B. Moulia, C. Coutand, and C. Lenne, Posture control and skeletal mechanical acclimation in terrestrial plants: implications for mechanical modeling of plant architecture, American Journal of Botany, vol.93, issue.10, pp.1477-1489, 2006.
DOI : 10.3732/ajb.93.10.1477

URL : https://hal.archives-ouvertes.fr/hal-01189136

G. Scurfield, Reaction Wood: Its Structure and Function: Lignification may generate the force active in restoring the trunks of leaning trees to the vertical, Science, vol.179, issue.4074, pp.647-655, 1973.
DOI : 10.1126/science.179.4074.647

T. Alméras, M. Derycke, G. Jaouen, J. Beauchene, and M. Fournier, Functional diversity in gravitropic reaction among tropical seedlings in relation to ecological and developmental traits, Journal of Experimental Botany, vol.60, issue.15, pp.4397-4410, 2009.
DOI : 10.1093/jxb/erp276

J. Matsuzaki, M. Masumori, and T. Tange, Phototropic bending of non-elongating and radially growing woody stems results from asymmetrical xylem formation, Plant, Cell & Environment, vol.31, issue.5, pp.646-653, 2007.
DOI : 10.1007/s10086-004-0639-x

T. Alméras and M. Fournier, Biomechanical design and long-term stability of trees: Morphological and wood traits involved in the balance between weight increase and the gravitropic reaction, Journal of Theoretical Biology, vol.256, issue.3, pp.370-381, 2009.
DOI : 10.1016/j.jtbi.2008.10.011

R. Bonser and A. Ennos, Measurement of prestrain in trees: implications for the determination of safety factors, Functional Ecology, vol.12, issue.6, pp.971-974, 1998.
DOI : 10.1006/jtbi.1993.1184

T. Alméras, A. Thibaut, and J. Gril, Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees, Trees, vol.18, issue.4, pp.457-467, 2005.
DOI : 10.1007/s00468-005-0407-6

F. Lafarguette, J. Leplé, A. Déjardin, F. Laurans, G. Costa et al., Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood, New Phytologist, vol.20, issue.1, pp.107-121, 2004.
DOI : 10.1111/j.1469-8137.2004.01175.x

G. Pilate, A. Déjardin, F. Laurans, and J. Leplé, Tension wood as a model for functional genomics of wood formation, New Phytologist, vol.14, issue.1, pp.63-72, 2004.
DOI : 10.1111/j.1469-8137.2004.01176.x

N. Nishikubo, Xyloglucan Endo-transglycosylase (XET) Functions in Gelatinous Layers of Tension Wood Fibers in Poplar--A Glimpse into the Mechanism of the Balancing Act of Trees, Plant and Cell Physiology, vol.48, issue.6, pp.843-855, 2007.
DOI : 10.1093/pcp/pcm055

B. Clair, T. Almeras, G. Pilate, D. Jullien, J. Sugiyama et al., Maturation Stress Generation in Poplar Tension Wood Studied by Synchrotron Radiation Microdiffraction, PLANT PHYSIOLOGY, vol.155, issue.1, pp.562-570, 2011.
DOI : 10.1104/pp.110.167270

URL : https://hal.archives-ouvertes.fr/hal-00597183

B. Clair, T. Alméras, H. Yamamoto, T. Okuyama, and J. Sugiyama, Mechanical Behavior of Cellulose Microfibrils in Tension Wood, in Relation with Maturation Stress Generation, Biophysical Journal, vol.91, issue.3, pp.1128-1137, 2006.
DOI : 10.1529/biophysj.105.078485

URL : https://hal.archives-ouvertes.fr/hal-00112572

S. Chang, F. Quignard, T. Almeras, and C. B. , Mesoporosity changes from cambium to mature tension wood: a new step toward the understanding of maturation stress generation in trees, New Phytologist, vol.291, issue.3, pp.1277-1287
DOI : 10.1111/nph.13126

URL : https://hal.archives-ouvertes.fr/hal-01081834

B. Clair, J. Gril, D. Renzo, F. Yamamoto, H. Quignard et al., Characterization of a Gel in the Cell Wall To Elucidate the Paradoxical Shrinkage of Tension Wood, Biomacromolecules, vol.9, issue.2, pp.494-498, 2008.
DOI : 10.1021/bm700987q

A. Bowling and K. Vaughn, Immunocytochemical characterization of tension wood: Gelatinous fibers contain more than just cellulose, American Journal of Botany, vol.95, issue.6, pp.655-663, 2008.
DOI : 10.3732/ajb.2007368

T. Gorshkova, 2015 Aspen tension wood fibers contain b-(1 !4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls, Plant Physiol, vol.169, pp.2048-2063

E. Mellerowicz and T. Gorshkova, Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition, Journal of Experimental Botany, vol.63, issue.2, pp.551-565
DOI : 10.1093/jxb/err339

P. Mikshina, T. Chernova, S. Chemikosova, N. Ibragimova, N. Mokshina et al., 2013 Cellulosic fibers: role of matrix polysaccharides in structure and function, Cellulose: fundamental aspects (ed. T van der Ven, L Godbout), pp.91-11210, 51941.

M. Fournier, T. Alméras, C. B. , G. Jeds, B. Gardiner et al., 2014 Biomechanical action and biological functions, The biology of reaction wood, pp.139-170
DOI : 10.1007/978-3-642-10814-3_5

URL : https://hal.archives-ouvertes.fr/hal-01452085/document

H. Kubler, Growth stresses in trees and related wood properties, For. Abs, vol.48, pp.131-189, 1987.

B. Clair, J. Alteyrac, A. Gronvold, J. Espejo, B. Chanson et al., Patterns of longitudinal and tangential maturation stresses in Eucalyptus nitens plantation trees, Annals of Forest Science, vol.56, issue.8, pp.801-811
DOI : 10.1007/s13595-013-0318-4

URL : https://hal.archives-ouvertes.fr/hal-00913611

B. Clair, T. Alméras, and J. Sugiyama, Compression stress in opposite wood of angiosperms: observations in chestnut, mani and poplar, Annals of Forest Science, vol.27, issue.5, pp.507-510, 2006.
DOI : 10.1051/forest:2006032

URL : https://hal.archives-ouvertes.fr/hal-00112562

C. Fang, C. B. Gril, J. Alméras, and T. , Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain, Wood Science and Technology, vol.56, issue.8, pp.659-671, 2007.
DOI : 10.1007/s00226-007-0148-3

URL : https://hal.archives-ouvertes.fr/hal-00194930

M. Yoshida, H. Ohta, and T. Okuyama, Tensile growth stress and lignin distribution in the cell walls of black locust (Robinia pseudoacacia), Journal of Wood Science, vol.54, issue.1, pp.99-105, 2002.
DOI : 10.1007/BF00767285

M. Yoshida, H. Ohta, H. Yamamoto, and T. Okuyama, Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn., Trees, vol.16, issue.7, pp.457-464, 2002.
DOI : 10.1007/s00468-002-0186-2

B. Clair, J. Ruelle, J. Beauchêne, M. Prévost, F. Djimbi et al., Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurrence and efficiency of the G-layer, IAWA J, vol.27, pp.329-338, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00106587

D. Jullien and J. Gril, Growth strain assessment at the periphery of small-diameter trees using the two-grooves method: influence of operating parameters estimated by numerical simulations, Wood Science and Technology, vol.56, issue.5, pp.551-565, 2008.
DOI : 10.1007/s00226-008-0202-9

URL : https://hal.archives-ouvertes.fr/hal-00537121

C. Fang, D. Guibal, C. B. Gril, J. Liu, Y. Liu et al., cv. ???Lux??? ex I-69/55), Annals of Forest Science, vol.51, issue.3, pp.307-317, 2008.
DOI : 10.1051/forest:2008008

URL : https://hal.archives-ouvertes.fr/hal-00883369

J. Ruelle, M. Yoshida, C. B. , and T. B. , Peculiar tension wood structure in Laetia procera (Poepp.) Eichl. (Flacourtiaceae), Trees, vol.34, issue.3, pp.345-355
DOI : 10.1007/s00468-007-0128-0

URL : https://hal.archives-ouvertes.fr/hal-00194923

B. Clair, J. Ruelle, and T. B. , Relationship between growth stress, mechano-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill, Holzforschung, vol.57, pp.189-195, 1928.

S. Chauhan and K. Entwistle, 2010 Measurement of surface growth stress in Eucalyptus nitens Maiden by splitting a log along its axis, Holzforschung, vol.64, pp.267-272

R. Archer, Growth stresses and strains in trees, 1986.
DOI : 10.1007/978-3-662-02511-6

N. Yoshizawa, N. Watanabe, S. Yokota, and T. Idei, Distribution of Guaiacyl and Syringyl Lignins in Normal and Compression Wood of Buxus Microphylla Var. Insularis Nakai, IAWA Journal, vol.14, issue.2, pp.139-151
DOI : 10.1163/22941932-90001307

H. Baillères, M. Castan, B. Monties, B. Pollet, and C. Lapierre, Lignin structure in Buxus sempervirens reaction wood, Phytochemistry, vol.44, issue.1, pp.35-39, 1997.
DOI : 10.1016/S0031-9422(96)00499-2

H. Hiraide, M. Yoshida, S. Sato, and H. Yamamoto, Common Mechanism of Lignification of Compression Wood in Conifers and <i>Buxus</i>, American Journal of Plant Sciences, vol.07, issue.07, pp.1151-1162
DOI : 10.4236/ajps.2016.77110

B. Meylan, Reaction wood in Pseudowintera colorata ? A vessel-less dicotyledon, Wood Science and Technology, vol.21, issue.4, pp.81-92, 1981.
DOI : 10.1007/BF00367855

M. Kojima, V. Becker, and C. Altaner, 2012 An unusual form of reaction wood in Koromiko

. Forst, (Pennell)], a southern hemisphere angiosperm, Planta, vol.235, pp.289-297

T. Shirai, ECCENTRIC GROWTH AND GROWTH STRESS IN INCLINED STEMS OF GNETUM GNEMON, IAWA Journal, vol.36, issue.4, pp.365-377, 2015.
DOI : 10.1163/22941932-20150107

F. Onaka, 1949 Studies on compression and tension wood, Wood Res, vol.1, pp.1-88

J. Fisher and J. Stevenson, Occurrence of Reaction Wood in Branches of Dicotyledons and Its Role in Tree Architecture, Botanical Gazette, vol.142, issue.1, pp.82-95
DOI : 10.1086/337199

J. Roussel and C. B. , tension wood, to assist understanding how non-G-layer species produce tensile stress, Tree Physiology, vol.35, issue.12, pp.1366-1377
DOI : 10.1093/treephys/tpv082

URL : https://hal.archives-ouvertes.fr/hal-01229280

B. Ghislain, E. Nicolini, R. R. Ruelle, J. Yoshinaga, A. Alford et al., In press. Multilayered structure of tension wood cell walls in Salicaceae sensu lato and its taxonomic significance, Bot. J. Linn. Soc

B. Ghislain and C. B. , In press. Diversity in the organisation and lignification of tension wood fibre walls: a review

J. Fisher, Anatomy of axis contraction in seedlings from a fire prone habitat, American Journal of Botany, vol.95, issue.11, pp.1337-1348, 2008.
DOI : 10.3732/ajb.0800083

N. Schreiber, N. Gierlinger, N. Putz, P. Fratzl, C. Neinhuis et al., (Fabaceae): tensile stress generators for contraction, The Plant Journal, vol.50, issue.5, pp.854-861
DOI : 10.1111/j.1365-313X.2009.04115.x

W. Abasolo, M. Yoshida, H. Yamamoto, and T. Okuyama, Stress Generation In Aerial Roots Of Ficus Elastica (Moraceae), IAWA Journal, vol.30, issue.2, pp.216-224, 2009.
DOI : 10.1163/22941932-90000216

A. Bowling and K. Vaughn, Gelatinous fibers are widespread in coiling tendrils and twining vines, American Journal of Botany, vol.96, issue.4, pp.719-727, 2009.
DOI : 10.3732/ajb.0800373

C. Meloche, J. Knox, and K. Vaughn, A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies, Planta, vol.126, issue.2, pp.485-498
DOI : 10.1007/s00425-006-0363-4

K. Nakagawa, A. Yoshinaga, and K. Takabe, Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods, Annals of Botany, vol.110, issue.4, pp.897-904
DOI : 10.1093/aob/mcs144

T. Gorshkova, Specific type of secondary cell wall formed by plant fibers, Russian Journal of Plant Physiology, vol.57, issue.3, pp.328-341, 2010.
DOI : 10.1134/S1021443710030040

H. Norberg and H. Meier, L.), Holzforschung, vol.20, issue.6, pp.174-178, 1966.
DOI : 10.1515/hfsg.1966.20.6.174

A. Olsson, I. Bjurhager, L. Gerber, B. Sundberg, and L. Salmen, Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy, Planta, vol.34, issue.6, pp.1277-1286, 2011.
DOI : 10.1007/s00425-011-1384-1

T. Kaku, S. Serada, K. Baba, F. Tanaka, and T. Hayashi, Proteomic analysis of the G-layer in poplar tension wood, Journal of Wood Science, vol.274, issue.4, pp.250-257, 2009.
DOI : 10.1007/s10086-009-1032-6

T. Timell, Compression wood in gymnosperms, 1986.
DOI : 10.1007/978-3-642-61616-7

J. Ruelle, C. B. Beauchêne, J. Prévost, M. Fournier, and M. , Tension Wood and Oppositewood in 21 Tropical Rain Forest Species, IAWA Journal, vol.27, issue.4, pp.341-376, 2006.
DOI : 10.1163/22941932-90000159

J. Ruelle, H. Yamamoto, and T. B. , Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperm species, BioResources, vol.2, pp.235-251, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01031799

M. Fujita, H. Saiki, and H. Harada, Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibers, Mokkuzai Gakkaishi, vol.20, pp.147-156, 1974.

G. Daniel, L. Filonova, A. Kallas, and T. Teeri, Morphological and chemical characterisation of the G-layer in tension wood fibres of Populus tremula and Betula verrucosa: Labelling with cellulose-binding module CBM1 Hj Cel7A and fluorescence and FE-SEM microscopy, Holzforschung, vol.60, issue.6, pp.618-624, 0104.
DOI : 10.1515/HF.2006.104

B. Clair, J. Gril, K. Baba, T. B. Sugiyama, and J. , Precautions for the Structural Analysis of the Gelatinous Layer in Tension Wood, IAWA Journal, vol.26, issue.2, pp.189-195, 2005.
DOI : 10.1163/22941932-90000110

URL : https://hal.archives-ouvertes.fr/hal-00004517

R. Abedini, C. B. Pourtahmasi, K. Laurans, F. Arnould, and O. , 2015 Cell wall thickening in developing tension wood of artificially bent poplar trees, IAWA J, vol.36, pp.44-57

H. Dadswell and A. Wardrop, The Structure and Properties of Tension Wood, Holzforschung, vol.9, issue.4, pp.97-104, 1955.
DOI : 10.1515/hfsg.1955.9.4.97

M. Üller, M. Burghammer, M. Sugiyama, and J. , Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction, Holzforschung, vol.60, pp.474-479, 2006.

Y. Horikawa, C. B. Sugiyama, and J. , Varietal difference in cellulose microfibril dimensions observed by infrared spectroscopy, Cellulose, vol.22, issue.1, pp.1-8, 2009.
DOI : 10.1007/s10570-008-9252-2

URL : https://hal.archives-ouvertes.fr/hal-00437875

J. Ruelle, Analyse de la diversité du bois de tension de 3 espèces d'angiospermes de forêt tropicale humide de Guyane Française, 2006.

L. Donaldson, Cellulose microfibril aggregates and their size variation with cell wall type, Wood Science and Technology, vol.37, issue.5, pp.443-460, 2007.
DOI : 10.1007/s00226-006-0121-6

D. Cosgrove, Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes, Journal of Experimental Botany, vol.67, issue.2, pp.463-476
DOI : 10.1093/jxb/erv511

J. Boyd and R. Foster, Microfibrils in primary and secondary wall growth develop trellis configurations, Canadian Journal of Botany, vol.53, issue.23, 1975.
DOI : 10.1139/b75-297

L. Salmén, Micromechanical understanding of the cell-wall structure, Comptes Rendus Biologies, vol.327, issue.9-10, pp.873-880, 2004.
DOI : 10.1016/j.crvi.2004.03.010

S. Chang, J. Hu, C. B. Quignard, and F. , Pore structure characterization of poplar tension wood by nitrogen adsorption-desorption method (in Chinese with summary in English), Sci. Silvae Sin, vol.47, pp.134-140, 2011.

W. Barkas, The swelling of wood under stress. A discussion of its hygroscopic, elastic and plastic properties. Based on a course of lectures given at Svenska Tra¨forskningsinstitutet, 1948.

E. Mellerowicz, P. Immerzeel, and T. Hayashi, Xyloglucan: The Molecular Muscle of Trees, Annals of Botany, vol.102, issue.5, pp.659-665, 2008.
DOI : 10.1093/aob/mcn170

B. Clair, T. Beds, B. Gardiner, . Barnett, and . Saranpa¨a¨, 2014 Physical and mechanical properties of reaction wood In The biology of reaction wood, pp.171-200

M. Fournier, B. Chanson, T. B. Guitard, and D. , Mesures des d??formations r??siduelles de croissance ?? la surface des arbres, en relation avec leur morphologie. Observations sur diff??rentes esp??ces, Annales des Sciences Foresti??res, vol.51, issue.3, pp.249-266, 1994.
DOI : 10.1051/forest:19940305

H. Yamamoto, Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation, Wood Science and Technology, vol.41, issue.3, pp.171-182, 1998.
DOI : 10.1007/BF00704840

I. Cave, Modelling the structure of the softwood cell wall for computation of mechanical properties, Wood Science and Technology, vol.54, issue.1, pp.19-28, 1976.
DOI : 10.1007/BF00376381

H. Yamamoto and Y. Kojima, Properties of cell wall constituents in relation to longitudinal elasticity of wood, Wood Science and Technology, vol.36, issue.1, pp.55-74, 2002.
DOI : 10.1007/s00226-001-0128-y

H. Yamamoto, Y. Kojima, T. Okuyama, W. Abasolo, and J. Gril, Origin of the Biomechanical Properties of Wood Related to the Fine Structure of the Multi-layered Cell Wall, Journal of Biomechanical Engineering, vol.124, issue.4, pp.432-440, 2002.
DOI : 10.1115/1.1485751

H. Yamamoto and T. Okuyama, 1992 A model of the anisotropic swelling and shrinking process of wood. Part 1. Generalization of Barber's wood fiber model, IUFRO All-Division 5 Conf, p.14

H. Yamamoto, F. Sassus, M. Ninomiya, and J. Gril, A model of anisotropic swelling and shrinking process of wood, Wood Science and Technology, vol.35, issue.1-2, pp.167-181, 2001.
DOI : 10.1007/s002260000074

I. Cave, A theory of the shrinkage of wood, Wood Science and Technology, vol.1, issue.4, pp.284-292
DOI : 10.1007/BF00357050

N. Barber, A Theoretical Model of Shrinking Wood, Holzforschung, vol.22, issue.4, pp.97-103, 1968.
DOI : 10.1515/hfsg.1968.22.4.97

J. Boyd, Compression wood force generation and functional mechanics, N. Z. J. For. Sci, vol.3, pp.240-258, 1973.

J. Ferrand, Etude des contraintes de croissance Premi??re partie : m??thode de mesure sur carottes de sondage, Annales des Sciences Foresti??res, vol.39, issue.2, pp.109-142, 1982.
DOI : 10.1051/forest:19820201

T. Okuyama, H. Yamamoto, M. Yoshida, Y. Hattori, and R. Archer, Growth stresses in tension wood: role of microfibrils and lignification, Annales des Sciences Foresti??res, vol.51, issue.3, pp.291-300, 19940308.
DOI : 10.1051/forest:19940308

URL : https://hal.archives-ouvertes.fr/hal-00882950

R. Washusen, J. Ilic, and G. Waugh, The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-yearold Eucalyptus globulus Labill. Holz als Roh-und Werkstoff 61, pp.299-303, 2003.

C. Fang, C. B. Gril, J. Liu, and S. , Growth Stresses are Highly Controlled by the Amount of G-Layer in Poplar Tension Wood, IAWA Journal, vol.29, issue.3, pp.237-246, 2008.
DOI : 10.1163/22941932-90000183

URL : https://hal.archives-ouvertes.fr/hal-00339066

B. Clair and T. B. , SHRINKAGE OF THE GELATINOUS LAYER OF POPLAR AND BEECH TENSION WOOD, IAWA Journal, vol.22, issue.2, pp.121-131, 2001.
DOI : 10.1163/22941932-90000273

URL : https://hal.archives-ouvertes.fr/hal-00004542

M. Suzuki, Mechanical deformation of crystal lattice of cellulose in Hinoki wood 1992 X-ray measurement of lattice strain of cellulose crystals during the shrinkage of wood in the longitudinal direction, Mokuzai Gakkaishi Mokuzai Gakkaishi, vol.14, issue.38, pp.268-275, 1968.

C. Montero, C. B. Alméras, T. Van-der-lee, A. Gril, and J. , Relationship between wood elastic strain under bending and cellulose crystal strain, Composites Science and Technology, vol.72, issue.2, pp.175-181
DOI : 10.1016/j.compscitech.2011.10.014

URL : https://hal.archives-ouvertes.fr/hal-00646489

B. Meylan, 1972 The influence of microfibril angle on the longitudinal shrinkage-moisture content relationship

B. Clair, 2012 Evidence that release of internal stress contributes to drying strains of wood, Holzforschung, vol.66, pp.349-353

J. Boyd, Tree growth stresses ? Part V: Evidence of an origin in differentiation and lignification, Wood Science and Technology, vol.40, issue.1, pp.251-262, 1972.
DOI : 10.1007/BF00357047

A. Schniewind and J. Barrett, Cell wall model with complete shear restraint, pp.205-214, 1969.

I. Burgert, M. Eder, N. Gierlinger, and P. Fratzl, Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell, Planta, vol.37, issue.4, pp.981-987, 2007.
DOI : 10.1007/s00425-007-0544-9

R. Bamber, The origin of growth stresses, Forpride Digest, vol.8, pp.75-79, 1979.

R. Bamber, The Origin of Growth Stresses: A Rebuttal, IAWA Journal, vol.8, issue.1, pp.80-84, 1987.
DOI : 10.1163/22941932-90001032

R. Bamber, 2001 A general theory for the origin of growth stresses in reaction wood: how trees stay upright

J. Boyd, The key factor in growth stress generation in trees, lignification or crystallisation? IAWA Bull, pp.139-150, 1985.

R. Archer, On the origin of growth stresses in trees, Wood Science and Technology, vol.14, issue.2, pp.139-154, 1987.
DOI : 10.1007/BF00376194

M. Yoshida, Y. Hosoo, and T. Okuyama, 2000 Periodicity as a factor in the generation of isotropic compressive growth stress between microfibrils in cell wall formation during a twenty-four hour period, Holzforschung, vol.54, pp.469-473, 2000.

M. Yoshida, M. Ikawa, K. Kaneda, and T. Okuyama, Stem tangential strain on the tension wood side of Fagus crenata saplings, J. Wood Sci, vol.49, pp.475-478, 2003.

T. Alméras, M. Yoshida, and T. Okuyama, Strains inside xylem and inner bark of a stem submitted to a change in hydrostatic pressure, Trees, vol.15, issue.350, pp.460-467
DOI : 10.1007/s00468-006-0061-7

Y. Hosoo, M. Yoshida, T. Imai, and T. Okuyama, Diurnal Differences in the Innermost Surface of the S2 Layer in Differentiating Tracheids of Cryptomeria japonica Corresponding to a Light-Dark Cycle, Holzforschung, vol.57, issue.6, pp.567-573, 1985.
DOI : 10.1515/HF.2003.085

Y. Hosoo, M. Yoshida, I. Takanori, and T. Okuyama, Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids, Planta, vol.215, issue.6, pp.1006-1072
DOI : 10.1007/s00425-002-0824-3

T. Okuyama, M. Yoshida, and H. Yamamoto, An estimation of the turgor pressure change as one of the factors of growth stress generation in cell walls. Diurnal change of tangential strain of inner bark, Mokuzai Gakkaichi 41, pp.1070-1078, 1995.

E. Münch, Cosgrove DJ. 2014 Re-constructing our models of cellulose and primary cell wall assembly, Statik und Dynamik des Schraubigen Baus der Zwellwand, besonders der Druck-and Zugholzes, pp.357-424, 1938.

T. Davidson, R. Newman, and M. Ryan, Variations in the fibre repeat between samples of cellulose I from different sources, Carbohydrate Research, vol.339, issue.18, pp.2889-2893, 2004.
DOI : 10.1016/j.carres.2004.10.005

Y. Nishiyama, Structure and properties of the cellulose microfibril, Journal of Wood Science, vol.88, issue.4, pp.241-249, 2009.
DOI : 10.1007/s10086-009-1029-1

URL : https://hal.archives-ouvertes.fr/hal-00413871

B. Clair, G. Jaouen, J. Beauchêne, and M. Fournier, Mapping Radial,Tangential and Longitudinal Shrinkages and Relation to Tension Wood in Discs of the Tropical Tree Symphonia globulifera, Holzforschung, vol.57, issue.6, pp.665-671, 0100.
DOI : 10.1515/HF.2003.100

URL : https://hal.archives-ouvertes.fr/hal-00447236

T. Alméras, J. Gril, and H. Yamamoto, Modelling anisotropic maturation strains in wood in relation to fibre boundary conditions, microstructure and maturation kinetics, Holzforschung, vol.59, issue.3, pp.347-353, 2005.
DOI : 10.1515/HF.2005.057

C. Dawson, J. Vincent, and A. Rocca, 1997 How pine cones open, Nature, vol.390, issue.6661, pp.668-678
DOI : 10.1038/37745

T. Alméras, M. Yoshida, and T. Okuyama, The generation of longitudinal maturation stress in wood is not dependent on diurnal changes in diameter of trunk, Journal of Wood Science, vol.54, issue.5, pp.452-455
DOI : 10.1007/s10086-005-0788-6

B. Clair, T. B. Sugiyama, and J. , On the detachment of the gelatinous layer in tension wood fiber, Journal of Wood Science, vol.51, issue.3, pp.218-221, 2005.
DOI : 10.1007/s10086-004-0648-9

URL : https://hal.archives-ouvertes.fr/hal-00004516