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Finite dimensional approximations

for a class of infinite dimensional time optimal control problems

Marius Tucsnak∗, Julie Valein†, Chi-Ting Wu‡

June 24, 2016

Abstract

In this work we study the numerical approximation of the solutions of a class of abstract
parabolic time optimal control problems with unbounded control operator. Our main results assert
that, provided that the target is a closed ball centered at the origin and of positive radius, the
optimal time and the optimal controls of the approximate time optimal problems converge (in ap-
propriate norms) to the optimal time and to the optimal controls of the original problem. In order
to prove our main theorem, we provide a nonsmooth data error estimate for abstract parabolic
systems.

Keywords. distributed parameter systems, optimal control, numerical approximation
AMS subject classifications. 93C25; 93B07; 93C20; 35R30;

1 Introduction

Time optimal control of infinite dimensional systems is a subject of growing interest, motivated by
numerous applications in domains such as guidance of complex systems or temperature regulation
in large buildings. In recent year, using new tools from infinite dimensional systems theory, the
literature devoted to this topic grew in a considerable manner (see Arada and Raymond [1], Barbu
[4], [5], Fattorini [11], [12], [13], Kunisch and Wang [17], Kunisch and Wachsmuth [16], Li and Yong
[21] and Tröltzsch [29]). The specific case of time optimal control for systems governed by parabolic
PDE’s has numerous applications, from which we quote optimization of building thermal storage (see,
for instance [14] and references therein).

The aim of this paper, containing results partially announced in [30], is to study the approximation
of the solutions of time optimal (internally or boundary) control problems for a class of infinite dimen-
sional linear systems by projecting the original problem on an appropriate family of finite dimensional
spaces. This is a delicate question since, as shown in the above mentioned references, time optimal
controls are usually highly oscillating functions (due to the bang-bang property). As far as we know,
the only papers having already investigated this issue are Knowles [15], Wang and Wang [32], Wang
and Zheng [33] which investigated finite elements approximation for systems governed by the heat
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equation with internal controls. To our knowledge, the similar results obtained in these papers are
unknown to boundary time optimal control problems. A similar topic dealing with the homogenization
of parabolic system, where we study the asymptotic behavior of solutions and (time-)optimal controls
has been developed in recent years (see for example, Carja [8], [9], Castro and Zuazua [10] and Tebou
[27] ).

To state our results we need some notation. Let X and U be real Hilbert spaces, and let A0 :
DpA0q Ñ X be a strictly positive operator. It is known that ´A0 generates an exponentially stable
analytic semigroup, denoted by Tt. We denote by }.} (resp. x., .y) the norm (resp. the inner product)
on X. For γ ą 0 we denote by Xγ the space DpAγ0q, endowed with the graph norm. For γ ă 0,
Xγ stands for the dual of X´γ with respect to the pivot space X. We also introduce an operator
B P LpU,X´αq with 0 ď α ă 1

2 , called control operator. In this paper we consider systems of the form

9zptq `A0zptq “ Buptq pt ě 0q, (1.1)

zp0q “ z0 pz0 P Xq, (1.2)

where u P L8pr0,`8q;Uq is the input function and z is the state trajectory. It is well known (this
follows, for instance, by combining Theorem 4.4.3 and Proposition 5.1.3 in [31]) that if z0 P X and
u P L8pr0,`8q;Uq, there exists a unique solution z P Cpr0,`8q;Xq of (1.1)-(1.2) and z satisfies

zptq “ Ttz0 ` Φtu, where Φtu “

ż t

0
Tt´σBupσqdσ. (1.3)

Given ε ą 0, denote by B̄p0, εq the closed ball centered in zero and of radius ε in X. We consider the
time optimal control problem which states as follows
pTPq Determine τ˚0 ą 0 such that

τ˚0 “ mintτ ě 0 | there exists u P L8pr0,`8q;Uq s.t. }u}L8pr0,`8q;Uq ď 1 and zpτq P B̄p0, εqu,

and the corresponding optimal controls u˚0 .

Denote
Uad “ tu P L

8pr0,`8q;Uq | }u}L8pr0,`8q;Uq ď 1u. (1.4)

It is well-known that the above optimal time τ˚0 and optimal control u˚0 exist under additional as-
sumptions (see, for instance, [23]).

Let pVhqhą0 (resp. pUhqhą0) be a family of finite dimensional subspaces of X 1
2

(resp. U), which

are normed spaces when endowed with the restriction of the norm of X 1
2

(resp. U). We denote Ph

(resp. Qh) the orthogonal projector from X onto Vh (resp. U onto Uh). For each h ą 0 we consider
the following system:

9zhptq `Ahzhptq “ Bhuhptq pt ě 0q, (1.5)

zhp0q “ Phz0, (1.6)

where uh P L
8pr0,`8q;Uhq, pAhqhą0 is defined by

ă Ahϕ,ψ ą “ ă A
1
2
0 ϕ,A

1
2
0 ψ ą pϕ,ψ P Vhq, (1.7)

and Bh P LpU, Vhq is defined by:

xBhu, ϕy “ xu,B˚ϕyU pϕ P Vh, u P Uq. (1.8)
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The above system is the Galerkin approximation of (1.1)-(1.2), and its solution zh can be written as

zhptq “ Tt,hPhz0 ` Φt,huh, where Φt,huh “

ż t

0
Tt´σ,hBhuhpσqdσ, (1.9)

where Tt,h “ expp´tAhq is the semigroup generated by Ah. Denote by B̄hp0, εq the closed ball centered
in zero in Vh with radius ε. For each h ą 0, we consider the time optimal control problem for the
above system (1.5)-(1.6) which states as follows:
pTPhq Determine τ˚h ą 0 such that

τ˚h “ mintτ ě 0 | there exists uh P L
8pr0,`8q;Uhq s.t. }uh}L8pr0,`8q;Uhq ď 1 and zhpτq P B̄hp0, εqu,

and the corresponding optimal controls u˚h in the admissible set Uad,h, where Uad,h is defined by

Uad,h “ tu P L
8pr0,`8q;Uhq | }u}L8pr0,`8q;Uhq ď 1u. (1.10)

The goal of this work is to study the convergence of τ˚h to τ˚0 and of u˚h to u˚0 when h Ñ 0. To
this aim, we need appropriate assumptions on the approximation properties of the spaces pVhqhą0 and
pUhqhą0. More precisely, we assume that there exist θ ą 0, h1 ą 0, C ą 0 such that for every
h P p0, h1q and 0 ď γ ď 1 we have:

pC1q }x´ Phx} ď Chθγ}x}γ for every x P Xγ ,

pC2q Ah is uniformly (with respect to h) analytic, in the sense of the Definition 3.2 below,

pC3q }pI ´ PhqB}LpU,Xq ď Chθp1´αq,

pC4q }PhB}LpU,Vhq ď Ch´θα,

pC5q limhÑ0 }Qhu´ u}U “ 0 for every u P U ,

where α represents the unboundedness degree of the operator B (introduced in the beginning of this
section).

We are now in a position to state the main results of this paper:

Theorem 1.1. With the notation and assumptions on operators A0, B, Ah, Bh, assume that pC1q-
pC5q hold and that z0 P X, }z0} ą ε. Then limhÑ0 τ

˚
h “ τ˚0 .

Theorem 1.2. With the notation and assumptions on operators A0, B, Ah, Bh, assume that pC1q-
pC5q hold and that the only η P X for which there exists an open non-empty interval I with B˚T˚t η “ 0
for t P I is η “ 0. Then we have

u˚h Ñ u˚0 strongly in L2pr0, T s;Uq,

where T “ 2 lnp}z0}{εq
λ1

(λ1 is the first eigenvalue of the operator A0) and extending pu˚hqh and u˚0 to
time T by zero.

It is worth mentioning that similar convergence results have been obtained in [15] and [33]. In [15],
the control space takes only in finite dimensional subspaces of U and in [33] the initial data z0 is taken
in X 1

2
and with bounded operator B, which can not apply to boundary control problem. Our results
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can be seen as generalizations of those obtained in [33], in the sense that we consider a class of abstract
problems including the PDE systems studied there. The novelty of our results is that we weaken the
regularity assumptions on the initial data with z0 P X and also that we weaken the assumption on
control operator B with B P LpU,X´αq, 0 ď α ă 1

2 .
The outline of the remaining part of this paper is as follows. Section 2 contains some necessary

background on time optimal control problems. In Section 3, we provide some error estimate results
with smooth initial data which play an essential role to prove our Theorem 1.1. In Section 4, we
provide the proof of our main theorems. In Section 5, we apply our abstract results to some equations.
Throughout the paper, we denote by C a positive constant that may change from line to line.

2 Some background on time optimal control problem

This section, in which we continue to use the notation and assumptions introduced in Section 1 for
X, U , A0, B, is devoted to some background on the time optimal control problem pTPq. We first
introduce some basic notions on controllability (see for example Ch6. and Ch11. in [31]).

For τ ą 0, we denote Ψτ P LpX,L2pr0, τ s;Uqq the observation operator of pA˚0 , B
˚q on r0, τ s defined

by
pΨτz0qpσq “ B˚T˚σz0 pz0 P X, σ P r0, τ sq.

It is clear that (see, for instance, [31, Ch. 4]),

Φ˚τ “ RτΨτ pτ ą 0q, (2.11)

where Rτ is the reflection operator on L2pr0, τ s;Uq defined by Rτuptq “ upτ ´ tq.
We then recall the following existence result, which can be proved by using standard techniques

providing the existence of time optimal controls for linear systems. We refer to [12] or Lions [22] for
a detailed description of the methodology or to Micu et al [23, Proposition 2.6] for a slightly more
general version of this result.

Proposition 2.1. For every z0 P X and ε ą 0, the time optimal control problem pTPq admits at least
one solution pτ˚, u˚q.

We need below a special version of the maximum principle. Although maximum principle is a
classical tool in optimal control problems, we were unable to find the version we need (abstract setting
with unbounded control operators) in the existing literature. Therefore we give the precise statement
and a short proof below.

Theorem 2.2. With the notation of Proposition 2.1, assume that τ˚ ą 0. Then the time optimal
control u˚ satisfies the maximum principle, i.e., there exists ξ P X, ξ ­“ 0 such that,

xu˚pσq, pΨτ˚ξq pτ
˚ ´ σqyU “ max

vPU, }v}ď1
xv, pΨτ˚ξq pτ

˚ ´ σqyU , pσ P p0, τ˚q a.e.q. (2.12)

Moreover, ξ satisfies the transversality condition, i.e.:

xξ, z ´ Tτ˚z0 ´ Φτ˚u
˚y ě 0 pz P B̄p0, εqq. (2.13)

Proof. Let pτ˚, u˚q be a solution of the time optimal control in Proposition 2.1 and let

z1 “ Tτ˚z0 ` Φτ˚u
˚.
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Moreover, for each z0 P X and τ ą 0 denote

Uτ :“ tu|r0,τ s | u P Uadu and Rτz0 “ Tτz0 ` ΦτUτ .

We claim that
z1 P BRτ˚z0 X BBp0, εq. (2.14)

Indeed, it can be easily checked that we necessarily have }z1} “ ε. If we admit, by contradiction, that
z1 is an interior point of Rτ˚z0, this implies that there exists z2 P Rτ˚z0 with }z2} ă ε. Consequently,
there exists u2 P Uτ˚ such that

Tτ˚z0 ` Φτ˚u2 “ z2.

Since the map t ÞÑ }Ttz0`Φtu2} is continuous and that τ˚ ą 0, we obtain that there exists τ P p0, τ˚q
such that

}Tτz0 ` Φτu2} “ ε.

This contradicts the fact that pτ˚, u˚q is a solution of our time optimal control problem.We have thus
proved our claim (2.14).

Thus we clearly have that the sets Rτ˚z0 and Bp0, εq are non-empty, convex and they have no
common point. Moreover, since Bp0, εq is open, we can apply the geometric version of the Hahn Banach
theorem (see, for instance [7, Theorem 1.6]) to obtain that there exists a hyperplane separating Rτ˚z0

and Bp0, εq. This means that there exists α P R and ξ P X, ξ ­“ 0 such that

xξ, ηy ď α pη P Rτ˚z0q, (2.15)

xξ, ηy ě α pη P Bp0, εqq. (2.16)

The two above inequalities and (2.14) imply that

xξ, z1y “ α. (2.17)

From (2.15) and (2.17) we deduce that

xξ, z1y ě xξ, ηy pη P Rτ˚z0q,

which combined with the duality (2.11), clearly implies the maximum principle (2.12).
Moreover, we easily deduce the transversality condition (2.13) from (2.16) and (2.17).

Remark 2.3. To be more precise, we can deduce from the transversality condition (2.13) that:

ξ “ ´k pTτ˚z0 ` Φτ˚u
˚q , for some positive constant k. (2.18)

Corollary 2.4. With the notation of Theorem 2.2, assume that τ˚ ą 0 and that the assumption of
Theorem 1.2 holds, i.e., the only η P X for which there exists an open non-empty interval I with
B˚T˚t η “ 0 for t P I is η “ 0. Then the time optimal control u˚ is unique and it has the bang-bang
property:

}u˚ptq} “ 1 pt P p0, τ˚q a.e.q.
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Proof. We first remark that the following statement holds: If η P X such that there exists a subset
e Ă r0, τ s of positive measure with B˚T˚t η “ 0 for t P e, then η “ 0. Indeed, the facts that the map
t ÞÑ B˚T˚t η is analytic (which is due to the analyticity of Tt) and that it vanishes in e imply that this
map vanishes for t in some non-empty open interval I. Therefore, according to the hypothesis, we
have η “ 0.

With the above property, it is clear that pΨτ˚ξq pτ
˚ ´ tq ‰ 0 for almost every t P p0, τ˚q. Indeed,

if it is not the case, we deduce from the above property that ξ “ 0, which contradicts Theorem 2.2.

We can deduce from the maximum principle (2.12) that u˚ptq “
pΨτ˚ξqpτ

˚´tq
}pΨτ˚ξqpτ

˚´tq} . Thus, the bang-bang

property of the time-optimal control holds.
The uniqueness of the time-optimal control can be deduced from the strict convexity of U . This

ends the proof.

3 Nonsmooth data error estimates for abstract parabolic equations

In this section, we gather, for easy reference, some results providing error estimates for the semidiscrete
Galerkin approximation of some abstract parabolic systems. Our results are strongly inspired by
Lasiecka and Triggiani [20, Ch.4] and Badra [3, Ch.5], where they deal with a more general framework.
We continue to use the same notation and assumption introduced in Section 1 for X, U , A0, B, Ah,
Bh and Vh and we recall that Tt (resp. Tt,h) is the semigroup generated by ´A0 (resp. ´Ah). We then
consider the following linear equation and its approximated scheme (where we do not approximate u
by uh):

9zptq `A0zptq “ Buptq pt ě 0q, (3.1)

zp0q “ z0 P X, (3.2)

9zhptq `Ahzhptq “ Bhuptq pt ě 0q, (3.3)

zhp0q “ Phz0, (3.4)

with u P L8pr0,`8q;Uq. We first recall a classical characterization of analytic semigroups:

Proposition 3.1. Tt is an analytic semigroup if and only if there exist C, δ ą 0 such that

Σ Ă ρpA0q and } pλI ´A0q
´1
}LpXq ď

C

|λ|
pλ P Σq, (3.5)

where Σ is defined by Σ :“
 

λ P C | |argpλq| ď π
2 ` δ

(

.

It is well known (see, for instance, [24, Ch. 2.6]) that if Tt is analytic then

}Aγ0Tt}LpXq ď
C

tγ
pt ě 0, γ P p0, 1qq. (3.6)

We also need the concept of uniform analyticity of the family of semigroups pTt,hqhě0.

Definition 3.2. Tt,h is an uniformly analytic semigroup if there exist C independant of h, δ ą 0 such
that for every h ą 0 we have

Σ Ă ρpAhq and }pλI ´Ahq
´1}LpXq ď

C

|λ|
pλ P Σq,

where Σ is defined in Proposition 3.1.
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Similarly, the above definition implies the following property:

}AγhTt,h}LpXq ď
C

tγ
pt ą 0, γ P r0, 1sq. (3.7)

It is also clear that
Bhu “ pPhBqu pu P Uq,

and (see assumption pC4q)
}Bh}LpU,Vhq ď Ch´θα.

We recall in the following some well-known results:

Lemma 3.3. Assume that Tt is analytic. Then, for any 0 ď γ ď 1, there exists C ą 0 such that the
following estimates hold:
1. }Aγ0pλI ´A0q

´1}LpXq ď
C

|λ|1´γ
pλ P Σq.

2. Ttz “ 1
2πi

ş

Γ e
λt pλI ´A0q

´1 z dλ pz P Xq, where Γ is the path composed from the two rays ρeiψ

and ρe´iψ, 0 ă ρ ă 8 and π{2 ă ψ ă π{2 ` δ, Γ being oriented so that =λ increases along Γ (=λ
denotes the imaginary part of λ).

Proof. The proof of the first estimate can be found in [24, Ch. 2.6] and the proof of the last assertion
can be found in [24, Th. 7.7, Ch. 1].

Similar to Lemma 3.3, it is clear that we have the following lemma:

Lemma 3.4. Assume that Tt,h is uniformly analytic. Then, for any 0 ď γ ď 1, there exists C ą 0
such that the following statement hold:
1. }AγhpλI ´Ahq

´1}LpXq ď
C

|λ|1´γ
pλ P Σq.

2. Tt,hz “ 1
2πi

ş

Γ e
λt pλI ´Ahq

´1 z dλ pz P Vhq.

We gather in the proposition below, with no claim of originality, several error estimates which play
a central role in the proof of our main result. Some of the proofs are very similar to those in [3, Ch.5],
so that they are detailed.

Proposition 3.5. Assume that the assumption pC1q´pC4q hold. Then, there exists C ą 0, such that
for every h ą 0, we have the following properties:
1. }A´1

0 ´A´1
h Ph}LpXq ď Chθ.

2. }A´1
0 pB ´Bhq}LpU,Xq ď Chθp1´αq.

3. }pλI ´A0q
´1 ´ pλI ´Ahq

´1Ph}LpXq ď Chθ pλ P Σq.

4. }pλI ´A0q
´1B ´ pλI ´Ahq

´1Bh}LpU,Xq ď Chθp1´αq pλ P Σq.

5. }Tt,hPh ´ Tt}LpXq ď Ct´1hθ.

6. }Tt,hBh ´ TtB}LpU,Xq ď Ct´1hθp1´αq.

7. }T.,hBh ´ T.B}L1pr0,ts;LpU,Xqq ď Chθp1´αq p| lnh| ` t` 1q .

Proof.

1. We skip this proof which is based on Proposition 5.1.1 and Proposition 5.1.3 in [20].

2. We skip this proof as it is similar to the proof of previous assertion by using assumption pC3q.
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3. Notice at first that by simple calculation, it is clear that we have

pλI ´A0q
´1 “ ´A´1

0 ` λpλI ´A0q
´1A´1

0

and
pλI ´Ahq

´1Ph “ ´A
´1
h Ph ` λpλI ´Ahq

´1A´1
h Ph.

Denote Mhpλq “ pλI ´A0q
´1 ´ pλI ´Ahq

´1Ph, we then have:

Mhpλq “ ´A
´1
0 `A´1

h Ph ` λpλI ´A0q
´1A´1

0 ´ λpλI ´Ahq
´1A´1

h Ph

“ ´
`

A´1
0 ´A´1

h Ph
˘

` λpλI ´A0q
´1

`

A´1
0 ´A´1

h Ph
˘

` λpλI ´A0q
´1A´1

h Ph

´ λpλI ´Ahq
´1A´1

h Ph

“ ´
`

I ´ λpλI ´A0q
´1
˘ `

A´1
0 ´A´1

h Ph
˘

` λMhpλqA
´1
h Ph.

This leads to Mhpλq “ ´
`

I ´ λpλI ´A0q
´1
˘

pA´1
0 ´A´1

h PhqpI ´ λA
´1
h Phq

´1.

Notice that
pI ´ λA´1

h Phq
´1 “ I ´ Ph ´AhpλI ´Ahq

´1Ph. (3.8)

Indeed, we have

pI ´ λA´1
h Phq

`

I ´ Ph ´AhpλI ´Ahq
´1Ph

˘

“ I ´ Ph ´AhpλI ´Ahq
´1Ph ´ λA

´1
h Ph ` λA

´1
h Ph ` λA

´1
h AhpλI ´Ahq

´1Ph

“ I ´ Ph ` pλI ´AhqpλI ´Ahq
´1Ph “ I.

In the same manner,
`

I ´ Ph ´AhpλI ´Ahq
´1Ph

˘

pI ´ λA´1
h Phq “ I. Thus, (3.8) holds.

By analyticity assumption (3.5) and assertion 1. in Lemma 3.4, we know that there exists a
constant C independent of λ and h such that,

}λpλI ´A0q
´1}LpXq ď C

|λ|

|λ|
“ C and }AhpλI ´Ahq

´1} ď C pλ P Σq,

which leads to, using assertion 1. of Proposition 3.5

}Mhpλq}LpXq ď }I ´ λpλI ´A0q
´1}LpXqCh

θ}I ´ Ph ´AhpλI ´Ahq
´1Ph}LpXq ď Chθ.

This ends the proof of assertion 3..

4. Denote Mh,Bpλq “ pλI´A0q
´1B´pλI´Ahq

´1Bh. Notice that pλI´A0q
´1 “ A0pλI´A0q

´1A´1
0 .

Then, we have:

Mh,Bpλq “ pλI ´A0q
´1pB ´Bhq `

`

pλI ´A0q
´1 ´ pλI ´Ahq

´1
˘

Bh

“ A0pλI ´A0q
´1A´1

0 pB ´Bhq `
`

pλI ´A0q
´1 ´ pλI ´Ahq

´1
˘

Bh.

Since A0pλI ´ A0q
´1 is a bounded operator (by assertion 1. in Lemma 3.3), it is clear that by

using assertions 2. and 3. of Proposition 3.5 and assumption pC4q, we have:

}Mh,Bpλq}LpU,Xq ď C}A´1
0 pB ´Bhq}LpU,Xq ` }pλI ´A0q

´1 ´ pλI ´Ahq
´1}LpXq}Bh}LpU,Vhq

ď Chθp1´αq ` Chθ}Bh}LpU,Vhq ď Chθp1´αq.
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5. It is clear that, by using assertion 2. in Lemma 3.3 and assertion 2. in Lemma 3.4, we have:

Tt ´ Tt,hPh “
1

2πi

ż

Γ
eλt

`

pλI ´A0q
´1 ´ pλI ´Ahq

´1Ph
˘

dλ.

Then, by using assertion 3. in Proposition 3.5, we have:

}Tt ´ Tt,hPh}LpXq “ C

ˆ
ż

Γ
|eλt|dλ

˙

hθ ď Ct´1hθ.

This ends the proof.

6. We skip this proof as it is similar to the proof of the previous assertion by using assertion 4. in
Proposition 3.5.

7. We calculate:

}T.,hBh´T.B}L1pr0,ts;LpU,Xqq “

ż hθ

0
}Tσ,hBh´TσB}LpU,Xqdσ`

ż t

hθ
}Tσ,hBh´TσB}LpU,Xqdσ “ I1`I2.

By using assertion 6. of Proposition 3.5, we have:

I2 ď Chθp1´αq
ˆ
ż t

hθ
σ´1dσ

˙

ď Chθp1´αq
ˆ
ż 1

hθ
σ´1dσ `

ż t

1
1dσ

˙

ď Chθp1´αq p| lnh| ` t` 1q .

Note that the assumption B P LpU,X´αq means that A´α0 B is a bounded operator in LpU,Xq.
Then, in order to deal with I1, using also the analyticity of T (see (3.5)), for h small enough, we
have, for every 0 ď α ă 1

2 ,

}TσB}LpU,Xq ď }TσAα0 }LpXq}A´α0 B}LpU,Xq ď Cσ´α.

Similarly, by using again the assumption B P LpU,X´αq, it is clear that A´αh Bh is a bounded
operator in LpU,Xq. Thus, we have

}Tσ,hBh}LpU,Xq ď }Tσ,hAαh}LpU,Xq}A
´α
h Bh}LpU,Xq ď Cσ´α,

using (3.7).

Finally, by the two previous inequalities, we have :

I1 ď C

ż hθ

0
σ´αdσ ď Chθp1´αq.

Thus, we have
}T.,hBh ´ T.B}L1pr0,ts;LpU,Xqq ď Chθp1´αq p| lnh| ` t` 1q .

This ends the proof.

We will now present the main result of this section which gives us a nonsmooth initial data error
estimate.
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Theorem 3.6. Let z0 P X, let z be the solution of (3.1),(3.2) and let zh be the solution of (3.3),
(3.4). Moreover, assume that pC1q´pC4q hold. Then, there exist C ą 0, h̃ ą 0 such that for h P p0, h̃q
we have the following error estimate:

}zptq ´ zhptq}X ď Chθt´1}z0}X ` Ch
θp1´αq p| lnh| ` t` 1q }u}L8pr0,`8q;Uq, @t ą 0. (3.9)

Proof. Denote Khptq “ TtB ´ Tt,hBh.
We recall that z, solution of system (1.1)-(1.2), satisfies (1.3) and zh, solution of (1.5)-(1.6), satisfies

(1.9). It is clear that

}zptq ´ zhptq}X ď }Ttz0 ´ Tt,hPhz0}X `

›

›

›

›

ż t

0
Khpt´ σqupσqdσ

›

›

›

›

X

.

By using assertions 5. and 7. in Proposition 3.5, we have:

}zptq ´ zhptq}X ď Chθt´1}z0}X ` }Kh ˚ u}L1pr0,ts;Xq

ď Chθt´1}z0}X ` }Kh}L1pr0,ts;LpU,Xqq}u}L8pr0,ts;Uq

ď Chθt´1}z0}X ` Ch
θp1´αq p| lnh| ` t` 1q }u}L8pr0,ts;Uq.

This ends the proof.

4 Proof of the main results

We denote τ˚0 pz0q (resp.τ˚h pz0,hq) the optimal time associated with the initial state z0 P X (resp.
z0,h P Vh) and with final state in B̄p0, εq (resp. ĎBhp0, εq). We use also the notation zpt, z0, uq for the
solution of the system (1.1)-(1.2) (resp. zhpt, z0,h, uhq for the system (1.5)-(1.6)) associated with the
initial state z0 (resp. z0,h) and with the control u (resp. uh) at time t.

We first recall a generalized Aubin-Lions theorem (Theorem 4.1) and a standard energy estimate
(Lemma 4.2).

Theorem 4.1. Let T ą 0 and let Y0, Y1, Y2 be Banach spaces such that Y0 Ă Y1 Ă Y2. Assume that
Yi is reflexive for i “ 0, 1, 2 and that the embedding of Y0 into Y1 is compact. Let 1 ă r ă 8.

Then, the space
W “ L8pr0, T s;Y0q XW

1,rpr0, T s;Y2q

is compactly embedded in Cpr0, T s;Y1q.

Proof. See for example [26, Cor. 4, p.85].

Lemma 4.2. Assume that z0 P X 1
2
´α. Then, there exists C ą 0 such that

}zpτq}21
2
´α
`

ż τ

0

`

} 9zpsq}2´α ` }zpsq}
2
1´α

˘

ds ď C

ˆ
ż τ

0
}Bupsq}2´αds` }z0}

2
1
2
´α

˙

pτ ą 0q, (4.1)

where z is the solution of (1.1)-(1.2).

Proof. Using the facts that

x 9zptq, A1´2α
0 zptqy´α,α “

1

2

d

dt
}A

1
2
´α

0 zptq}2, xA0zptq, A
1´2α
0 zptqy´α,α “ }A

1´α
0 zptq}2,

10



it follows that if z satisfies the equation (1.1)-(1.2), then

1

2

d

dt
}A

1
2
´α

0 zptq}2 ` }A1´α
0 zptq}2 “ xBuptq, A1´2α

0 zptqy´α,α.

Integrating the above estimate from 0 to τ and using the fact that
ˇ

ˇxBuptq, A1´2α
0 zptqy´α,α

ˇ

ˇ ď }Buptq}´α
›

›A1´α
0 zptq

›

› ,

it follows that

}A
1
2
´α

0 zpτq}2 `

ż τ

0
}A1´α

0 zptq}2 dt ď }A
1
2
´α

0 z0}
2 ` }Bu}2L2pr0,τ s;X´αq

.

This leads to:

}zpτq}21
2
´α
`

ż τ

0
}zpsq}21´αds ď

ż τ

0
}Bupsq}2´αds` }z0}

2
1
2
´α
. (4.2)

Similarly, we have:

x 9zptq, A´2α
0 9zptqy´α,α “ }A

´α
0 9zptq}2, xA0zptq, A

´2α
0 9zptqy´α,α “

1

2

d

dt
}A

1
2
´α

0 zptq}2

and then
1

2

d

dt
}A

1
2
´α

0 zptq}2 ` }A´α0 9zptq}2 “
@

Buptq, A´2α
0 9zptq

D

´α,α
.

Using again the fact that
ˇ

ˇxBuptq, A´2α
0 9zptqy´α,α

ˇ

ˇ ď }Buptq}´α
›

›A´α0 9zptq
›

› ,

and integrating by time from 0 to τ , we obtain the following inequality:

}A
1
2
´α

0 zpτq}2 `

ż τ

0
}A´α0 9zptq}2 dt ď }A

1
2
´α

0 z0}
2 ` }Bu}2L2pr0,τ s;X´αq

.

This leads to:

}zpτq}21
2
´α
`

ż τ

0
} 9zpsq}2´αds ď

ż τ

0
}Bupsq}2´αds` }z0}

2
1
2
´α
. (4.3)

Then (4.1) is deduced from (4.2) and (4.3). This ends the proof.

We give here some convergence results which play an important rule in the proof of our main
results.

Lemma 4.3. Let z0 P X, T ą 0, ū P L8pr0, T s;Uq and τ̄ P r0, T s. Let punqn be a sequence of
L8pr0, T s;Uq and pτnqn be a sequence of r0, T s such that un P L

8pr0, T s;Uhnq for any n P N and

un Ñ ū weakly* in L8pr0, T s;Uq,

τn Ñ τ̄ in r0, T s.

Then, the following convergence results hold

1. limnÑ`8 }zp., z0, unq ´ zp., z0, ūq}Cpr0,T s;Xq “ 0,

2. limnÑ`8 }zpτn, z0, unq ´ zpτ̄ , z0, unq} “ 0.

11



Proof. 1. Denote ψptq “ zpt, z0, ūq and ψnptq “ zpt, z0, unq. By the standard energy estimate (4.1),
we know that pψnqn is a bounded sequence in

W “ Cpr0, T s;X 1
2
´αq X L

2pr0, T s;X1´αq XW
1,2pr0, T s;X´αq. (4.4)

Using Theorem 4.1 with Y0 “ X 1
2
´α, Y1 “ X and Y2 “ X´α, we deduce that:

D rψ P Cpr0, T s;Xq s.t. ψn Ñ ψ̃ strongly in Cpr0, T s;Xq and ψn Ñ ψ̃ weakly in W.

Now we prove that rψ “ ψ. We know that ψn satisfies:

9ψn `A0ψn “ Bun,

ψnp0q “ z0.

Then it is clear that 9ψn Ñ
9
rψ weakly in L2pr0, T s;X´αq andA0ψn Ñ A0

rψ weakly in L2pr0, T s;X´αq

since ψn Ñ ψ̃ weakly in W . Moreover, un
˚
á ū weakly* in L8pr0, T s;Uq implies that un á

ū weakly in L2pr0, T s;Uq. Thus, Bun á Bū weakly in L2pr0, T s;Xq. Finally, ψ̃p0q “ z0. In-
deed, we know that z0 “ ψnp0q Ñ ψ̃p0q, since ψn Ñ ψ̃ strongly in Cpr0, T s;Xq.

Consequently, ψ̃ satisfies:

9̃
ψ `A0ψ̃ “ Bū,

ψ̃p0q “ z0,

which implies that ψ̃ “ ψ. This leads to the first assertion.

2. We first notice that

}zpτn, z0, unq ´ zpτ̄ , z0, unq}

ď }Tτnz0 ´ Tτ̄z0} `

›

›

›

›

ż τn

0
Tτn´σBunpσqdσ ´

ż τ̄

0
Tτ̄´σBunpσqdσ

›

›

›

›

ď }Tτnz0 ´ Tτ̄z0} `

›

›

›

›

›

ż

Ăτn

0
Tτn´σBunpσqdσ ´

ż

Ăτn

0
Tτ̄´σBunpσqdσ

›

›

›

›

›

`

›

›

›

›

ż τn

Ăτn

Tτn´σBunpσqdσ
›

›

›

›

`

›

›

›

›

ż τ̄

Ăτn

Tτ̄´σBunpσqdσ
›

›

›

›

“ L1 ` L2 ` L3 ` L4,

where rτn “ mintτn, τ̄u.

By using the continuity of the map t ÞÑ Ttz0, it is clear that L1 converges to zero when n tends
to `8.

Moreover, since punqn Ă L8pr0, T s, Uq and using (3.6), we have

L3 ď

ż τn

Ăτn

}Tτn´σBunpσq}dσ

ď

ż τn

Ăτn

}Tτn´σAα0 }LpXq
›

›A´α0 B
›

›

LpU,Xq }unpσq}U dσ

ď C

ż τn

Ăτn

pτn ´ σq
´αdσ “

C

1´ α
pτn ´ rτnq

1´α Ñ 0,
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since 1´ α ą 0. Similarly, L4 converges to zero.

Now we prove that L2 converges to zero. We have

L2 “

›

›

›

›

›

ż

Ăτn

0
pTτn´σ ´ Tτ̄´σqB punpσq ´ ūpσqqdσ

›

›

›

›

›

`

›

›

›

›

›

ż

Ăτn

0
pTτn´σ ´ Tτ̄´σqBūpσqdσ

›

›

›

›

›

“ L2,1 ` L2,2.

By using the continuity of the map t ÞÑ Ttz0, it is clear that L2,2 converges to zero. Now we
prove that L2,1 tends to 0 when n tends to `8.

We have

L2,1 ď

›

›

›

›

›

ż

Ăτn

0
Tτn´σB punpσq ´ ūpσqqdσ

›

›

›

›

›

`

›

›

›

›

›

ż

Ăτn

0
Tτ̄´σB punpσq ´ ūpσqqdσ

›

›

›

›

›

“ }Tτn´Ăτn}}zp rτn, z0, unq ´ zp rτn, z0, ūq} ` }Tτ̄´Ăτn}}zp rτn, z0, unq ´ zp rτn, z0, ūq}.

Since }Tτn´Ăτn} and }Tτ̄´Ăτn} are bounded, by using the first assertion of this lemma, we can
deduce that L2,1 converge to zero when n tends to `8. This ends the proof of the second
assertion.

We then give some properties which will be used to prove the convergence results:

Lemma 4.4.
Denote λ1 (resp. λ1,h) the first eigenvalue of the operator A0 (resp. A0,h). For every z0 P X and
z0,h P Vh the following properties hold

1. τ˚0 pz0q ď
lnp}z0}{εq

λ1
.

2. τ˚h pz0,hq ď
lnp}z0,h}{εq

λ1,h
.

3. λ1 ď λ1,h.

Proof. To prove assertion 1. we notice that }zpt, z0, 0q} ď e´λ1t}z0} and taking t “ lnp}z0}{εq
λ1

we obtain
that }zpt, z0, 0q} ď ε. This proves 1. By a similar argument, it is clear that assertion 2. holds.

We end by proving the last assertion. In fact, this inequality is easily deduced by the min-max

formula: λ1 “ minzPX 1
2

}A
1
2
0 z}

2

}z}2
and λ1,h “ minzPVh

}A
1
2
0 z}

2

}z}2
. This ends the proof.

Given ε ą 0 and z0 P X such that }z0} ą ε, the lemma below shows that τ˚h has a strictly positive
lower and upper bounds, which are independent of h.

Lemma 4.5. Assume that pC1q holds. For every z0 P X such that }z0} ą ε, there exist c, C ą 0, h̃ ą 0

such that for any h P p0, h̃q, we have c ď τ˚h pPhz0q ď C, where C “ 2 lnp}z0}{εq
λ1

.

Proof. We begin by proving that τ˚h pPhz0q is bounded from below. Assume by contradiction that
limhÑ0 τ

˚
h pPhz0q “ 0.

We first notice that

}zhpτ
˚
h , Phz0, u

˚
hq ´ zhp0, Phz0, u

˚
hq} “

›

›

›

›

›

Tτ˚h ,hPhz0 `

ż τ˚h

0
Tτ˚h´σ,hBu

˚
hpσqdσ ´ Phz0

›

›

›

›

›

ď

›

›

›

´

Tτ˚h ,h ´ Id
¯

Phz0

›

›

›
`

›

›

›

›

›

ż τ˚h

0
Tτ˚h´σ,hBu

˚
hpσqdσ

›

›

›

›

›

.
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We can apply the Trotter-Kato theorem (see, for instance, [2, Theorem 3.6.1, Proposition 3.6.2]), to
get that the first term of the right hand side of the previous inequality tends to zero when h tends to
zero. Moreover, concerning the left hand side, using (3.7), we have

›

›

›

›

›

ż τ˚h

0
Tτ˚h´σ,hBu

˚
hpσqdσ

›

›

›

›

›

ď

ż τ˚h

0

›

›

›
Tτ˚h´σ,hA

α
h

›

›

›

LpXq

›

›A´αh B
›

›

LpU,Xq }uhpσq}U dσ

ď C

ż τ˚h

0
pτ˚h ´ σq

´αdσ “
C

1´ α
pτ˚h q

1´α Ñ 0,

since 1´ α ą 0.
Consequently, we have

lim
hÑ0

}zhpτ
˚
h , Phz0, u

˚
hq ´ zhp0, Phz0, u

˚
hq} “ lim

hÑ0
}zhpτ

˚
h , Phz0, u

˚
hq ´ Phz0} “ 0.

Using the fact that }zhpτ
˚
h , Phz0, u

˚
hq} ď ε, it is clear that limhÑ0 }Phz0} ď ε. However, note that

limhÑ0 }Phz0 ´ z0} “ 0, which comes from pC1q since Xγ is dense in X for any γ ą 0 and Ph is a
projection. This leads to the contradiction with the fact that }z0} ą ε.

We prove now that τ˚h pPhz0q is bounded from above. This is obvious by using Lemma 4.4, since

τ˚h pPhz0q ď
lnp}Phz0}{εq

λ1,h
ď 2

lnp}z0}{εq

λ1
ă `8.

Proof of Theorem 1.1. It suffices to prove the following two inequalities:

lim inf
hÑ0

τ˚h pPhz0q ě τ˚0 pz0q, (4.5)

lim sup
hÑ0

τ˚h pPhz0q ď τ˚0 pz0q. (4.6)

We begin by proving (4.5). In the following, we denote simply τ˚0 pz0q by τ˚0 and τ˚h pPhz0q by τ˚h
when there is no ambiguity. We notice at first the following property:

@ T ą 0, @ u P Uad, τ˚0 pz0q ď T ` τ˚0 pzpT, z0, uqq. (4.7)

We deduce from Theorem 3.6 that

}zpτ˚h , z0, u
˚
hq ´ zhpτ

˚
h , Phz0, u

˚
hq} ď Chθτ˚h

´1
}z0}X ` Ch

θp1´αqp| lnh| ` 1` τ˚h q }u
˚
h}L8pr0,`8q;Uhq,

which leads to:

}zpτ˚h , z0, u
˚
hq} ď ε` Chθτ˚h

´1
}z0}X ` Ch

θp1´αqp| lnh| ` 1` τ˚h q }u
˚
h}L8pr0,`8q;Uhq

ď ε` Chθτ˚h
´1
` Chθp1´αqp| lnh| ` 1` τ˚h q.

We denote rz0 “ zpτ˚h , z0, u
˚
hq. According to (4.7) with T “ τ˚h pPhz0q, we have:

τ˚0 pz0q ď τ˚h pPhz0q ` τ
˚
0 p rz0q.
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Since u˚h P L
8pr0,`8q;Uhq Ă L8pr0,`8q;Uq and }u˚hptq} ď 1, u˚h is then an admissible control for

the continuous system. Then, according to Lemma 4.4, we have:

τ˚0 ď τ˚h `
lnppε` Chθτ˚h

´1
` Chθp1´αqp| lnh| ` 1` τ˚h qq{εq

λ1

ď τ˚h `
Chθ

λ1ε
τ˚h
´1
` C

hθp1´αq

λ1ε
p1` τ˚h q ` C

hθp1´αq| lnh|

λ1ε
. (4.8)

Thus, (4.5) can be deduced by taking h to zero and by the fact that C ą limhÑ0 τ
˚
h pPhz0q ą c ą 0

(see Lemma 4.5).
We now prove the second inequality (4.6). We have:

}zhpτ
˚
0 , Phz0, Qhu

˚q ´ zpτ˚0 , z0, u
˚q}

ď }zhpτ
˚
0 , Phz0, Qhu

˚q ´ zhpτ
˚
0 , Phz0, u

˚q} ` }zhpτ
˚
0 , Phz0, u

˚q ´ zpτ˚0 , z0, u
˚q}

ď }zhpτ
˚
0 , Phz0, Qhu

˚q ´ zhpτ
˚
0 , Phz0, u

˚q} ` Chθτ˚0
´1
` Chθp1´αqp| lnh| ` 1` τ˚0 q,

using (3.9). Denote fphq “ }zhpτ
˚
0 , Phz0, Qhu

˚q ´ zhpτ
˚
0 , Phz0, u

˚q}. Notice that limhÑ0 fphq “ 0.
Indeed,

lim
hÑ0

fphq “ lim
hÑ0

}zhpτ
˚
0 , Phz0, Qhu

˚q ´ zhpτ
˚
0 , Phz0, u

˚q} “ lim
hÑ0

}Φτ˚,hpu
˚ ´Qhu

˚q}.

Moreover, we have

}Φτ˚,hpu
˚ ´Qhu

˚q} ď }
`

Φτ˚,h ´ Φτ˚
˘

pu˚ ´Qhu
˚q} ` }Φτ˚pu

˚ ´Qhu
˚q}.

Since B P LpU,X´αq, with 0 ď α ă 1
2 , it is known that Φτ˚ P LpL2pr0, τ˚s;Uq, Xq (see for instance

[31, Proposition 5.1.3]). Combining this fact with assertion 7. in Proposition 3.5 and with assumption
pC5q, it is clear that

lim
hÑ0

fphq “ 0.

Thus, we have:

}zhpτ
˚
0 , Phz0, Qhu

˚q} ď ε` fphq ` Chθτ˚0
´1
` Chθp1´αqp| lnh| ` 1` τ˚0 q.

By the similar argument as in (4.8), we have:

τ˚h pPhz0q ď τ˚0 `
lnppε` fphq ` Chθτ˚0

´1
` Chθp1´αqp| lnh| ` 1` τ˚0 qq{εq

λ1,h

ď τ˚0 `
fphq ` Chθτ˚0

´1
` Cp1` τ˚0 qh

θp1´αq ` Chθp1´αq| lnh|

λ1ε
.

This leads to inequality (4.6) by taking h to zero.

Proof of Theorem 1.2. Denote T “ 2 lnp}z0}{εq
λ1

. It is clear that τ˚h ď T for all h ą 0 and τ˚0 ď T (see
Lemma 4.4 and Lemma 4.5). We extend pu˚hqh and u˚0 to time T by zero.

Since }u˚h}L8pr0,T s;Uhq ď 1, there exist a control ū P L8pr0, T s;Uq and a subsequence phnqn Ñ 0,
such that:

u˚hn Ñ ū weakly* in L8pr0, T s;Uq.

Now we prove that ū “ u˚0 .
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The main step here is to prove the following convergence property:

}zhnpτ
˚
hn , Phnz0, u

˚
hnq ´ zpτ

˚
0 , z0, ūq} Ñ 0. (4.9)

Indeed, since B̄p0, εq is complete (notice that ĎBhp0, εq Ă B̄p0, εq), (4.9) leads to zpτ˚0 , z0, ūq P B̄p0, εq.
Then, by the uniqueness of the time optimal control and Theorem 1.1, we deduce that ū “ u˚0 .

We are then reduced to prove (4.9). We have:

}zhnpτ
˚
hn , Phnz0, u

˚
hnq ´ zpτ

˚
0 , z0, ūq} ď }zhnpτ

˚
hn , Phnz0, u

˚
hnq ´ zpτ

˚
hn , z0, u

˚
hnq}

` }zpτ˚hn , z0, u
˚
hnq ´ zpτ

˚
0 , z0, u

˚
hnq}

` }zpτ˚0 , z0, u
˚
hnq ´ zpτ

˚
0 , z0, ūq}. (4.10)

The first term of the right hand side of (4.10) converges to zero using the error estimate (3.9). Moreover,
by using the first and the second assertions in Lemma 4.3, it is clear that the second and the third
terms of the right hand of (4.10) converges to zero. We then deduce (4.9).

Thus, we have:

u˚hn Ñ u˚0 weakly* in L8pr0, T s;Uq. (4.11)

We deduce immediately that:

u˚hn Ñ u˚0 weakly in L2pr0, T s;Uq.

At last, since both u˚hn and u˚0 are bang-bang controls (see Corollary 2.4), we have

lim
nÑ`8

}u˚hn}L2pr0,T s;Uq “ }u
˚
0}L2pr0,T s;Uq.

According to the Radon-Riesz property, this leads to the strong convergence in L2pr0, T s;Uq. This
ends the proof.

5 Applications

Example 5.1. Let Ω Ă RN be a bounded open set with a boundary BΩ of class C2. For each
z0 P L

2pΩq and u P L8pr0,`8q;L2pΩqq, we consider the following initial and boundary value problem

9zpx, tq ´ 4zpx, tq “ χωpxqupx, tq px P Ω, t ě 0q, (5.1)

zpx, tq “ 0 px P BΩ, t ě 0q, (5.2)

zpx, 0q “ z0pxq px P Ωq, (5.3)

where ω Ă Ω is an open and non-empty subset with its characteristic function χω. The system (5.1)-
(5.3) can be formulated in the abstract form (1.1)-(1.2) by taking A0 “ ´4 with Dirichlet boundary
conditions, of domain DpA0q “ H1

0 pΩq X H2pΩq on X “ L2pΩq. The control operator B P LpU,Xq
(here α “ 0) is defined by

Bϕ “ χωϕ̃,

where U “ L2pωq and where ϕ̃ is the extension by 0 of ϕ on Ω outside ω.
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We then consider the standard P1 finite element method with regular triangulation Th of Ω (see for
example, Thomée [28], Raviart and Thomas [25]) and we build the finite element space Vh Ă H1

0 pΩq
of X, defined by

Vh “
 

ϕ P CpΩ̄q |ϕ|T P P1pT q for every T P Th, ϕ|BΩ “ 0
(

where P1pT q is the set of affine functions on T . We also define Uh a finite dimensional subspace of U
by

Uh :“ tχωϕh | ϕh P Vhu .

Denote Ph the L2´projection from L2pΩq to Vh, and we consider the following space semi-discrete
scheme formulated in the form of (1.5)-(1.6):

9zhptq `Ahzhptq “ Bhuhptq pt ě 0q, (5.4)

zhp0q “ Phz0 pz0 P Xq, (5.5)

where uh is taken in L8pr0,`8q;Uhq and the operator Ah and Bh are defined by

ă Ahϕ,ψ ą “

ż

Ω
∇ϕ∇ψ dx pϕ,ψ P Vhq, (5.6)

and Bh P LpU, Vhq is defined by :

xBhu, ϕy “ xu,B˚ϕyU pϕ P Vh, u P Uq. (5.7)

Given ε ą 0 with the same notation as in Section 1, we consider the time optimal control prob-
lem pTPq associated to (5.1)-(5.3) (resp. pTPhq associated to (5.4)-(5.5)) and denote pτ˚0 , u

˚
0q the

corresponding optimal time and time-optimal control (resp. pτ˚h , u
˚
hq).

We can now state the following convergence results:

Proposition 5.2. With the notation above, let, for every ε ą 0, z0 P X such that }z0} ą ε. Then we
have that τ˚h Ñ τ˚0 , and u˚h Ñ u˚0 in L2pr0, T s;L2pΩqq.

Proof. In order to apply Theorem 1.1 and Theorem 1.2, we verify that conditions pC1q ´ pC5q are
satisfied with α “ 0 and θ “ 2. Indeed, pC1q is a standard error estimate when applying the P1

finite element scheme (see for example [28]). pC2q is proved in Bramble et al [6] and in Lasiecka [18].
Moreover, pC3q´pC5q clearly hold true because here the control operator B is bounded. Furthermore,
it is known that the assumption made in Theorem 1.2 holds true (see for example [23]). Thus, we can
apply Theorem 1.1 and Theorem 1.2 to conclude.

Example 5.3. Let Ω Ă RN be a bounded open set with a boundary BΩ of class C2. We consider the
heat equation

9zpx, tq ´ 4zpx, tq “ 0 px P Ω, t ě 0q, (5.8)

with the initial and boundary conditions

Bz

Bν
|BΩpx, tq “ upx, tq px P BΩ, t ě 0q, (5.9)

zpx, 0q “ z0pxq P L
2pΩq px P Ωq. (5.10)
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It is known that the system (5.8)-(5.10) can be written in the form of (1.1)-(1.2) by taking X “

L2pΩq, U “ L2pBΩq, DpA0q “
 

z P H2pΩq | Bz
Bν |BΩ “ 0

(

, A0 “ ´4 and the control operator B P

LpU,X´αq (here α “ 1
4 ` ε, ε ą 0) defined by

Bu “ A0Nu pu P Uq,

where N is the Neumann map. This map is defined by Nv “ z, where z P L2pΩq is the unique solution
of the nonhomogeneous elliptic equation

"

4z “ 0 in Ω
Bz
Bν |BΩ “ v on BΩ.

(5.11)

We refer to [19, Par. 5] which shows that the Galerkin semi-discrete approximation of system
(5.8)-(5.10) satisfies conditions pC1q ´ pC5q (and for other numerical approximation method).

We can obtain the following result:

Proposition 5.4. With the notation above, let, for every ε ą 0, z0 P X such that }z0} ą ε. Then we
have that τ˚h Ñ τ˚0 , and u˚h Ñ u˚0 in L2pr0, T s;L2pBΩqq.

Proof. In order to apply Theorem 1.1 and Theorem 1.2, we verify that conditions pC1q ´ pC5q are
satisfied with α “ 1

4 ` ε, ε ą 0 and θ “ 2 (see for example [19, Ch. 5]). Moreover, it is known that
the assumption made in Theorem 1.2 holds true (see for example [20, Section 3.3, Ch. 5.3]). Thus,
we can apply Theorem 1.1 and Theorem 1.2 to conclude.

We illustrate in the follows some numerical results for the 1d-heat equation with Neumann bound-
ary condition. More precisely, we take Ω “ p0, 1q, ε “ 1 (the radius of the target ball), control
constraints |upt, 0q| ď 1 and |upt, 1q| ď 1 and the initial data z0pxq “ 5sinpπxq. We choose to dis-
cretize totally the system, with the implicit Euler method for time and finite difference scheme for
space. We also use the optimization solver IPOPT in Matlab.

We obtain the following result:

Number of discretisation 10 20 40 60 80 100

time optimal 1.3442 1.3469 1.3464 1.3459 1.3456 1.3454

Moreover, we find that uhpt, 0q “ uhpt, 1q “ ´1 for any t ą 0 and for any number of discretization,
that validates the fact that the time optimal control for the discrete system converges towards a
bang-bang time optimal control.

Remark 5.5. The error estimates of the time and control convergence remain to study.
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[26] J. Simon. Compact sets in the space Lpp0, T ;Bq. Ann. Mat. Pura Appl. (4), 146:65–96, 1987.

[27] L. Tebou. Uniform null controllability of the heat equation with rapidly oscillating periodic
density. C. R. Math. Acad. Sci. Paris, 347(13-14):779–784, 2009.

[28] V. Thomée. Galerkin finite element methods for parabolic problems, volume 25 of Springer Series
in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006.
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