Fractions in the Suan Shu Shu (China, Beginning of the 2nd Century BCE)
Rémi Anicotte

To cite this version:

Rémi Anicotte. Fractions in the Suan Shu Shu (China, Beginning of the 2nd Century BCE). Journal of Chinese Linguistics, 2017, 45 (1), pp. $20-67$. hal-01393062v4

HAL Id: hal-01393062
 https://hal.science/hal-01393062v4

Submitted on 30 Mar 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

FRACTIONS IN THE SUÀN SHÙ SH \bar{U} （CHINA，BEGINNING OF THE $2^{\text {ND }}$ CENTURY BCE）西漢出土文獻《算數書》分數表達

Rémi Anicotte 安立明
Associate member of CRLAO，Paris
［法］東亞語言研究所准成員

Abstract

The Suàn Shù Shū contains 301 instances of regular expressions for fractions．They can be＂mono－dimensional＂（formed with one integer name only）for unit fractions，＂bidimensional＂（with two integer names）for both unit and non－unit fractions，or lexicalized only for $1 / 3,1 / 2$ and $2 / 3$ ．The present paper gives a complete description of the diversity of these forms．Bidimensional expressions are predicative phrases：the name n fēn of a unit fraction $1 / n$ acts as subject and the numerator＇s name as predicate；according to the syntactic context， the morpheme $z h \bar{l}$ can be used as an optional marker of this predicative relation．

KEYWORDS：Chinese historical syntax，Fractions，Numerical expressions， Separable semantic units，Measure words，Suàn Shù Shū．

摘要：西漢出土文獻《算數書》中表達分數的短語有 301 例。本文全面描述該書中的那些短語。在文中，我把它們定義為＂一維短語（即包括唯一一個整數名）＂和＂二維短語（即包括兩個整數名）＂，前者表達單位分數，後者表達單位和非單位分數，除此之外還有三個詞彙化的短語專門用於表達 $1 / 3, ~ 1 / 2$ 和 $2 / 3$ 。在二維短語中，單位分數 $1 / n$ 作為短語的主語表達分母，而表達分子的那個數名作為短語的謂語，根據語境，＂之＂字可作為短語標誌放在主謂語之間。

主題詞：中文語法歷史，分數，表数短語，離合詞組，量詞，《算數書》。

This is a preprint version of a paper published in The Journal of Chinese Linguistics， vol． 45 no． 1 （January 2017）：20－67．The author teaches at Beijing International French School and can be contacted by email at remi＿anicotte＠yahoo．com．He wishes to thank Karine Chemla（SPHERE），Redouane Djamouri（CRLAO），Christoph Harbsmeier （University of Oslo），Sylviane Schwer（Paris 13 University），Xiao Can（Hunan University），Xu Dan（INALCO，IUF）and the reviewers of the Journal of Chinese Linguistic for their invaluable encouragement and help with the analysis of the corpus．

Abbreviations DECL：declarative；MW：measure word；NUM：numeral；OBJ：object of transitive verb；3OBJ：third person object pronoun；$\{n\}$（with a number n written in Arabic numerals）：the mono－morphemic expression of the number n in a given language； $A(B)$ and $A(B C)$ ：the character A is a rendition of the original character encountered in the Chinese corpus，the character B or the sequence $B C$ in parenthesis is a modern form of what is understood for A ．For example：有（又），廿（二十），卅（三十），州（四十），丮（七十），泰（大）．

1．FRACTIONS IN THE SUÀN SHÙ SHU

The Suàn Shù $\operatorname{Sh} \bar{u}^{1}$ is a mathematical text written on 190 bamboo strips， consisting of approximately 7,000 characters．The manuscript was excavated during the winter of 1983－84 from a Han Dynasty tomb in Zhangjiashan where a calendar for the year 186 BCE was found，and so the tomb is thought to have been closed that very year：the book was probably written in the beginning of the $2^{\text {nd }}$ century BCE．Peng Hao（2001：4－6）states that the production and taxation standards mentioned in some passages prove that they were copied from originals written in the kingdom of Qin before the unification of China in 221 BCE，while other sections could only have been composed during the reign of the Western Han Dynasty which began in 206 BCE．

The text contains 301 occurrences（not all different）of regular expressions for fractions．This is much more than in Qin－Han manuscripts found in the same tomb ${ }^{2}$ ，or elsewhere but not specialized in mathematics．More Qin－Han texts of mathematics were discovered after the Suàn Shù Shū；they ${ }^{3}$ shows no discrepancy concerning the expression of integers and fractions which are all proper fractions，i．e．smaller than 1，the denominator being larger than the numerator ${ }^{4}$ ．They are all written in the Chinese language；I use Arabic numerals in translations because they are more readable than numbers written in English， but there is no symbolic numerical notation in the original．

Expressions for fractions can be special lexicalized items，but clearly such a scheme is viable only for a few specific fractions；in Qin－Han texts this was limited to $1 / 2,1 / 3$ and $2 / 3$ ．On the other hand a generic linguistic pattern capable of communicating the fraction of any two integers has to account for both the numerator and the denominator，thus producing numerical expressions which I call bidimensional．Unit fractions $1 / n$ are a special case in the corpus since approximately 64%（exactly 83 out of 129）of them only state their denominator n and end up monodimensional．

English two－fifths can be inserted before nouns or measure words as the head of a noun phrase using the preposition of；for example two－fifths of the

[^0]population or two－fifths of a liter．Contemporary Chinese expresses $2 / 5$ as wŭ fēn $z h \bar{l} \grave{e} r$ ，i．e．$\{5\}$ fēn $z h \bar{l}\{2\}$ ，with the denominator＇s name given first，the compound fēn zhī coming next and the numerator＇s name in last position．The compound $\{5\}$ fēn $z h \bar{\imath}\{2\}$ can in turn be inserted directly before a measure word or a noun to form the sequences＂Fraction Name + MW＂or＂Fraction Name + Noun＂respectively；placing the fraction name in the head position of a noun phrase＂Noun（＋de 的）＋Fraction Name＂is also possible．Nothing can be introduced between the components of two－fifths or $\{5\}$ fēn zhī $\{2\}$ ，therefore such compounds are inseparable semantic units or inseparable fraction names． But in Qin－Han manuscripts，the only inseparable fraction names were on one hand special lexicalized expressions of $1 / 3,1 / 2$ and $2 / 3$ ，and on the other hand the monodimensional expressions of unit fractions built according to the pattern ＂Denominator $+f \bar{e} n "$＂；measure words were inserted after these expressions． Bidimensional expressions of fractions were built as predicative phrases with the name＂Denominator＇s Name + fēn＂of a unit fraction acting as subject and with the numerator＇s name acting as predicate．When a measure word was involved it was inserted right after＂Denominator $+f \bar{e} n$＂．The morpheme $z h \bar{l}$ could be optionally added before the numerator＇s name as a marker of the predicative relation．

The present paper provides an exhaustive survey of the diversity of all the expressions for fractions in the Suàn Shù Shū ${ }^{5}$ ．

2．MEASURE WORDS，INTEGERS AND MIXED NUMBERS

Measure words can be found after the＂Denominator + fēn＂compounds． Measure words in the Suàn Shù Shu are mostly units of measurement ${ }^{6}$ ；they fit into the construction＂NUM＋MW＂where the numeral can be the name of an integer，as well as lexicalized fraction names and monodimensional unit fraction expressions．

[^1]Mass nouns sù 粟［unhusked millet］${ }^{7}$ ，mı̌ 米［husked millet］，bài 粺 ［milled millet］${ }^{8}$ ，shuĭ 水［water］，$q \bar{l}$ 桼（漆）［lacquer］，$j i ̄ n$ 金［gold］，guăng 廣 ［width］，zòng 縱［length］，etc．occur in＂Noun $+\mathrm{NUM}+\mathrm{MW}$＂sequences，whereas rén 人［person］and nouns for countable items like lútáng 盧唐［bamboo tube］， jiăn 簡［bamboo strip］，suàn 等（算）［string of coins $]^{9}$ ，etc．all fit into the pattern ＂NUM＋Noun＂in the same manner as measure words ${ }^{10}$ ．The word qián 錢 is used as a currency unit；it occurs either in＂NUM＋MW＂or in＂Noun＋NUM＂． The numeral 1 is not always stated before a measure word；this is marked with \varnothing right before the measure word chĭ in（9），（42），and（43），and wéi in（69）．

Fraction expressions are built from the names of the numerator and denominator，which are integers．Chinese names for integers belong to a decimal numeration．The digits are $y \bar{\imath}-\{1\}^{11}$ ，èr 二 $\{2\}^{12}$ ，sān 三 $\{3\}$ ，sì 四 $\{4\}$ ， wǔ五 $\{5\}$ ，liù 六 $\{6\}, q \bar{\imath}$ 七 $\{7\}, b \bar{a}$ 八 $\{8\}$ ，jiŭ 九 $\{9\}$ ．In the Suàn Shù Sh \bar{u} ，the series of pivots is limited to shí $+\{10\}$ ，băi 百 $\left\{10^{2}\right\}$ ，qiān 千 $\left\{10^{3}\right\}$ and wàn 萬 $\left\{10^{4}\right\}$ ；the largest number being $10,000,000$ expressed as qiān wàn，i．e． $\left\{10^{3}\right\}\left\{10^{4}\right\}$ ，on strip 11 ．

I use the notation \｛number\} with a number written in Arabic numerals between braces to represent the numerical morpheme which expresses the bracketed number in a particular language．For instance the same notation $\{10\}$ can represent the word ten in English and the morpheme shí in Chinese．The notation $\left\{10^{4}\right\}$ represents wàn in Chinese，but would not occur for English ten thousand，which is represented as $\{10\}\left\{10^{3}\right\}$ and stands for the succession of the mono－morphemic items ten $\{10\}$ and thousand $\left\{10^{3}\right\}$ ．

In the Suàn Shù Sh \bar{u} ，the morpheme $\{1\}$ is used before all pivots in a number name but the highest one．This is visualized with a shaded $y \bar{\imath}-\{1\}$ in examples（1），（2），（4），（6），and a shaded \varnothing in（3），（5），（6），（7）．The sequences $\{$ digit $\}\{p i v o t\}$ and $\{$ smaller pivot $\}\{$ larger pivot $\}$ express products，they are concatenated directly．These concatenations express sums．

The conjunction yòu was used in the Western Zhou inscriptions on bronze vessels to join the tens and units places，and sometimes also the hundreds and tens，but in the Suàn Shù Shū it occurs only in expressions of mixed numbers to

[^2]link an integer and a fraction as in（7）and it is free pattern ${ }^{13}$ ．The term líng 零 is not encountered anywhere in the corpus and was not used in integer names before the $12^{\text {th }}$ century CE^{14} ．

Additionally，to write tens，the copyists of the Suàn Shù Shū could use ligatures instead of the corresponding two－character forms．The numbers 50,60 ， 80 and 90 were either written with two separate characters，or as ligatures of the characters for $5,6,8$ or 9 written in a reduced size above the character for 10 ；I always transcribe these with the two－character forms wǔ shí 五十，liù shí 六十， $b \bar{a}$ shí 八十 and jiǔ shí 九十 respectively．But 20，30， 40 and 70 were always written 廿，井，㽨 and $\neq{ }^{15}$ respectively．Conforming to the current scholarly usage，I transcribe them with their actual written forms followed by the two－ character forms in parentheses：èr shí 廿（二十），sān shí卅（三十），sì shí 州（四十） and $q \bar{\imath} \operatorname{shi} \neq \neq$（七十）respectively；the $p \bar{n} n y \bar{n} n$ romanization and glosses are those of the disyllabic compounds ${ }^{16}$ ；see for example the expressions with 20 in（4）and （6）．
（1）
in Suàn Shù Shū strip 172

二百	＋
èr băi	$y \stackrel{\text { ch shí }}{ }$
\｛2\} $\left\{10^{2}\right\}$	\｛1\}\{10\}
＇210＇	

（4）	七千	一百	廿（二十）	九
in Suàn Shù Sh				
strip 176	$q \bar{\imath} q i \bar{a} n$	yī băi	èr shí	jiǔ
	$\{7\}\left\{10^{3}\right\}$	$\{1\}\left\{10^{2}\right\}$	$\{2\}\{10\}$	$\{9\}$
	$' 7129$			

[^3]in Suàn Shù Shū
strip 172

旳	八十	九
өqiān	bā shí	jiǔ
Q $\left\{10^{3}\right\}$	\｛8\}\{10\}	\｛9\}
＇1089＇		

（6）	－萬	千	五百	廿（二十）	銖
in Suàn Shù Shū	${ }^{\text {waln }}$	yī qiān	wǔ băi	èr shí	$z h \bar{u}$
strip 47	$\varnothing\left\{10^{4}\right\}$	\｛1\} $\left\{10^{3}\right\}$	\｛5\} $\left\{10^{2}\right\}$	\｛2\}\{10\}	$z h \bar{u}$
	＇11520 zhü				

（7）
in Suàn Shù Shū

日十六	尺 有（又）	十八分
${ }^{\text {shí liù }}$	chǐ yòu	shí bā fēn
$\phi\{10\}\{6\}$	chǐ and	\｛10\}\{8\} fēn

[^4]The mixed number 16 12／18 in（7）is inserted with the measure word chi． The integer and the fraction are dealt with as two independent quantification phrases which are concatenated with yòu here or juxtaposed in other instances． The measure word chl occurs first with the integer and is inserted again within the expression for the fraction 12／18．This is a regular pattern in the Suàn Shù Shü ${ }^{-18}$ ，even the nouns jiăn 簡［bamboo strip］and suàn 等（算）［string of coins］， in（55）and（57）respectively，appear first after the name of the integer and then again with the proper fraction after fén．There are only a few exceptions： 3 can be seen in（28）－（30）with a measure word stated only after the integer，and there is also（76）with the noun lútáng 盧唐［bamboo tube］placed in the measure word position in the integer expression but not repeated after fēn．On the other hand，（31）is a unique case of over－repetition，with the measure word bù also found after the denominator＇s name and therefore appearing three times．

3．GENERIC UNIT FRACTION EXPRESSIONS

3－1．Monodimensional unit fraction expressions

In the Suàn Shù Shū as in other Qin－Han texts of mathematics，the canonical names for unit fractions $1 / n$ were n fēn．They stated only the denominator n but not the numerator 1 and were therefore monodimensional numerical expressions． Nothing could be inserted between the two constituents n and fēn；that is，the

[^5]$n f \bar{e} n$ compounds were inseparable semantic units. Measure words followed $n f \bar{e} n$ just as they followed integers. In other words, these $n f \bar{e} n$ unit fraction designations were numerals in their own right.

The item fēn in $n f \bar{e} n$ can be considered syntactically neutralized and fossilized through its involvement in a word-formation process. It was used on occasion in the corpus as a noun for part or fraction, in which cases it could be read fèn with a falling tone regardless of the modern reading fēn. It was also used as a verb meaning to share (which should be read as fēn); but considering $f \bar{e} n$ in the compounds $n f$ fèn synchronically, it seems pointless to try and interpret it as a noun or as a verb. From a semantic point of view, the question would be whether fēn referred more to the action of partitioning or more to the result (the parts) of this action. This might be interesting in an attempt to reconstruct the emergence of the expressions $n f \bar{e} n$, but again this seems irrelevant synchronically.

In the Suàn Shù Sh \bar{u}, there are 83 instances (not all different) of monodimensional expressions of $1 / n$ unit fractions. Among them, 76 do not involve a measure word, while 8 instances do. The 76 instances without measure words are:
\rightarrow sān fēn for $1 / 3$ (16 instances, on strips 3, 5, 6, 24, 27, 139, $168,169,170,171,172,174,176$ and 179);
\rightarrow sì fēn for $1 / 4$ (15 instances, on strips $3,5,6,9,14,27,169$, 171, 172, 174, 176 and 179);
\rightarrow wŭ fēn for $1 / 5$ (14 instances, on strips $5,6,8,9,14,170$,
171, 172, 174, 176 and 179);
\rightarrow liù fēn for $1 / 6$ (10 instances, on strips $9,10,171,172,174$, 176 and 179);
$\rightarrow q \bar{\imath} f \bar{e} n$ for $1 / 7$ (9 instances, on strips 5, $9,10,172,174,176$
and 179);
$\rightarrow b \bar{a} f \bar{e} n$ for $1 / 8$ (5 instances, on strips 10, 174, 176 and 179);
\rightarrow jiǔ fēn for 1/9 (2 instances, on strips 176 and 177);
\rightarrow shí fēn for $1 / 10$ (2 instances, on strips 179 and 180);
\rightarrow bǎi fēn for $1 / 100$ (2 instances, on strips 14 and 16).
The 8 instances of expressions for unit fractions followed by a measure word are:
\rightarrow sān fēn cùn for $1 / 3$ cùn on strip 2;
$\rightarrow b \bar{a}$ fēn cùn for $1 / 8$ cùn on strip 2;
\rightarrow sì fēn cùn for $1 / 4$ cùn on strip 4;
\rightarrow wŭ fēn cùn for $1 / 5$ cùn on strip 4 ;
\rightarrow liù fēn cùn for $1 / 6$ cùn on strip 4 ;
\rightarrow liù shí fēn chĭ for $1 / 60$ chĭ on strip 4;
\rightarrow jiŭ fēn $z h \bar{u}$ for $1 / 9 z h \bar{u}$ on strip 29.

3-2. Bidimensional expressions of unit fractions

The numerator's name $\{1\}$ is not compulsory and is usually omitted when the fraction comes as a factor in a multiplication: check \varnothing right after fēn in (8) with no measure word, and after the measure word cùn in (9).

But $\{1\}$ is not omitted (yielding bidimensional numerical expressions) when stating the result of multiplications involving $n f \bar{e} n$ unit fraction names or lexicalized names for $1 / 2$ and $1 / 3$. Examples can be seen in (8) and (9) above for the former situation, and in (117) and (122) from Sect. 5 for the latter one. We can analyze the combination of $n f \bar{e} n$ and $\{1\}$ as a predicative clause with the monodimensional name of the unit fraction acting as the subject and the number name $\{1\}$ acting as the predicate. There are 46 instances (not all different) of these bidimensional expressions of unit fractions in the Suàn Shù Shū. They are distributed among the following patterns (the category c_{1} includes no instances, but is known to exist in at least one other Qin-Han text):

```
\(\left(\mathrm{a}_{1}\right):\) "Denominator \(+f \bar{e} n+\{1\} ": 24\) instances presented in
Sect 3-2-1
\(\left(b_{1}\right)\) : "Denominator + fēn + MW \(+\{1\}\) ": 11 instances in Sect
3-2-2.
\(\left(c_{1}\right)\) : "Denominator \(+f \bar{e} n+z h \bar{l}+\{1\} ":\) no instances (Sect
3-2-3).
\(\left(\mathrm{d}_{1}\right)\) : "Denominator \(+f \bar{e} n+\mathrm{MW}+z h \bar{\imath}+\{1\} ": 11\) instances in
```

Sect 3-2-4.
[Wenwu 2001] - and then Peng Hao (2001), [Ōkawa et al. 2006], Hu Yitao (2006) - considered that a MW was omitted between fēn and the numerator in some instances of the category $\left(a_{1}\right)$ and added the MW which was implied by the context. Yang Lingrong (2008: 17-19) already argued that such additions were unnecessary; I can only emphasize that they must be rejected in the study of the actual expressions of fractions in the corpus.

3-2-1. "Denominator $+f \bar{e} n+\{1\}$ "

The 24 instances are:
$\rightarrow s \bar{a} n f e \bar{n} y \bar{\imath}$ for $1 / 3$ (1 instance, on strip 3);

[^6]\rightarrow sì fēn yū for $1 / 4$（3 instances，on strips 3， 4 and 8 ）；
\rightarrow wǔ fēn yī for 1／5（1 instance，on strip 5）；
\rightarrow liù fēn yı̄ for 1／6（2 instances，on strips 3 and 8 ）；
$\rightarrow b \bar{a}$ fēn $y \bar{\imath}$ for $1 / 8$（1 instance，on strip 5）；
\rightarrow jiǔ fēn ȳ̄ for 1／9（2 instances，on strips 3 and 8 ）；
\rightarrow shífēn ȳ̄ for $1 / 10$（1 instance，on strip 5）；
\rightarrow shí èr fēn ȳ̄ for 1／12（1 instance，on strip 5）；
\rightarrow shí wǔ fēn yı̄ for $1 / 15$（1 instance，on strip 6 ）；
\rightarrow shí liù fēn yı̄ for $1 / 16$（2 instances，on strip 5 and 9）；
\rightarrow èr shí fēn yı̄ for 1／20（2 instances，on strip 6 and 9）；
\rightarrow èr shí wǔ fēn yı̄ for 1／25（2 instances，on strips 6 and 8－9）；
\rightarrow sān shí fēn yı̄ for 1／30（1 instance，on strip 9）；
\rightarrow sān shí liù fēn ȳ̄ for 1／36（1 instance，on strip 9）；
\rightarrow sì shí èr fēn yı̄ for 1／42（1 instance，on strip 10）；
\rightarrow sì shí jiǔ fēn yı̄ for 1／49（1 instance，on strip 9）；
\rightarrow wǔ shí fēn ȳ̄ for $1 / 50$（1 instance，on strip 10）．

3－2－2．＇Denominator $+f \bar{e} n+M W+\{1\} "$ The 11 instances are given in（10）－（20）：
（10）十分 尺 一
in Suàn Shù Shū shífēn chǐ ȳ̄
strip $1 \quad\{10\}$ fēn chǐ $\{1\}$
＇ $1 / 10$ chǐ＇

（11）	廿（二十）分	尺	一
in Suàn Shù Shī	èr shí fēn	chǐ	$y \bar{\imath}$
strip 1	$\{2\}\{10\}$ fēn	chǐ	$\{1\}$
	$' 1 / 20$ chĭ＇		

（12）井（三十）分 尺 一
in Suàn Shù Shū sān shífēn chǐ ȳ̄
strip $2\{3\}\{10\}$ fēn chǐ $\{1\}$
＇ $1 / 30$ chǐ＇
（13）八十分 尺 一
in Suàn Shù Shū bā shífēn chǐ ȳ̄
strip $2\{8\}\{10\} f \bar{e} n$ chǐ $\{1\}$
＇1／80 chǐ＇

（14）	八分	尺	一
in Suàn Shù Shī	bā fēn	chǐ	$y \bar{\imath}$
strip 4	$\{8\}$ fēn	chǐ	$\{1\}$
	$' 1 / 8$ chǐ		

10

（15）	冊（四十）分	尺
in Suàn Shù Shūstrip 4	sì shífēn	chǐ $y \bar{l}$
	\｛4\}\{10\}fēn	chǐ \｛1\}
	＇ $1 / 40$ chǐ＇	
（16） in Suàn Shù Shū strip 4	五十分	
	wǔ shífēn	chǐ yı̄
	\｛5\}\{10\} fēn	chǐ \｛1\}
	＇1／50 chĭ	

（17）	四分	步	一
in Suàn Shù Shū	sì fēn	bù	$y \bar{\imath}$
strips $86-87$	$\{4\} f e \bar{e}$	bù	$\{1\}$
	$' 1 / 4 b \grave{u}$		

The following instances are inserted in mixed numbers．

3－2－3．＂Denominator $+f \bar{e} n+z h \bar{\imath}+\{1\} "$

In the whole Suàn Shù Shū，there are no instances of the sequence fēn zh $\bar{\imath}$ uninterrupted by a measure word before $\{1\}$ ．This absence does not prove the pattern to be impossible；actually there is an instance of it with the expression sān shí fēn zhī ȳ 卅（三十）分之一 $\{3\}\{10\}$ fēn $z h \bar{c}\{1\}$ on strip 0778 of Shù （Xiao Can 2010：51）．

3－2－4．＂Denominator $+f \bar{e} n+M W+z h \bar{i}+\{1\} "$
The 11 instances of this pattern are given in（21）－（26）．All are quantification phrases starting with a noun．

（21）	粺	五分	升	之	一
in Suàn Shù Shū	bài	wă fēn	shēng	$z h \bar{\imath}$	$y \bar{u}$
strip 100	milled millet	$\{5\}$ fēn	shēng	$z h \bar{\imath}$	$\{1\}$
	＇1／5 shēng of milled millet＇				

（22）	粺米	四分	升	之	一
in Suàn Shù Shū	bài $m \bar{l}$	sì fēn	shēng	$z h \bar{l}$	$y \bar{l}$
strips 101－102	milled millet	$\{4\}$ fēn	shēng	$z h \bar{l}$	$\{1\}$
4 instances	＇1／4 shēng of milled millet＇				

in Suàn Shù Shū
毁（毇）米 四分 升 之一
strips 102， 104 polished millet $\{4\}$ fēn shēng zhī $\{1\}$
2 instances＇ $1 / 4$ shēng of polished millet＇

（24）	毁（毇）	四分	升	之	
in Suàn Shù Shū	huǐ	sì fēn	shēng	$z h \bar{l}$	$y \bar{l}$
strip 103	polished millet	\｛4\} fēn	shēng	$z h \bar{\imath}$	\｛1\}
2 instances	＇ $1 / 4$ shēng of po	shed m			

Beware that the Chinese name for＇polished millet＇is huǐ mǐ in（23）and huǐ in （24）．

（25）	米	六	升	四分	升	之	一
in Suàn Shù Shū	mí	liù	shēng	sì fēn	shēng	$z h \bar{l}$	$y \bar{l}$
strip 121	husked millet	$\{6\}$	shēng	$\{4\}$ fēn	shēng	$z h \bar{l}$	$\{1\}$
	＇ 6 shēng $1 / 4$ shēng of husked millet＇						

從（縱）一 步 六分 步 之 一
in Suàn Shù Shū
strip 121
zòng $y \bar{\imath}$ bù liùfēn bù zhī $y \bar{\imath}$
length $\{1\}$ bù $\{6\} f$ fen bù zhī $\{1\}$
＇a length of 1 bù $1 / 6$ bŭ＇

4．GENERIC EXPRESSIONS OF NON－UNIT FRACTIONS

There are 97 instances（not all different）of expressions of non－unit fractions stating both a numerator and a denominator in the Suàn Shù Shū．These bidimensional expressions of fractions are distributed among the following patterns：
$\left(\mathrm{a}_{2}\right)$ ：＂Denominator $+f \bar{e} n+$ Numerator＂： 11 instances，in Sect．
4－1．
$\left(b_{2}\right)$ ：＂Denominator + fēn + MW＋Numerator＂： 43 instances， in Sect．4－2．
$\left(\mathrm{c}_{2}\right)$ ：＂Denominator $+f \bar{e} n+z h \bar{\imath}+$ Numerator＂： 7 instances，in Sect．4－3．
$\left(\mathrm{d}_{2}\right):$＂Denominator $+f \bar{e} n+\mathrm{MW}+z h \bar{\imath}+$ Numerator＂： 36 instance，in Sect．4－4．
As above with category $\left(\mathrm{a}_{1}\right)$ ，I reject the additions of a MW by［Wenwu 2001］in some instances of category $\left(a_{2}\right)$ ．

4－1．＇Denominator＋fēn＋Numerator＂for non－unit fractions

The 11 instances are：jiǔ fēn èr for $2 / 9$ on strip 8 ，jiǔ fēn qī for $7 / 9$ on strip 30 ，on strips 22－23 there are wǔ fēn èr for $2 / 5$ ，liù fēn sān for $3 / 6$ ，sān fēn èr for $2 / 3$ ，shí fēn $b \bar{a}$ for $8 / 10$ ，shí èr fēn $q \bar{\imath}$ for $7 / 12$ ，and finally 4 instances，all of them inserted in mixed numbers，given in（27）－（30）；among them the 2 instances in（28）and （29）come in predicative position after a mass noun．

（27）	十二	キ（七十）二分	十一
in Suàn Shù Shū	shí èr	$q \bar{\imath}$ shí èr fēen	shí $y \bar{\imath}$
strip 36	$\{10\}\{2\}$	$\{7\}\{10\}\{2\}$ fēn	$\{10\}\{1\}$

（28）	粺	七	斗	五分	三
in Suàn Shù Shū	$b a ̀ a$	$q \bar{\imath}$	dǒu	wǔ fēn	sān
strip 135	milled millet	$\{7\}$	dǒu	$\{5\}$ fēn	$\{3\}$
	$' 73 / 5$ dǒu of milled millet＇				

in Suàn Shù Shū

糲	二	斗	五分	二
$l \grave{y}$	$\grave{e} r$	dǒu	$w \check{u} f \bar{e} n$	èr
husked millet	$\{2\}$	dǒu	$\{5\}$ fēn	$\{2\}$
＇2 2／5 dǒu of husked millet＇				

（30）	四	韋（圍）	二	寸	廿（二十）五分	十四
in Suàn Shù Shī	sì	wéi	èr	cùn	èr shí wŭ fēn	shí sì
strip 154	$\{4\}$	wéi	$\{2\}$	cùn	$\{2\}\{10\}\{5\}$ fēn	$\{10\}\{4\}$
	＇4 wéi $214 / 25$	cùn＇				

4－2．＂Denominator＋fēn＋MW＋Numerator＂for non－unit fractions

The 43 instances are given in（31）－（72）along with the preceding integer when there is one．Of these 2 are identical and 11 follow a noun．
in Suàn Shù Shū strip 84

$$
\begin{array}{lll}
\text { 十一 } & \text { 步 } & \text { 有(又) } \tag{31}\\
\text { shí } y \bar{l} & \text { bù } & y o ̀ u \\
\{10\}\{1\} & \text { bù } & \text { and } \\
' 11 \text { bù and } &
\end{array}
$$

九十七分	步	キ（七十）九	步 ${ }^{20}$
jiŭ shí qı̄ fēn	bù	$q \overline{\text { a shí }}$ jiǔ	bù
\｛9\}\{10\}\{7\} fèn	bù	\｛7\}\{10\}\{9\}	bù
79／97 bư＇			

（32）	二	錢	六十分	錢	五十七
in Suàn Shù Shū	èr	qián	liù shí fēn	qián	wŭ shí qī
strip 23	$\{2\}$	qián	$\{6\}\{10\}$ fēn	qián	$\{5\}\{10\}\{7\}$
	＇2 qián $57 / 60$ qián＇				

七分 朱（銖）六
in Suàn Shù Shū qı̄ fēn zhū liù
strip 28
\｛7\}fēn $z h \bar{u} \quad\{6\}$
＇ $6 / 7 z h \vec{u}$＇

（36）	金	二	朱（銖）
in Suàn Shù Shī	$j \bar{u} n$	$\grave{e} r$	$z \bar{u}$
strip 28	gold	$\{2\}$	$z h \bar{u}$
	＇2 $2 h \bar{u}$		

六十三分	朱（銖）	冊（四十）四
liùshísānfēn	zhū	sìshísì
$\{6\}\{10\}\{3\} f \bar{e} n$	$z h \bar{u}$	$\{4\}\{10\}\{4\}$
$44 / 63 z h \bar{u}$ of gold＇		

in Suàn Shù Shū strip 30

六十三分 朱（銖）廿（二十）二
liù shí sānfēn zhū èr shí èr
$\{6\}\{10\}\{3\}$ fēn zhū $\{2\}\{10\}\{2\}$ ‘22／63 zhü’

[^7]| （38） | 五分 錢 四 |
| :---: | :---: |
| in Suàn Shù Shū | wŭfēn qiàn sì |
| strip 33 | \｛5\} fēn qiàn $\{4\}$ |
| | ＇4／5 qiàn＇ |
| （39） | －寸 六十二分 寸 哣（三十）八 |
| in Suàn Shù Shū | $y \overline{1}$ cùn liù shíèrfēn cùn sān shíbā |
| strip 40 | \｛1\} cùn $\{6\}\{10\}\{2\}$ fèn cùn $\{3\}\{10\}\{8\}$ |
| | ＇ 1 cùn 38／62 cùn＇ |
| （40） | 三 寸 六十二分 寸 十四 |
| in Suàn Shù Shū | sān cùn liù shí èr fēn cùn shísì |
| | '3 cùn 14/62 cùn' |
| （41） | 六 寸 六十二分 寸 廿（二十）八 |
| in Suàn Shù Shū | liù cùn liù shí èrfēn cùn èr shíbā |
| | \｛6\} cùn $\{6\}\{10\}\{2\}$ fēn cùn $\{2\}\{10\}\{8\}$ ＇ 6 cùn 28／62 cùn＇ |
| （42） | 吹 二 寸 六十二分 寸 五十六 |
| in Suàn Shù Shū strip 41 | \varnothing chǐ èr cùn liù shí èrfēn cùn wǔ shíliù
 \varnothing chǐ $\{2\}$ cùn $\{6\}\{10\}\{2\}$ fēn cùn $\{5\}\{10\}\{6\}$ |
| | ＇［one］chı̌ 2 cùn 56／62 cùn＇ |
| （43） | 吹 五 寸 六十二分 寸 五十 |
| in Suàn Shù Shū strip 41 | \varnothing chǐ wǔ cùn liù shí èrfēn cùn wǔ shí \varnothing chǐ $\{5\}$ cùn $\{6\}\{10\}\{2\}$ fēn cùn $\{5\}\{10\}$ |
| | ＇［one］chǐ 5 cùn 50／62 cùn＇ |
| （44） | 二 斗 三 升 十一 分 升 八 |
| in Suàn Shù Shū | èr dǒu sān shēng shíȳ̄ fēn shēng bā |
| strip 48 | \｛2\} dǒu \{3\} shēng \{10\}\{1\} fēn shēng \{8\} |
| | ＇2 dǒu 3 shēng 8／11 shēng＇ |
| （45） | －兩 十 朱（銖） |
| in Suàn Shù Shū | $y \bar{\imath}$ liăng shí zhū |
| strip 50 | \｛1\} liăng $\{10\}$ zhū |
| | ＇1 liăng 10 zhū |
| | 百冊（四十）四分 朱（銖）九十二 |
| | băi sì shísìfèn zhū juŭshí èr |
| | $\left\{10^{2}\right\}\{4\}\{10\}\{4\}$ fēn zhū $\{9\}\{10\}\{2\}$ |
| | 92／144 zh \vec{u} |

The nouns jiăn 簡［bamboo strip］and suàn 笄（算）［string of coins］occur after $f \bar{e} n$ in（55）－（57），and also after the name of the integer in（55）and（57）． They behave in the same manner as measure words．

（55）	二百五	簡	八分	簡	七
in Suàn Shù Shū	èr bǎi w ú	jiăn	bāfē̄n	jiăn	$q \bar{\imath}$
strip 70	$\{2\}\left\{10^{2}\right\}\{5\}$	strip	$\{8\}$ fē̄n	strip	$\{7\}$
	＇205 strips and $7 / 8$ of a strip＇				

（56）	八分	簡	一
in Suàn Shù Sh \bar{u}	$b \bar{a} f \bar{e} n$	jiän	$y \bar{\imath}$
strip 71	$\{8\}$ fēn	strip	$\{1\}$
	$' 1 / 8$ of 1 strip＇		

（57）	十七	笄（算）
in Suàn Shù Sh \bar{u}	shí $q \bar{l}$	suăn
strip 73	$\{10\}\{7\}$	string of coins
	$' 17$ strings of coins	

二百六十九分	笄（算）	十一
èr băi liù shí jiǔ fēn	suàn	shí $y \bar{l}$
$\{2\}\left\{10^{2}\right\}\{6\}\{10\}\{9\}$ fēn	string of coins	$\{10\}\{1\}$
$11 / 269$ of a string of coins＇		

（58）
in Suàn Shù Shū

百三 錢 四百卅（三十）分 錢 九十
strip $76 \quad\left\{10^{2}\right\}\{3\}$ qián $\{4\}\left\{10^{2}\right\}\{3\}\{10\}$ fēn qián $\{9\}\{10\}$
‘103 qián 90／430 qián＇
in Suàn Shù Shū
strips 80－81

水	三	斗	四分	升	三
shuǐ	sān	dǒu	sì fēn	shēng	sān
water	$\{3\}$	dǒu	$\{4\}$ fēn	shēng	$\{3\}$
＇3 dǒu	$3 / 4$ shēng of water＇				

（60）十一 步 有（又）
in Suàn Shù Shū strip 84
shí yı̄ bù yòu
$\{10\}\{1\}$ bù and
＇11 bù

[^8]

[^9]
in Suàn Shù Shū strip 185

方 十五 步 卅（三十）一分 步 十五
fāng shíwǔ bù sān shíyīfēn bù shí wǔ side $\{10\}\{5\}$ bù $\{3\}\{10\}\{1\}$ fēn bù $\{10\}\{5\}$ ＇a side of 15 bù $15 / 31$ bü＇（the length of the side）

4－3．＂Denominator $+f \bar{e} n+z h \bar{\imath}+$ Numerator＂for non－unit fractions

The 7 instances are given in（73）－（79）．Among them， 4 follow a noun and 1 follows a＂Verb＋ObJ＂sequence．The numerical expressions in（73）and（75） are 2 of the only 4 instances of expressions of fractions with $z h \bar{\imath}$ which are not in predicative position after a noun or a phrase，the other 2 instances being those in （81）and（82）of the next section．

$$
\begin{array}{lll}
\text { 二千一十六分 } & \text { 之 } & \text { 百六十二 } \tag{73}\\
\text { èr qiān ȳ̄ shí liù fēn } & \text { zhī } & \text { băi liù shí èr } \\
\{2\}\left\{10^{3}\right\}\{1\}\{10\}\{6\} \text { fēn } & \text { zhī } & \left\{10^{2}\right\}\{6\}\{10\}\{2\} \\
' 162 / 2016 & &
\end{array}
$$

In（74），the expression for the fraction occurs after the pronoun object $z h \bar{c}$ of the verb $y u \bar{e}$ ．The fraction is in the position of predicate with regard to the phrase $y u \bar{e} z h \bar{l}$ ；it expresses the result of a reduction．
in Suàn Shù Shū strip 20

約	之	百一十二分	之 九
$y u \bar{e}$	$z h \bar{l}$	băi yī shí èr fēn	$z h \bar{l}$ jiŭ
reduce	3OBJ	$\left\{10^{2}\right\}\{1\}\{10\}\{2\}$ fèn	$z h \bar{l}$ \｛9\}
＇reduce	［refe	ing to $162 / 2016$ ］，［it is	9／112＇

In（75）the fraction is the object of a verb．

[^10]20

（78）	田 七6分 之 四			
in Suàn Shù Shū strip 162	$\begin{array}{lllll} \text { tián } & \text { qī fēn } & z h \bar{l} & s i ̀ \\ \text { field } & \{7\} \text { fēn } & z h \bar{l} & \{4\} \end{array}$			
	＇a field of 4／7 ${ }^{27}$			
（79）	從（縱）	廿（二十）一分	之	十六
in Suàn Shù Shū	zòng	èr shí yī fēn	$z h i$	shí liù
strip 162	length	\｛2\}\{10\}\{1\} fēn	$z h i$	\｛10\}\{6\}
	＇a leng	th is $16 / 21^{\text {2 }}$		

4－4．＂Denominator + fēn $+\mathrm{MW}+z h \bar{\imath}+$ Numerator＂for non－unit fractions

The 36 instances are given in（80）－（115）together with the preceding integer when the fraction is inserted in a mixed number．Note that in（81）and（82），the numerical expressions are objects of a verb，which was already the case with（75） in the previous section．The status of（115）in this matter is unclear because some characters are illegible．In all of the other 33 instances the numerical expression is inserted in a predicative clause，and the subject is a mass noun．
in Suàn Shù Shū strip 30
$(81)^{29}$
in Suàn Shù Shū strip 55

金	七分	朱（銖）	之	三
$j \bar{n} n$	$q \bar{l} f \bar{e} \bar{n}$	$z h \bar{u}$	$z h \bar{l}$	$s \bar{a} n$
gold	$\{7\} f f \bar{e} n$	$z h \bar{u}$	$z h \bar{l}$	$\{3\}$
＇3／7	$z h \bar{u}$ of gold＇			

長者	受	十六	尺	有（又）
zhăngzhě	shòu	shíliù	chǐ	yòu
elder	get	$\{10\}\{6\}$	chǐ	and
＇the elder gets 16	chǐ and			

十八分	尺	之	十二
shí bā fēn	chǐ	$z h \bar{l}$	shí̀ èr
$\{10\}\{8\}$ fēn	chǐ	$z h \bar{\imath}$	$\{10\}\{2\}$
$12 / 18$ chĭ			

[^11]（82）
in Suàn Shù Sh \bar{u}
strip 55
少者 受 八 尺 有（又）
shàozhě shòu bā chǐ yòu younger get $\{8\}$ chǐ and ＇the younger gets 8 chǐ and

十八分	尺	之	六
shí bā fēn	chǐ	$z h \bar{l}$	liù
$\{10\}\{8\} f e \bar{n}$	chǐ	$z h \bar{\imath}$	$\{6\}$
$6 / 18$ chǐ			

粺 十分 升 之 三
bài shífēn shēng zhī sān
milled millet $\{10\}$ fēn shēng zhī $\{3\}$
＇3／10 shēng of milled millet＇
in Suàn Shù Shū strip 98
in Suàn Shù Shū strip 99

米	十五分	升	之	四
$m \check{l}$	shí $w \check{u} f \bar{e} n$	shēng	$z h \bar{\imath}$	sì
husked millet	$\{10\}\{5\} f \bar{e} n$	shēng	$z h \bar{l}$	$\{4\}$
＇4／15 shēng of husked millet＇				

粟 廿（二十）七分 升 之 十 sù èr shíqīfēn shēng zhī shí unhusked millet $\{2\}\{10\}\{7\}$ fēn shēng zhī $\{10\}$ ＇10／27 shēng of unhusked millet＇
in Suàn Shù Shū strip 99

米 九分 升 之 二 mǐ jiǔ fēn shēng zhī èr husked millet $\{9\} f \bar{e} n$ shēng zhī $\{2\}$ ＇ $2 / 9$ shēng of husked millet＇
（87）
in Suàn Shù Shū
strip 100

毁（毇）
冊（四十）五分 升 之 八
huǐ sìshí wǔfēn shēng zhī bā
polished millet $\{4\}\{10\}\{5\}$ fēn shēng zhī $\{8\}$
＇ $8 / 45$ shēng of polished millet＇
（88）
粟
in Suàn Shù Shū
strip 101
sù
unhusked millet
＇25／54 shēng of unhusked millet＇

五十四分	升	之	廿（二十）五
wǔ shí sì fēn	shēng	zhī	èr shíwǔ
$\{5\}\{10\}\{4\}$ fēn	shēng	$z h \bar{\imath}$	$\{2\}\{10\}\{5\}$

22

（89）	米	十八分	升	之	五
in Suàn Shù Shū	$m \check{c}$	shí bā fēn	shēng	$z h \bar{l}$	wŭ
strip 101	husked millet	$\{10\}\{8\}$ fēn	shēng	zhī	$\{5\}$
	＇5／18 shēng of husked millet＇				

（90）	毁（緗）米	九分	升	之	
in Suàn Shù Shū	huĭ mĭ	jiǔ fēn	shēng		èr
strip 102	polished millet	\｛9\} fēn	shēng		\｛2
	＇2／9 shēng of po	lished mil			

（91）	麥	十二分	升	之	五
in Suàn Shù Shū	mài	shí $\mathrm{e} r f \bar{e} n$	shēng	$z h \bar{l}$	wŭ
strip 102	wheat	$\{10\}\{2\} f \bar{e} n$	shēng	$z h \bar{l}$	$\{5\}$

in Suàn Shù Shū
strips 102-103
in Suàn Shù Shū strip 103

米	十六分	升	之	五
mǐ	shíliù fēn	shēng	$z h \bar{l}$	$w \check{u}$
husked millet	$\{10\}\{6\}$ fēn	shēng	$z h \bar{l}$	$\{5\}$
＇5／16 shēng of husked millet＇				

麥 卅（三十）二分 升 之 十五
mài sānshí èrfēn shēng zhī shí wǔ wheat $\{3\}\{10\}\{2\}$ fēn shēng zhī $\{10\}\{5\}$
＇ $15 / 32$ shēng of wheat＇
（94）
in Suàn Shù Shū
strip 104
粟
sù
unhusked millet
＇ $25 / 48$ shēng of unhusked millet＇

冊（四十）八分	升	之	廿（二十）五
sì shí bā fēn	shēng	$z h \bar{c}$	èr shí wŭ
$\{4\}\{10\}\{8\}$ fēn	shēng	zhī	$\{2\}\{10\}\{5\}$

（95）粟
in Suàn Shù Shū
strip 105
sù
unhusked millet
＇500／789 shēng of unhusked millet＇

七百八十九分	升	之	五百
q̄̄ băi $b \bar{a}$ shíjiŭ fēn	shēng	$z h \bar{l}$	wǔ băi
$\{7\}\left\{10^{2}\right\}\{8\}\{10\}\{9\}$ fēn	shēng	zhī	$\{5\}\left\{10^{2}\right\}$

有（又）	二百六十三分	升	之	三
yòu	èr bǎi liù shí sān fēn	shēng	zhī	sān
and	$\{2\}\left\{10^{2}\right\}\{6\}\{10\}\{3\}$ fēn	shēng	zhī	$\{3\}$
and $3 / 263$ shēng of unhusked millet＇				

粟	十九	斗	有（又）
sù	shí jiǔ	dǒu	yòu
unhusked millet	$\{10\}\{9\}$	dǒu	and
＇19 dǒu and			

二百六十三分	升	之	井（三十）
èr bǎi liù shí sān fēn	shēng	zhī	sān shí
$\{2\}\left\{10^{2}\right\}\{6\}\{10\}\{3\}$ fēn	shēng	zhī	$\{3\}\{10\}$
$30 / 263$ shēng of unhusked millet＇			

（99）	粟
in Suàn Shù Shū	sù
strip 107	unhusked millet $\quad 100 / 171$ shēng of unhusked millet＇

百 $=($ 七十 ）一分 升 之 百
bǎi qī shí ȳ̄ fēn shēng zhī bǎi
$\left\{10^{2}\right\}\{7\}\{10\}\{1\}$ fēn shēng zhī $\left\{10^{2}\right\}$

（100）	粟	一	升	有（又）
in Suàn Shù Shī	sù	$y \bar{l}$	shēng	yòu
strip 107	unhusked millet	$\{1\}$	shēng	and
	$' 1$ shēng and			

二百八十五分 升 之 二百丮（七十）五
èr băil bā shí wǔ fēn shēng zhū èr băi qū shí wǔ $\{2\}\left\{10^{2}\right\}\{8\}\{10\}\{5\}$ fēn shēng zhē $\{2\}\left\{10^{2}\right\}\{7\}\{10\}\{5\}$ 275／285 shēng of unhusked millet＇

（101）	粟	十七	升	有（又）
in Suàn Shù Shū	sù	shí q̄̄	shēng	yòu
strip 108	unhusked millet	$\{10\}\{7\}$	shēng	and

（102）	粟	十七	斗	五	升
in Suàn Shù Sh \bar{u}	sù	shí $q \bar{\imath}$	dǒu	wǔ	shēng
strip 106	unhusked millet	$\{10\}\{7\}$	dǒu	$\{5\}$	shēng
	＇17 dǒu 5 shēng				

有（又）二百八十五分 升 之 百廿（二十）五
yòu èr bǎi bā shí wǔ fēn shēng zhī băi èr shí wǔ and $\{2\}\left\{10^{2}\right\}\{8\}\{10\}\{5\}$ fēn shēng zhī $\left\{10^{2}\right\}\{2\}\{10\}\{5\}$ and $125 / 285$ shēng of unhusked millet＇

（103）	米	冊（四十）六	石
in Suàn Shù Sh \bar{u}	$m \grave{u}$	sì shíliù	shí
strip 146	husked millet	$\{4\}\{10\}\{6\}$	shí
	＇46 shí		

廿（二十）七分 石 之 八
èr shí qīfēn shín zhī bā
$\{2\}\{10\}\{7\}$ fēn shí zhī $\{8\}$
8／27 shí of husked millet＇
（104）廣 八分 步 之六
in Suàn Shù Shū
strip 162
guăng bāfēn bù zhī liù
width \｛8\}fēn bù zhī \{6\}
＇a width of $6 / 8 b u ̈$
（105）
廣 七分 步 之 三
in Suàn Shù Shū
strip 162
guăng qīfēn bù zhī sān
width \｛7\} fēn bù zhī \{3\}
＇a width of $3 / 7 b$ ư＇
（106）
in Suàn Shù Sh \bar{u}
strip 162
（107）
in Suàn Shù Shū strip 168
（108）
in Suàn Shù Shū strip 169

田 四分 步 之 二
tián sì fēn bù zhī èr
field $\{4\}$ fēn bù $\quad z h \bar{\imath} \quad\{2\}$
＇a field of $2 / 4$［square］$b u$＇

從（縱）百卅（三十）步 有（又）
zòng bǎi sān shí bù yòu
length $\left\{10^{2}\right\}\{3\}\{10\} \quad$ bù and
＇a length of 130 bù and

十一分 步 之 十
shí yī fēn bù zhī shí
$\{10\}\{1\}$ fēn bù zhī $\{10\}$
10／11 bŭ＇

從（縱）百一十五 步 有（又）
zòng bǎi yī shíwǔ bù yòu
length $\left\{10^{2}\right\}\{1\}\{10\}\{5\}$ bù and
＇a length of 115 bù and

廿（二十）五分 步 之 五
èr shí wǔ fēn bù zh̄̄ wǔ
$\{2\}\{10\}\{5\} f$ fēn bù zhī $\{5\}$
5／25 bŭ＇
（109）
in Suàn Shù Shū
strip 170

從（縱）	百五	步 有	（又）	
zòng	băi wǔ	bù you		
length	$\left\{10^{2}\right\}\{5\}$	bù an		
＇a leng	of 105 bu			
百冊（	十）七分	步	之	十五
bǎi sān	shí qı̄ fēn	bù	$z h \stackrel{\rightharpoonup}{l}$	shí wǔ
$\left\{10^{2}\right\}\{3$	$\{10\}\{7\}$	bù		\｛10\} 55$\}$
15／137				

從（縱）九十二 步 有（又）
zòng jiǔshí èr bù yòu
length $\{9\}\{10\}\{2\} \quad$ bù and ＇a length of 92 bù and

[^12]
qiān bā shí jiǔ fēn bù zhī liù băi yī shí èr $\left\{10^{3}\right\}\{8\}\{10\}\{9\}$ fēn bù zhī $\{6\}\left\{10^{2}\right\}\{1\}\{10\}\{2\}$ 612／1089 bü＇

（111）	從（縱）	八十八	步	有（又）
in Suàn Shù Shā	zòng	ba $\operatorname{shí} b \bar{a}$	bù	yòu
strip 175	length	$\{8\}\{10\}\{8\}$	bù	and
	＇a length of 88 bù and			

二千二百八十三分	步	之	六百九十六
èr qiān èr băi bā shí sān fēn	bù	zhā liù băi ijǔu shí liù	
$\{2\}\left\{10^{3}\right\}\{2\}\left\{10^{2}\right\}\{8\}\{10\}\{3\}$	bù	zhī	$\{6\}\left\{10^{2}\right\}\{9\}\{10\}\{6\}$
$696 / 2283$ bü＇			

（112）	從（縱）	八十四	步	有（又）
in Suàn Shù Shā	zóng	bā shí sì	bù	yòu
strips 177－178	length ＇a length of 84 bù and			

 七千一百廿 (二十)九分 步
 qı̄ qiān yī băi èr shí jiǔ fēn bù
 \(\{7\}\left\{10^{3}\right\}\{1\}\left\{10^{2}\right\}\{2\}\{10\}\{9\}\) fēn bù
 5764/7129 bư
 之 五千七百六十四
 zhī wǔ qiān qı̄ băi liù shí sì
 \(z h \bar{l} \quad\{5\}\left\{10^{3}\right\}\{7\}\left\{10^{2}\right\}\{6\}\{10\}\{4\}\)
 （113）
從（縱）八十一 步 有（又）
in Suàn Shù Shū
zòng bā shí yū bù yòu
strips 180－181
length $\{8\}\{10\}\{1\}$ bù and ＇a length of 81 bù and

七千三百八十一分 步
qī qiān sān bǎi bā shí yī fēn bù
$\{7\}\left\{10^{3}\right\}\{3\}\left\{10^{2}\right\}\{8\}\{10\}\{1\}$ fēn bù
68？？／7381 bù

之	六千八百	［illegible 31
$z h \bar{l}$	liù qiān bā băi	［illegible］
$z h \bar{l}$	$\{6\}\left\{10^{3}\right\}\{8\}\left\{10^{2}\right\}$	［illegible］

（114） in Suàn Shù Shū strip 183	廣 guăng width ＇a width of	
	七 步 冊（四十）九分 q̄̄ bù sì shí jiǔ fēn \｛7\} bù $\{4\}\{10\}\{9\}$ fēn 7 and［illegible］／9 bü＇	$\begin{array}{lll} \text { 步 } & \text { 之 } & \text { [illegible] } \\ \text { bù } & \text { zhī } & \text { [illegible] } \\ \text { bù } & \text { zhī } & \text { [illegible] } \end{array}$

［illegible］33	六十四	步	有（又）
［illegible］	liù shí sì	bù	yòu
［illegible］	$\{6\}\{10\}\{4\}$	bù	and
＇［illegible］ 64 bù and			

5．LEXICALIZED EXPRESSIONS FOR $\mathbf{1 / 2}, \mathbf{1 / 3}$ AND 2／3

In the Suàn Shù Shū，the terms bàn 半［half］，shăobàn 少半［the smaller half］ and tàibàn 大半［the larger half］${ }^{34}$ are used as exact number names in calculations．They are lexicalized expressions of the fractions $1 / 2,1 / 3$ and $2 / 3$ ； these values are revealed in（116）－（118）．They can appear in expressions of mixed numbers in the order bàn shăobàn，i．e．$\{1 / 2\}\{1 / 3\}$ for $1 / 2+1 / 3$ on strip 26 in（119），or in the order shăobàn bàn，i．e．$\{1 / 3\}\{1 / 2\}$ for $1 / 3+1 / 2$ on strip 23. There are no other lexicalized forms for fractions in the whole Suàn Shù Shü ${ }^{-35}$ ．

The instances in（120）and（121）show that these numerals can work as verbs in＂NUM＋OBJ＂constructions with the meaning of multiplying the value of the object by the numeral；this capability is shared by the names of integers．

[^13]| （116） | 一半 | 乘 | 一 | 半 | 也 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| in Suàn Shù Shū | $y \stackrel{\rightharpoonup}{\text { bàn }}$ | chéng | $y \bar{\imath}$ | bàn | $y e ̌$ |
| strip 3 | $\{1\}\{1 / 2\}$ | multiply | $\{1\}$ | $\{1 / 2\}$ | DECL |
| | $' 1 / 2$ times 1 is $1 / 2$ | | | | |

乘	半	四分	-	也
chéng	bàn	sì fēn	$y \bar{\imath}$	$y e ̌$
multiply	$\{1 / 2\}$	$\{4\}$ fēn	$\{1\}$	DECL
times $1 / 2$	is $1 / 4$,			

（117）	少半	乘	少半
in Suàn Shù Shū	shăobàn	chéng	shăobàn
strip 8	$\{1 / 3\}$	multiply	$\{1 / 3\}$
	$1 / 3$ times $1 / 3$		

	少半	各	受	冊（三十）分	之		二十）三
bàn	shǎobàn	gè	shòu	sān shífēn	$z h$		èr shí sān
\｛1／2\}	\｛1／3\}	each	get	\｛3\}\{10\} fēn	$z h$		\｛2\}\{10\}\{3\}
$1 / 21 / 3$［a sum of three terms］，each gets $23 / 30^{\prime}$							
［i．e．the result of $(3+1 / 2+1 / 3) \div 5$ ］．							

(120)	可	半	半	之
in Suàn Shù Shī	kě	bàn	bàn	$z h \bar{l}$
strip 17	can	$\{1 / 2\}$	$\{1 / 2\}$	OBJ
	＇If it can be multiplied by	$1 / 2$	［i．e．is divisible by 2］，	
	then multiply it by $1 / 2.36$			

[^14]| （121）
 in Suàn Shù Shū strip 19 | 半 母 亦 | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | тй | | |
| | \｛1／2\} | den | ominator | also |
| | ＇Mult multip | tiply the ply the | he denomin
 numerato | ator by by $1 / 2$ |
| （122） | 半 | 步 | 乘 | 半 |
| in Suàn Shù Shū strip 8 | | bù | chéng | bàn |
| | \｛1／2\} | bù | multiply | \｛1／2\} |
| | ＇1／2 b | bù time | es $1 / 2$ bù is | |
| （123）
 in Suàn Shù Shū strip 52 | | 斗 | 泰（大）半 | |
| | | dǒu | tàibàn | dǒu |
| | | dǒu | \｛2／3\} | |
| | ＇2 dǒu | и 2／3 | dǒu＇ | |

（124）	粟	十六	斗	泰（大）半	斗
in Suàn Shù Shū	sù	shí liù	dǒu tàibàn	dǒu	
strip 88	unhusked millet	$\{10\}\{6\}$	dǒu $\{2 / 3\}$	dǒu	
	＇16 dǒu $2 / 3$ dǒu of unhusked millet＇				

| （125） | 米 | 六 斗 泰（大）半 | 斗 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| in Suàn Shù Shū | mǐ | liù dǒu tàibàn | dǒu |
| strip 89 | husked millet | $\{6\}$ dǒu $\{2 / 3\}$ | dǒu |
| | ＇ 6 dǒu $2 / 3$ dǒu of husked millet＇ | | |

（126）	三分	而	乘	一
in Suàn Shù Shū	sān fēn ér	chéng	$y \bar{l}$	
strip 3	$\{3\}$ fēn and then	multiply	$\{1\}$	
	$' 1 / 3$ times 1			

三分 一 也
sānfēn ȳ̄ yě
\｛3\} fēn $\{1\} \quad$ DECL
is $1 / 3^{\prime}$
$\begin{array}{llllll}\text {（127）} & \text { 七 } & \text { 斗 } & \text { 三分 } & \text { 升 } & \text { 一 } \\ \text { in Suàn Shù Shū } & q \bar{\imath} & \text { dǒu } & \text { sānfēn } & \text { shēng } & y \bar{\imath} \\ \text { strip 119 } & \{7\} & \text { dǒu } & \{3\} \text { fē̄n } & \text { shēng } & \{1\}\end{array}$
＇7 dǒи $1 / 3$ shēng＇

The only expressions for $1 / 2$ in the corpus are 1 instance of $\{1\}$ bàn，not followed by any measure word，in（116），and 46 instances of \varnothing bàn， 12 of which are followed by a measure word，see for example（122）； 33 are not，and a last

[^15]instance on strip 1 is uncertain since the following characters are illegible. The regular compound " $\{2\} f \bar{e} n$ " is nowhere to be found in the text ${ }^{38}$.

To express $1 / 3$ there are 24 instances of the lexicalized shăobàn (15 with a measure word, 9 without), and to express $2 / 3$ there are 4 instances of tàibàn, one without any measure word on strip 8 , see (118); and 3 followed by the measure word dǒu on strips 52, 88 and 89 ; see (118), (123)-(125) respectively.

The regular compound sān fēn, i.e. $\{3\} f \bar{e} n$, however, is found twice in the sequence $\{3\}$ fēn $\{1\}$ to express $1 / 3$ on strips 3 and 119: see (126) without a measure word and (127) with the measure word shēng inserted between fēn and the numerator's name $\{1\}$. It is also found 17 times (already mentioned in Sect. 3-1) in monodimensional expressions of $1 / 3$ with the numerator 1 not stated. There are three instances in expressions of $2 / 3$: one in the sequence $\{3\}$ fēn $\{2\}$ on strip 23 (without measure word), and two on strips 138-139 with the measure word qián inserted between fēn and the numerator $\{2\}$. Therefore, in the corpus, among the 50 instances of expressions for $1 / 3$ or $2 / 3$, there is a choice between the lexicalized forms (28 instances) and the regular forms built with \{3\} fēn (22 instances). Any of these forms can be used to denote dimensioned quantities (weight, length, surface, etc.) and can be followed by measure words in data, calculations or results. They can also denote dimensionless coefficients in some calculations or in presentations of arithmetical procedures.

Tab. 1: Distribution of the expressions for
$1 / 3$ and $2 / 3$ in the Suàn Shù Shū

	Lexicalized names shăobàn and tàibàn	Regular forms with sān fēn	
MW +	18	4	22
MW -	10	18	28
	28	22	50

The distribution given in Tab. 1 shows that there is no grammatical obligation concerning the choice between lexicalized or regular items. Nevertheless, when no measure word is present, there is some preference for the unlexicalized form with $\{3\}$ fèn since the occurrence rate of such configurations is $18 / 28 \times 100 \approx 64 \%$. Conversely, there is preference for the lexicalized numerical items in adjectival position before a measure word since the occurrence rate of such configurations is $18 / 22 \times 100 \approx 82 \%$; this may be because the lexicalized items yielding noun phrases are more economical than bidimensional expressions which produce predicative clauses.

6. CONTEXTUAL OMISSION OF THE DENOMINATOR OF A NONUNIT FRACTION

In four passages there are series of fractions which have the same denominator, as unambiguously shown by the context, but this denominator is stated only in

[^16]the expression of the first fraction and is understood thereafter．Abbreviations with fēn not preceded by the numerator＇s name can be construed as free reinterpretations of the item $f \bar{e} n$ as a noun meaning parts in a given partitioning．

In（128），taken form a passage about the taxation of pelts，the denominator 7 is stated only once．The following occurrences of fén are contextually understood to designate sevenths．

（128）	犬	出	十五	錢	七分	六
in Suàn Shù Shū	quăn	chū	shíwŭ	qiän	qī fēn	liù
strips 34－35	dog	exit	$\{10\}\{5\}$	qián	$\{7\}$ fēn	$\{6\}$
	＇dog pelt is taxed at 15 and $6 / 7$ qián $[$ each］					

貍	出	井（三十）一	錢	\varnothing 分	五
lí	chū	sān shí $y \bar{\imath}$	qián	$\varnothing f \bar{e} n$	$w \check{u}$
wild cat	exit	$\{3\}\{10\}\{1\}$	qián	$\varnothing f \bar{e} n$	$\{5\}$
wild cat pelt is taxed at 31 and	$5 /[7]$	qián	［each］		

狐	出	六十三	錢	Ø分	三
hú	chū	liù shí sān	qián	$\varnothing f e \bar{n}$	sān
fox	exit	$\{6\}\{10\}\{3\}$	qián	$\varnothing f e \bar{n}$	$\{3\}$
fox pelt is taxed at 63 and $3 /[7]$	qián［each］				

In（129），from another passage about the taxation of pelts，the denominator 72 is stated only once and the following occurrences of fèn are understood to refer to the same partitioning．
in Suàn Shù Shū
strips 36－37

狐	出	十二	末（七十）二分	十一
hú	chū	shí èr	q̄ shí èr fēn	shí $y \bar{\imath}$
fox	pay	$\{10\}\{2\}$	$\{7\}\{10\}\{2\}$ fēn	$\{10\}\{1\}$
＇fox pelt is taxed at 12	$11 / 72$［each］			

貍	出	八	\varnothing 分	冊（四十）九
lín	chū	$b \bar{a}$	$\varnothing f e \bar{n}$	sì shí jiǔ
wild cat	pay	$\{8\}$	$\varnothing f e \bar{n}$	$\{4\}\{10\}\{9\}$
wild cat pelt is taxed at 8	49	［72］［each］		

犬	出	四	\varnothing 分	十二
quăn	chū	sì	\varnothing fēn	shí èr
dog	pay	$\{4\}$	\varnothing fēn	$\{10\}\{2\}$
dog pelt is taxed at 4	12／［72］［each］			

In（130），a passage about the taxation of crops，the denominator 47 is stated only once and and the following occurrences of $f \bar{e} n$ are understood to refer to the same partitioning．
in Suàn Shù Shū
strips 43－44

禾	租	四	斗	四（四十）七分	十二
$h e ́$	$z \bar{u}$	sì	dǒu	sì shí qī fēn	shí èr
millet	tax	$\{4\}$	dǒu	$\{4\}\{10\}\{7\}$ fēn	$\{10\}\{2\}$
＇the tax for	millet amounts to 4 dǒu $12 / 47$	dǒu			

麥 租 三 斗 分 九
mài $z \bar{u} \quad$ sān dǒu \varnothing fēn $j i u ̌$
wheat $\operatorname{tax}\{3\}$ dǒu \varnothing fēn $\{9\}$
the tax for wheat amounts to 3 dǒu 9／［47］dǒu

| 荅 | 租 | 二 | 斗 | \varnothing 分 | 廿（二十）六 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| dá | $z \bar{u}$ | èr | dǒu | \varnothing fēn | èr shíl liù |
| beans | tax | $\{2\}$ | dǒu | \varnothing fēn | $\{2\}\{10\}\{6\}$ |
| the tax for beans amounts to 2 dǒu $26 /[47]$ dŏu | | | | | |

In（131），the number 36 is first announced as a divisor in the calculation of a volume and then understood as the denominator of the fraction in the result．

| （131） | \＃$($ 三十）六 | 成 ${ }^{39}$ 今 |
| :--- | :--- | :--- | :--- |
| in Suàn Shù Shū | sān shí liù | chéng jīn |
| strip 150 | $\{3\}\{10\}\{6\}$ | divide now |
| | $‘ 36$ divides，now［we get］ | |

千五十五	尺 ه分	廿（二十）
èr qiān wǔ shí wǔ	chǐ \varnothing fēn	èr shí
\｛2\}\{10 $\left.{ }^{3}\right\}\{5\}\{10\}\{5\}$	chǐ \varnothing fèn	\｛2\}\{10\}
2055 ［cubic］chǐ 20／［3	［［cubic］chi	

7．CONTEXTUAL USE OF AN INTEGER NAME TO EXPRESS A DENOMINATOR

On two occasions in the corpus，the name of an integer is used to mean a fraction： see shaded \varnothing in（132）and（133）．The integers \｛7\} in (132) and \{4\} in (133) can be understood as fractions only because the text gives the result of the calculations．

（132）	六分	乘	七ø	W（冊（四十）二分	
in Suàn Shù Shū	liù fèn	chéng	q	sì shí èr fēn	$y \bar{l}$
strips 9－10	\｛6\} fēn	multiply	$\{7\} \varnothing$	\｛4\}\{10\}\{2\} fēn	1）
	1／6 ti	1／］7 i			

[^17]| 四 \varnothing 乘 | 五分 | 廿（二十）分 | 一 | |
| :--- | :--- | :--- | :--- | :--- |
| sì | chéng | wŭ fēn | èr shífēn | $y \bar{\imath}$ |
| $\{4\} \varnothing$ | multiply | $\{5\}$ fēn | $\{2\}\{10\}$ fēn | $\{1\}$ |
| $'[1 /] 4$ | times $1 / 5$ is $1 / 20 \prime$ | | | |

In the corpus，the sequence＂ $\mathrm{NUM}_{1}+\mathrm{MW}+$ chéng 乘 $+\mathrm{NUM}_{2}(+\mathrm{MW})$＂can express the product of two lengths yielding to a surface；the unit of measurement can be dropped when it is the same for the two numbers．The instance given in （132）parallels this pattern if we consider the item fēn to be freely reinterpreted as a noun fitting into the measure word slot．The instance in（133）is similar except for the permutation of the two numerical expressions．

Hu Changqing（1996）cites other instances of these abbreviations in other corpora．

8．CASES OF ISOLATED NUMERATORS WITH SPECIAL MARKING

Two integer names preceded by xiǎo 小［small］are found：xiǎo \｛5\} on strip 29 and xiǎo $\{10\}$ on strip 166．According to Peng Hao（2001：50），the former makes sense from the context only if we interpret it as the numerator of the fraction 5／9 which is stated before in the text．As for the latter，Peng Hao（2001： 119）deduces by analogy that it must also be the numerator of a fraction which is not actually otherwise specified．Peng Hao＇s interpretation is quite convincing for xiǎo $\{5\}$ but not for xiǎo $\{10\}$ given the respective contexts．

9．SUMMARY OF PROMINENT FEATURES

In the Suàn Shù Shū，the only inseparable fraction names were on one hand the special lexicalized expressions of $1 / 3,1 / 2$ and $2 / 3$ ，and on the other hand the monodimensional expressions of unit fractions built according to the pattern ＂Denominator＇s name $+f \bar{e} n "$（ 83 instances）．There were numerals which could be inserted before measure words in the same way as names for integers．

There were lexicalized forms only for $1 / 2,1 / 3$ and $2 / 3$ ．Only the lexicalized form was used for $1 / 2$（47 instances）．But to express $1 / 3$ or $2 / 3$ ，there was a choice between the lexicalized forms（ 28 instances）and the regular forms built with＂\｛3\} fēn" (22 instances). Any of these forms could be used with or without a measure word and there was no definite grammatical obligation，but a preference for the lexicalized items when a measure word was present．

Bidimensional expressions of fractions were built as predicative phrases with the unit fraction name＂Denominator＇s Name + fēn＂acting as subject and with the numerator＇s name acting as predicate．The resulting expressions were not inseparable and when a measure word was involved it was inserted right after＂Denominator $+f \bar{e} n$＂．The morpheme $z h \bar{\imath}$ was used optionally as a marker of the predicative relation．The form of the bidimensional expression of a fraction belonged to one of the four patterns defined by whether the item $z h \bar{l}$ was used and whether a measure word was involved．Adding the 46 instances（not all different）of bidimensional expressions of unit fractions and the 97 instances （not all different）of bidimensional expressions of non－unit fractions we get the following distribution for the total of 143 instances：
(a): "Denominator $+f \bar{e} n+$ Numerator": 35 instances.
(b): "Denominator $+f \bar{e} n+$ MW + Numerator": 54 instances.
(c): "Denominator $+f \bar{e} n+z h \bar{l}+$ Numerator": 7 instances.
(d): "Denominator $+f \bar{e} n+\mathrm{mw}+z h \bar{l}+$ Numerator": 47 instances.

The item zhī occurred only in bidimensional expressions followed by the numerator's name and was therefore never used with the mono-dimensional expressions of unit fractions. Moreover the use of $z h \bar{\imath}$ was correlated with the insertion of the fraction either as the predicate in a quantification clause or as the object of a verb; Tab. 2 provides a mapping of the situation.

Tab. 2: Bidimensional expressions of fractions in the Suàn Shù Shū: The item $z h \bar{\imath}$ and the insertion of fractions

	$z h \bar{l}-$	$z h \bar{l}+$	
Inserted -	76	2	78
Inserted +	13	51	64
	89	53	142

The characters placed before the fraction in (115) are illegible, so I do not count it here and the grand total in Tab. 2 is only 142 and not 143.

The fraction is not inserted when it occurs as the results of the calculation as in the examples (132) and (133).

The occurrence rate of $z h \bar{\imath}$ when the fraction is inserted as a predicate or an object amounts to $51 / 64 \times 100 \approx 80 \%$. Conversely the occurrence rate of configurations without $z h \bar{\imath}$ is $76 / 89 \times 100 \approx 85 \%$ when the fraction is not inserted. This allows us to state that the use of $z h \bar{l}$ inside bidimensional fraction expressions was directly correlated with the syntactical insertion of these expressions as a dependent clause used as the predicate of a quantification phrase or as the object of a verb. Readers can refer to Anicotte (2015 b) for a detailed discussion on the use of $z h \bar{\imath}$ in the expressions for fractions in Chinese.

10. ADDENDUM: BIDIMENSIONAL EXPRESSIONS OF PROPORTIONS

When we talk about a fraction of a given quantity, we assume the fraction to be one numerical item defined by a numerator and a denominator; for instance in the statement " $2 / 3$ of 9 is 6 ", the fraction $2 / 3$ is one individualized number formed with the integers 2 and 3 . However a numerical proportion between two things, or two kinds of items, can be expressed with two separate numbers.

For example, the sequence "Noun ${ }_{1}+\mathrm{NUM}_{1}+$ Noun $_{2}+\mathrm{NUM}_{2}$ " reproduced in (134) is built with two numerals both in predicative positions.

This expresses a proportion of one part of husked millet［mı̌ 米］for two parts of unhusked millet［sù 粟］making a total volume of 10 dǒu．From the proportion，we can deduce that the total amount is composed of $1 / 3$ husked millet and $2 / 3$ unhusked millet，however these fractions $1 / 3$ or $2 / 3$ are not stated and their denominator 3 does not appear at all；therefore the phrase＂Noun ${ }_{1}+$ $\mathrm{NUM}_{1}+\mathrm{Noun}_{2}+\mathrm{NUM}_{2}$＂is not the expression of a fraction，but the bidimensional expressions of a proportion；therefore they should not be included in a study on fraction names．

Yang Lingrong（2008：15－16）lists 14 examples of such expressions of proportions in the Suàn Shù Shū including our example（134）．To these 14 examples，we can as well add this instance on strip 52 ：

䖲	稁	二	石	今
chú	găo	èr	shí	jīn
hay	straw	$\{2\}$	shí	now
＇2 shí of hay and straw，now［there are］				

忽	三	而	稁	二
chú	sān	ér	găo	èr
hay	$\{3\}$	and	straw	$\{2\}$
three				
［parts of］	hay and two［parts of］straw，			

REFERENCES

ANICOTTE，Rémi．
2015 a．Chinese names for integers．In：XU Dan 徐丹 \＆Jingqi FU 傅京起 （eds），Space and Quantification in Languages of China，117－138．Berlin： Springer．
2015 b．Bidimensional expressions of fractions in Chinese，in Cahiers de Linguistique Asie Orientale（Leiden：Brill）vol．44（1）：36－56．

CHEMLA，Karine 林力娜 \＆Shuchun GUO 郭書春．2004．Les Neuf chapitres： Le classique mathématique de la Chine ancienne et ses commentaires （édition critique bilingue chinois－français）．Paris：Dunod．
CHEMLA，Karine 林力娜 \＆Biao MA 馬彪．2011．Interpreting a newly discovered mathematical document written at the beginning of the Han dynasty in China（before 157 B．C．E．）and excavated from tomb M77 at Shuihudi（睡虎地）．SCIAMVS：Sources and Commentaries in Exact Sciences （Kyoto）vol．12：159－191．
CULLEN，Christopher．2004．The Suàn Shù Shū 笄數書 ‘Writings on Reckoning＇：A Translation of a Chinese Mathematical Collection of the Second Century BC，with Explanatory Commentary．Cambridge UK： Needham Research Institute．
DAUBEN，Joseph W．2008．Suan Shu Shu，a book on numbers and computations，English translation with commentary．Archive for History of Exact Sciences（Berlin：Springer）vol．62（2）：91－178．
GUO，Shuchun 郭書春．2002．Shìlùn＂Suàn Shù Shū＂de lǐlùn gòngxiàn yǔ biānzuăn 試論《算數書》的理論貢獻與編纂［Preliminary discussion on the theoretical contribution and compilation of the Suàn Shù Shū］．Făguó Hànxué 法國漢學［Sinologie Française］（Beijing：Tsinghua University Press） vol．6：505－537．
HU，Changqing 胡長青．1996．Xiān Qín fēnshù biǎoshìfă jí qí fāzhăn 先秦分数表示法及其发展［Pre－Qin fraction expressions and their development］． Gühànyǔ yánjiū 古汉语研究［Research in ancient Chinese language］ （Changsha），no．32：45－48．
HU，Yitao 胡憶濤 2006．Zhāngjiāshān Hànjiăn＂Suàn Shù Shū＂zhěnglǐ yánjiū張家山漢簡《算數書》整理研究［Study on the compilation of the＂Suàn Shù Shü＂excavated in Zhāngjiāshān］．Master thesis，Southwest University （Xīnán Dàxué 西南大學），Chongqing．
JOCHI，Shigeru 城地茂．2001．San Sū Sho nihon yaku《算數書》日本訳 ［Japanese translation of the Suàn Shù Shū］，in Wasan kenkyujo kiyō 和算研究所紀要［Bulletin of Wasan Institute］（Tokyo），no．4：19－46．
［Ōkawa et al．2006］：Chōkazan Kankan Sansūsho Kenkyūkai 張家山《算数書》研究会（collective）．2006．Kan kan＂San Sū Sho＂：Chūgoku saiko no sūgaku－sho 漢簡《算数書》：中国最古の数学書［The Suàn Shù Shū，a Han dynasty book on bamboo strips：The oldest mathematical text in China］ （ed．：ŌKAWA，Toshitaka 大川俊隆）．Kyōto：Hōyū shoten 朋友書店．
PENG，Hao 彭浩．2001．Zhāngjiāshān Hàn jiăn Suàn Shù Shū zhùshì 張家山漢簡《算術書》注釋［Commented edition of the Suàn Shù Shū，a book written on bamboo strips and excavated from a Han dynasty tomb at Zhāngjiāshān］． Beijing：Kēxué Chūbănshè 科學出版社［Science Press］．
［Wenwu，2000］：Jiānglíng Zhāngjiāshān Hànjiǎn zhěnglǐ xiǎozǔ 江陵张家山汉简整理小组［Study group of the Jiangling documents］（collective）． 2000. Jiānglíng Zhāngjiāshān Hànjiăn＂Suàn Shù Shū＂shìwén 江陵张家山汉简《算数书》释文［Transcription of bamboo＂Suan Shu Shu＂or A＂Book of Arithmetic＂from Jiangling］．Wénwù 文物［Cultural Relics］（Beijing），no．9： 78－84．
［Wenwu，2001］：Zhāngjiāshān èr sì qī hào Hàn mù zhújiǎn zhěnglǐ xiǎozǔ 張家山二四七號漢墓竹簡整理小組［Study group for the collation and arrangement of the bamboo strips from Zhangjiashan Han dynasty tomb no．247］（collective）．2001．Zhāng jiā shān Hàn mù zhújiăn（èr shí qī hào mù）張家山漢墓竹簡（二四七號墓）［Bamboo strips from a Han dynasty tomb at Zhangjiashan（Tomb no．247）］．Beijing：Wénwù Chūbănshè 文物出版社 ［Cultural Relics Press］．
XIAO，Can 肖燦．2010．Yuèlù Shūyuàn cáng Qín jiăn Shù yánjiū 嶽麓書院藏秦簡《數》研究［Study of Shù，a Qin dynasty text written on bamboo strips and kept at the Yuèlù Academy］．PhD dissertation，Hunan University（Húnán Dàxué 湖南大學），Changsha．
XIONG Beisheng 熊北生，Wenqing YANG 杨文清，Hanqiao TAO 陶汉桥，et al．2008．Húběi Yúnmèng Shuìhǔdì M77 fājué jiǎn bào 湖北云梦睡虎地 M77 发掘简报［A preliminary report of the excavation at the Shuihudi tomb M77 in Yunmeng，Hubei］．Jiānghàn kăogǔ 江汉考古［Jianghan archaeology］ （Wuhan）2008（4）：31－37．
YANG，Lingrong 楊玲榮．2008．Zhāngjiāshān Hàn jiăn shùliàng cí yǔ chēngshùfă yánjiū 張家山漢簡數量詞與稱數法研究［Study of the quantifier and the method of calling number in the Zhangjiashan bamboo slips］．PhD dissertation，East China Normal University（Huádōng Shīfàn Dàxué 華東師範大學），Shanghai．

[^0]: ${ }^{1}$ Authorised editions of the Suàn Shù Shū were successively published in［Wenwu 2000］ and［Wenwu 2001］．An edition with commentary was published by Peng Hao（2001）． Japanese translations were produced by Jochi S．（2001）and［Ōkawa et al．2006］；the latter includes a translation into Contemporary Chinese by Ma Biao．Another Contemporary Chinese rendition was done by Hu Yitao（2006）who worked under the supervision of Zhang Xiancheng（Southwest University，Chongqing）．Two independent English translations were successively produced by Cullen（2004）and Dauben（2008）．
 ${ }^{2}$ Yang Lingrong（2008：14－20）counts 328 fractions in the Suàn Shù Shū（including atypical expressions of fractions and expressions of proportions），but 58 fractions only in all the other corpora of Zhangjiashan．
 ${ }^{3}$ I checked Shù 數（it belonged to the Yuèlù Academy，the text is now available in Xiao Can 2010；Xiao Can briefed me by email about integers and fractions in Shù before the formal publication），and Suàn Shù 算術（which was excavated in Shuihudi in 2006；at the time of my research，only short excerpts were available in Xiong Beisheng et al． （2008），a joint publication by the Hubei Provincial Institute of Cultural Relics and Archaelogy（Húběi Shěng Wénwù Kăogǔ Yánjiūsuŏ）and the Yunmen Museum （Yúnmèng Xiàn Bówùguăn）published in 2008，and in Chemla \＆Ma Biao（2011））．
 ${ }^{4}$ There is a wide range of values in the Suàn Shù Shū that depend on the calculations they are involved in．For example， $1 / 50$ is on strip $4,12 / 18$ is on strip $55,47 / 98$ is on strip 92，and 162／2016 is on strip 20.

[^1]: ${ }^{5}$ Guo Shuchun（2002）and Yang Lingrong（2008）already presented the various patterns which can be encountered，but they failed to quantify their distribution and to relate them to their insertion contexts．
 ${ }^{6}$ Length units are cùn 寸，chĭ 尺，bù 步，zhàng 丈 and $l \check{c}$ 里： 1 lŭ $=180$ zhàng， 1 zhàng $=10 \mathrm{ch} \check{\prime}, 1$ bù $=6 \mathrm{ch} \check{\prime}, 1 \mathrm{ch} \check{=}=10 \mathrm{cùn}$ ．There is also a specific unit wéi 韋（圍） used only for circumferences according to Peng Hao（2001）： 1 wéi $=3$ chǐ（i．e．$\approx \pi$ chǔ， the circumference of a circle with diameter $1 c h \check{l}$ ．Surface area units can be $m \check{u}$ 畝 and qing 頃（ 1 qing $=100 \mathrm{mu}$ ），or are derived from length units and contextually understood as referring to surfaces even though there is no special indication equivalent to English ＂square＂．Capacity units are shēng 升，dŏu 斗 and shí 石（ 1 shí＝ 10 dǒu， 1 dǒu＝ 10 shēng）．The only volume unit in the Suàn Shù Shū is chĭ 尺；it is derived from the length unit chǐ 尺 and occurs without any special indication equivalent to＂cubic＂． Weight units are $z h \bar{u}$ 朱（銖），liăng 兩，$j \bar{i} n$ 斤，$j \bar{u} n$ 鈞 and shí石： 1 shí $=4 j \bar{u} n$ ， $1 j u \bar{n}=30 j \bar{j} n, 1 j \bar{u} n=16$ liăng， 1 liăng $=24 z h \bar{u}$ ．Note that shí 石 can designate both a capacity unit and a weight unit，and that the Xiàndài hànyǔ guīfàn cídiăn 现代汉语规范词典［Dictionary of contemporary Chinese］（Beijing，2010：262）gives the pronunciation dàn for this character used as a measurement unit，but recommends shí when reading ancient texts．

[^2]: ${ }^{7}$ I refer to Dauben（2008：169－170）for the English names of crops and their byproducts in the Suàn Shù Shū．
 ${ }^{8}$ In the Suàn Shù Shū as in the Nine Chapters［Jiǔ Zhāng Suàn Shù 九章算術］，bài 粺 refers to milled millet，not to a particular variety of millet．
 ${ }^{9}$ The word suàn 笄（算）refers either to a string of coins（Cullen 2004：29）or to a Han dynasty unit of taxation（Chemla \＆Guo Shuchun 2004：989）．
 ${ }^{10}$ In Chinese the distinction between mass and countable nouns is semantic，not grammatical．
 ${ }^{11}$ According to the rules of pinyīn transcription，the digit $\{1\}$ is always romanized as $y \bar{\imath}$ with a first tone mark regardless of the actual tone in Contemporary Chinese．This depends on the tone of the following syllable；for example $\{1\}\left\{10^{4}\right\}$ is actually pronounced yí wàn，but this is only noted in publications concerned with pronunciation．
 ${ }^{12}$ The Contemporary Chinese variant liăng 兩 was hardly used in exact number names before the 20th century CE and the digit èr 二 is the only numeral for 2 in the Suàn Shù Shū．

[^3]: ${ }^{13}$ When a measure word separates the integer and the fraction，the item yòu can be present as in（7）or absent as in（18）．When there is no measure word，the item yòu is sometimes not used as in（27）or used as in（119）．
 ${ }^{14}$ Readers can find more details on Chinese integer names in Anicotte（2015 a）．
 ${ }^{15}$ The ligature \neq for 70 is also found in the Qin－Han manuscripts Shù and Suàn Shù mentioned above，but not in dictionaries of Middle Chinese．
 ${ }^{16}$ Modern dictionaries give the pronunciations niàn for 廿，sà for 卅，and xì for 胦，but other ligatures for tens are never mentioned；this justifies the present usage of glossing all of these ligatures as dissyllabic compounds．I presume nothing about the actual pronunciation of tens during the Qin－Han period；this matter is beyond the scope of the present paper．

[^4]: $\phi+二$
 \varnothing＇
 $\phi\{i e ̀ r$
 $\varnothing\{10\}\{2\}$

[^5]: ${ }^{17}$ English would simply write $1612 / 18$ chǐ and say＂sixteen and twelve－eighteenths of a chĭ＂．My translations are meant to highlight the repetition of the measure words and the presence of linking terms in the original．
 ${ }^{18}$ This repetition shows that the integer and the fraction were dealt with independently； this has nothing to do with＂echo＂constructions which occur in one quantification phrase＂Noun＋Num＋Noun＂（e．g．qiāng bǎi qiāng 羌百羌［Qiang hundred Qiang］i．e． ＇one hundred Qiang people＇on bone inscription H32042）．

[^6]: ${ }^{19}$ This is the calculation of a surface. It also gives the conversion $1 / 5$ cùn $=1 / 50$ chı̆ for length units (given that 1 cùn $=1 / 10 c h \grave{\imath}$); the conversion is expressed as a product.

[^7]: ${ }^{20}$ The third occurrence of bù is superfluous and likely a copyist＇s mistake；this changes nothing about the classification of this fraction．

[^8]: ${ }^{21}$ Peng Hao（2001： 76 note 10），Hu Yitao（2006：41）and［Ōkawa et al．2006：93］ consider，for the sake of computational coherence，that dǒu \boldsymbol{y}^{*} as found in the text is actually a copyist＇s error for shēng 升 assuming the text means＇ 3 and $3 / 4$ shēng of water＇；this correction changes nothing for our classification．

[^9]: ${ }^{22}$ The term wéi is a unit of length used for circumferences; it also appeared in (30). The shaded \varnothing signals the absence of the number name $\{1\}$ before the measure word wéi, this also occurs in (9), (42) and (43) before chǐ.
 ${ }^{23}$ Strip 171 is followed by strip 173. [Wenwu 2001] and Peng Hao (2001: 117) initially had the sequence 171-172-173, but Peng Hao had changed this to 171-173-172 in the last release of the digital corpus he sent me in 2010. Hu Yitao (2006: 80, 82 note 14) and [Ōkawa et al. 2006: 1, 7 note 12] all have 171-173.
 ${ }^{24}$ I write a question mark $?$ where the original shows an unclear written mark which looks like wǔ 五 \{5\}. But this would give a numerator equal to 541 , which seems unlikely since it would yield an improper fraction. For the sake of coherence, the numerator should be 141. Peng Hao (2001: 121 note 39) says the digit wŭ 五 $\{5\}$ should be corrected to $y \bar{l}-\{1\}$, while Hu Yitao (2006: 82 note 14) and [Ōkawa et al. 2006: 93] say it is superfluous. This later formulation is in my view more acceptable since $\{1\}$ was never used before the highest pivot of a number name in the Suàn Shù Shū. In any case this instance is undoubtedly an example of the pattern "Denominator's name $f \bar{e} n+$ MW + Numerator's name" whatever the value of the numerator.

[^10]: ${ }^{25}$ The weigh unit $j \bar{n} n$ which can be deduced from the context is omitted after $f \bar{e} n$ ．For our classification we only need to acknowledge this absence．

[^11]: ${ }^{26}$ The character on the strip looks more like $y \bar{\imath}-\{1\}$ than $q \bar{\imath}$ 七 $\{7\}$ ；but linguistic and conceptual coherence require us to chose $q \bar{\imath}$ 七 $\{7\}$ to have a proper fraction．Peng Hao （2001： 115 note 5），Hu Yitao（2006：79）and［Ōkawa et al．2006： 20 note 4］all discussed this point．Anyway，it is of no consequence for our classification．
 ${ }^{27}$ This takes place in the calculation of one side of a rectangle when the other side and the surface are known．The textual coherence implies that a surface in square bù should be understood，even though the measure word is not stated．We only need to acknowledge this absence for our classification．
 ${ }^{28}$ As for the instance in（78），we only need to acknowledge the absence of a measure word to classify the expression．
 ${ }^{29}$ The fraction in（81）was already stated in（7）withdrawn from its insertion context．

[^12]: ${ }^{30}$ Strip 172 is followed by strip 183，see Hu Yitao（2006：82）．

[^13]: ${ }^{31}$ The tens and units digits are illegible and transcribed as ？？in the English translation． This does not change anything to the classification of the expression．
 ${ }^{32}$ The numerator is illegible and transcribed as［illegible］in the English translation．
 ${ }^{33}$ A noun or the upper rank digits of the integer are illegible and transcribed as［illegible］ in the English translation．
 ${ }^{34}$ Only the instance of tàibàn on strip 8 is written 大半，the other three instances are written 泰半．I chose the reading tàibàn which fits the two written forms．The reading dàbàn would be possible for 大半 but hardly for 泰半．
 ${ }^{35}$ In Contemporary Chinese only yī bàn 一半 for $1 / 2$ remains．The terms tàibàn（written泰半 or 太半）or dàbàn 大半 are still used on occasion today but only as approximate numbers meaning most，no longer as exact numbers．

[^14]: ${ }^{36}$ This comes from a passage about the reduction of fractions on strips 17－20．

[^15]: ${ }^{37}$ This is from the same passage on strips 17－20．

[^16]: ${ }^{38}$ In Contemporary Chinese the lexicalized fraction name yī bàn for $1 / 2$ can usually be replaced by the regular form $\{2\}$ fèn $z h \bar{\imath}\{1\}$, but not, for example, in the time expression bā diăn bàn for $8: 30$.

[^17]: ${ }^{39}$ The phrase＂n chéng＂（ n 成）is an abbreviation of＂n chéng y \vec{l}＂（ n 成一）which expresses a division by n（Peng Hao 2001： 108 note 3），［Ōkawa et al．2006：29］．

