nanoparticles and Their Magnetic Properties Applications of an Amorphous Silicon-Based Area Detector for High-Resolution, High-Sensitivity and Fast Time-Resolved Pair Distribution Function Measurements, J. Phys. Chem. C J. Mater. Chem. A Pottier, A.; Cassaignon, S.; Chanéac, C.; Villain, F.; Tronc, E.; Jolivet, J.-P. J. Mater. Chem. Mater. Res. Bull. Chupas, P. J. J. Appl. Crystallogr, vol.119, issue.40, pp.17585-17595, 2003.

P. J. Chupas, X. Y. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey et al., Rapid- Acquisition Pair Distribution Function (Ra-Pdf) Analysis Two- Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Pressure Res Pdfgetx2: A Gui-Driven Program to Obtain the Pair Distribution Function from X-Ray Powder Diffraction Data, J. Appl. Crystallogr. Hammersley, A. P.; Svensson, S. O.; Hanfland, M J. Appl. Crystallogr, vol.36, issue.37, pp.1342-1347, 1996.

S. J. Billinge, P. Pdffit2, and R. Dovesi, Computer Programs for Studying Nanostructure in Crystals Crystal14: A Program for the Ab Initio Investigation of Crystalline Solids, 2014. 43. Catti Theoretical Study of Electronic, Magnetic, and Structural Properties of Alpha -Fe2o3 (Hematite). Phys. Rev, pp.1287-1317, 1995.

G. Sophia, P. Baranek, C. Sarrazin, M. Rérat, and R. Dovesi, First-principles study of the mechanisms of the pressure-induced dielectric anomalies in ferroelectric perovskites, Phase Transitions, vol.29, issue.11, pp.1069-1084
DOI : 10.6028/jres.049.044

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, The Journal of Chemical Physics, vol.110, issue.13, pp.6158-6170, 1999.
DOI : 10.1063/1.478522

H. J. Monkhorst, J. D. Pack, J. Heyd, G. E. Scuseria, and M. Ernzerhof, Special Points for Brillouin-Zone Integrations Hybrid Functionals Based on a Screened Coulomb Potential Erratum: Hybrid Functionals Based on a Screened Coulomb Potential $, Scuseria, G. E., Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals, pp.5188-5192, 1976.

V. Barone, O. Hod, J. E. Peralta, G. E. Scuseria, J. Paier et al., Accurate Prediction of the Electronic Properties of Low-Dimensional Graphene Derivatives Using a Screened Hybrid Density Functional Accurate Treatment of Solids with the Hse Screened Hybrid, Acc. Chem. Res. Phys. Status Solidi, vol.44, issue.248, pp.269-279, 2011.

L. Bahers, T. Rérat, M. Sautet, P. Noel, Y. Zicovich-wilson et al., Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT, The Journal of Physical Chemistry C, vol.118, issue.12, pp.5997-6008, 2001.
DOI : 10.1021/jp409724c

URL : https://hal.archives-ouvertes.fr/hal-01121460

M. Ferrero, M. Rerat, R. Orlando, and R. Dovesi, The calculation of static polarizabilities of 1-3D periodic compounds. the implementation in the crystal code, Journal of Computational Chemistry, vol.13, issue.9, pp.1450-1459, 2007.
DOI : 10.1002/jcc.20905

M. Ferrero, M. Rerat, B. Kirtman, and R. Dovesi, The calculation of static polarizabilities of 1-3D periodic compounds. the implementation in the crystal code, Journal of Computational Chemistry, vol.13, issue.9, pp.244110-244110, 2008.
DOI : 10.1002/jcc.20905

E. J. Mele, Screening of a point charge by an anisotropic medium: Anamorphoses in the method of images, American Journal of Physics, vol.69, issue.5, pp.557-562, 2001.
DOI : 10.1119/1.1341252

N. Adelstein, J. B. Neaton, M. Asta, and L. C. De-jonghe, Density functional theory based calculation of small-polaron mobility in hematite, Electronic and Optical Properties of New Multifunctional Materials Via Half-Substituted Hematite: First Principles Calculations. RSC Adv. 2012, pp.245115-245115, 2014.
DOI : 10.1103/PhysRevB.89.245115

C. J. Howard, T. M. Sabine, F. Dickson, W. Q. Guo, S. Malus et al., Structural and Thermal Parameters for Rutile and Anatase Crystal Structure and Cation Distributions in the Feti2o5-Fe2tio5 Solid Solution Series Hybrid Density Functional Theory Band Structure Engineering in Hematite, Acta Crystallogr. Sect. B J. Phys.: Condens. Matter Pozun, Z. D J. Chem. Phys, vol.47, issue.134, pp.462-468, 1991.

S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, A. P. Sutton et al., Electron- Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An Lsda+U Study. Phys. Rev Electronic, Structural, and Magnetic Effects of 3d Transition Metals in Hematite, J. Appl. Phys, vol.57, issue.65, pp.1505-1509, 1998.

A. Yan and Y. , Titanium and Magnesium Co-Alloyed Hematite Thin Films for Photoelectrochemical Water Splitting, J. Appl. Phys, vol.111, pp.73502-073502, 2012.

S. Cassaignon, M. Koelsch, J. Jolivet, S. Cassaignon, M. Koelsch et al., Selective Synthesis of Brookite, Anatase and Rutile Nanoparticles: Thermolysis of Ticl4 in Aqueous Nitric Acid From Ticl3 to Tio2 Nanoparticles (Anatase, Brookite and Rutile): Thermohydrolysis and Oxidation in Aqueous Medium Size Tailoring of Tio2 Anatase Nanoparticles in Aqueous Medium and Synthesis of Nanocomposites. Characterization by Raman Spectroscopy, J. Mater. Sci. J. Phys. Chem. Solids C.; Villain, F.; Tronc, E.; Jolivet, J. P. J. Mater. Chem, vol.42, issue.13, pp.6689-6695, 2003.

J. P. Jolivet, C. Chaneac, E. Tronc, A. Pottier, C. Chaneac et al., Iron Oxide Chemistry. From Molecular Clusters to Extended Solid Networks Synthesis of Brookite Tio2 Nanoparticles by Thermolysis of Ticl4 in Strongly Acidic Aqueous Media Size Tailoring of Magnetite Particles Formed by Aqueous Precipitation: An Example of Thermodynamic Stability of Nanometric Oxide Particles, Chem. Commun. J. Mater. Chem. Vayssieres, L.; Chaneac, C.; Tronc, E.; Jolivet, J. P. J. Colloid Interf. Sci, vol.70, issue.205, pp.481-487, 1998.
URL : https://hal.archives-ouvertes.fr/jpa-00254920

J. Jolivet, E. Tronc, and C. Chaneac, Iron oxides: From molecular clusters to solid. A nice example of chemical versatility, Comptes Rendus Geoscience, vol.338, issue.6-7, pp.488-497, 2006.
DOI : 10.1016/j.crte.2006.04.014

L. Li, M. H. Fan, R. C. Brown, J. H. Van-leeuwen, J. J. Wang et al., Synthesis, Properties, and Environmental Applications of Nanoscale Iron-Based Materials: A Review, Synthesis, Properties, and Environmental Applications of Nanoscale Iron- Based Materials: A Review, pp.405-431, 2006.
DOI : 10.1080/10643380600620387

C. Adan, A. Bahamonde, M. Fernandez-garcia, A. Martinez-arias, G. Wittmann et al., Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation, Synthesis, Structure and Photocatalytic Properties of Fe(Iii)-Doped Tio, pp.11-17, 2007.
DOI : 10.1016/j.apcatb.2006.09.018

. Appl, A. Khaleel, F. Dufour, S. Cassaignon, O. Durupthy et al., Do Tio2 Nanoparticles Really Taste Better When Cooked in a Microwave Oven? Nonstoichiometric Li-Pseudobrookite(Ss) in the Li2o-Fe2o3- Tio2 System A New Monoclinic Phase in the Fe2o3-Tio2 System .1. Structure Determination and Mossbauer- Spectroscopy Beyond Crystallography: The Study of Disorder, Nanocrystallinity and Crystallographically Challenged Materials with Pair Distribution Functions, Near the Ferric Pseudobrookite Composition (Fe2tio5) Direct Formation of Iron(Iii)-Doped Titanium Oxide (Anatase) by Thermal Hydrolysis and Its Structural Property, pp.27-37, 1981.

L. Mariey, F. Maugé, C. Chanéac, K. Sivula, M. Graetzel et al., Morphological Control of Tio2 Anatase Nanoparticles: What Is the Good Surface Property to Obtain Efficient Photocatalysts? Le Formal The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments Fabrication, Characterization and Photoelectrochemical Properties of Fe2o3 Modified Tio2 Nanotube Arrays, Appl. Catal., B J. Phys. Chem. C Appl. Surf. Sci, vol.2015, issue.86, pp.174-175, 2009.

J. R. Durrant and D. R. Klug, Activation Energies for the Rate-Limiting Step in Water Photooxidation by Nanostructured ?-Fe2o3 and Tio2, J. Am. Chem. Soc, vol.133, pp.10134-10140, 2011.

C. Magne, F. Dufour, F. Labat, G. Lancel, O. Durupthy et al., Effects of TiO2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic properties, Journal of Photochemistry and Photobiology A: Chemistry, vol.232, pp.22-31, 2012.
DOI : 10.1016/j.jphotochem.2012.01.015

URL : https://hal.archives-ouvertes.fr/hal-01494501