J. Maxwell, On Stresses in Rarified Gases Arising from Inequalities of Temperature, Philosophical Transactions of the Royal Society of London, vol.170, issue.0, pp.231-56
DOI : 10.1098/rstl.1879.0067

R. A. Millikan, Coefficients of slip in gases and the law of reflection of molecules from the surfaces of solids and liquids Phys. Rev, pp.217-255, 1923.

W. Fisher, The Molecular and the Frictional Flow of Gases in Tubes, Physical Review (Series I), vol.29, issue.3, p.325, 1909.
DOI : 10.1103/PhysRevSeriesI.29.325

D. L. Morris, L. Hannon, and A. Garcia, Slip length in a dilute gas, Physical Review A, vol.46, issue.8, pp.5279-81, 1992.
DOI : 10.1103/PhysRevA.46.5279

T. Veijola, H. Kuisma, J. Lahdenperä, and R. , Equivalent circuit model of the squeezed gas film in a silicon accelerometer Sens. Actuators, A Phys, pp.239-287, 1995.

E. B. Arkilic, K. Breuer, and M. Schmidt, Mass flow and tangential momentum accommodation in silicon micromachined channels, Journal of Fluid Mechanics, vol.437, pp.29-43, 2001.
DOI : 10.1017/S0022112001004128

D. A. Lockerby, J. M. Reese, D. R. Emerson, and R. Barber, Velocity boundary condition at solid walls in rarefied gas calculations Phys. Rev, p.17303, 2004.

B. Y. Cao, M. Chen, and Z. Guo, Temperature dependence of the tangential momentum accommodation coefficient for gases, Applied Physics Letters, vol.86, issue.9, p.91905, 2005.
DOI : 10.1063/1.1871363

M. Bao and Y. H. , Squeeze film air damping in MEMS Sens. Actuators A Phys, p.27, 2007.

E. Lauga, M. Brenner, and H. Stone, Microfluidics: the no slip boundary condition Handbook of Experimental Fluid Dynamics, 2007.

J. Maxwell, On the Dynamical Theory of Gases, Philosophical Transactions of the Royal Society of London, vol.157, issue.0, pp.49-88
DOI : 10.1098/rstl.1867.0004

S. Colin, Rarefaction and compressibility effects on steady and transient gas flows in microchannels, Microfluidics and Nanofluidics, vol.17, issue.3, pp.268-79, 2005.
DOI : 10.1007/s10404-004-0002-y

F. Sharipov, Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface, Journal of Physical and Chemical Reference Data, vol.40, issue.2, p.23101, 2011.
DOI : 10.1063/1.3580290

R. A. Millikan, The Isolation of an Ion, a Precision Measurement of its Charge, and the Correction of Stokes's Law, Physical Review (Series I), vol.32, issue.4, p.349, 1911.
DOI : 10.1103/PhysRevSeriesI.32.349

R. A. Millikan, On the Elementary Electrical Charge and the Avogadro Constant, Physical Review, vol.2, issue.2, p.109, 1913.
DOI : 10.1103/PhysRev.2.109

R. A. Millikan, The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces Phys, Rev, vol.22, p.1, 1923.

L. Stacy, A determination by the constant deflection method of the value of the coefficient of slip for rough and for smooth surfaces in air Phys. Rev, pp.239-288, 1923.

K. Van-dyke, The coefficients of viscosity and of slip of air and of carbon dioxide by the rotating cylinder method Phys. Rev, pp.250-65, 1923.

A. Kuhlthau, Air Friction on Rapidly Moving Surfaces, Journal of Applied Physics, vol.20, issue.2, pp.217-240, 1949.
DOI : 10.1063/1.1698335

G. Comsa, J. K. Fremerey, B. Lindenau, G. Messer, and P. Rohl, Calibration of a spinning rotor gas friction gauge against a fundamental vacuum pressure standard, Journal of Vacuum Science and Technology, vol.17, issue.2, pp.642-646, 1980.
DOI : 10.1116/1.570531

D. S. Gabis, S. K. Loyalka, and T. Strovick, Measurements of the tangential momentum accommodation coefficient in the transition flow regime with a spinning rotor gauge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.4, p.2592, 1996.
DOI : 10.1116/1.579986

P. Tekasakul, J. A. Bentz, R. Tompson, and S. Loyalka, The spinning rotor gauge: Measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.14, issue.5, pp.2946-52, 1996.
DOI : 10.1116/1.580249

J. A. Bentz, R. Tompson, and S. Loyalka, The spinning rotor gauge: measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients for N2 and CH4, Vacuum, vol.48, issue.10, pp.817-841, 1997.
DOI : 10.1016/S0042-207X(97)00031-6

J. A. Bentz, R. Tompson, and S. Loyalka, Measurements of viscosity, velocity slip coefficients, and tangential momentum accommodation coefficients using a modified spinning rotor gauge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.19, issue.1, pp.317-341, 2001.
DOI : 10.1116/1.1335833

K. Jousten, Is the effective accommodation coefficient of the spinning rotor gauge temperature dependent?, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.21, issue.1, pp.318-342, 2003.
DOI : 10.1116/1.1531649

T. Gronych, R. Ulman, L. Peksa, and P. Repa, Measurements of the relative momentum accommodation coefficient for different gases with a viscosity vacuum gauge, Vacuum, vol.73, issue.2, pp.275-284, 2004.
DOI : 10.1016/j.vacuum.2003.12.017

K. E. Mcculloh, C. R. Tilford, C. Ehrlich, and F. Long, Low???range flowmeters for use with vacuum and leak standards, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.5, issue.3, pp.376-81, 1987.
DOI : 10.1116/1.574163

K. Jousten, H. Menzer, and R. Niepraschk, A new fully automated gas flowmeter at the PTB for flow rates between 10 13 mol s ?1 and 10 6 mol s ?1 Metrologia, pp.519-548, 2002.

K. C. Pong, C. M. Ho, J. Liu, Y. Tai, K. Bandyopadhyay et al., Non linear pressure distribution in uniform microchannels Application of Microfabrication to Fluid, ASME) pp, vol.51, p.6, 1994.

J. C. Harley, Y. Huang, H. Bau, and J. Zemel, Gas flow in micro-channels, Journal of Fluid Mechanics, vol.87, issue.-1, pp.257-74, 1995.
DOI : 10.1063/1.1706857

Y. Zohar, L. S. Lee, W. Y. Jiang, L. Tong, and P. , Subsonic gas flow in a straight and uniform microchannel J. Fluid Mech, pp.125-51, 2002.

J. Maurer, P. Tabeling, P. Joseph, and H. Willaime, Second-order slip laws in microchannels for helium and nitrogen, Physics of Fluids, vol.15, issue.9, pp.2613-2634, 2003.
DOI : 10.1063/1.1599355

S. Colin, P. Lalonde, and C. , Validation of a second order slip flow model in rectangular microchannels Heat Transfer Eng, p.30, 2004.

T. Ewart, P. Perrier, I. Graur, and J. Méolans, Mass flow rate measurements in gas micro flows, Experiments in Fluids, vol.472, issue.8, pp.487-98, 2006.
DOI : 10.1007/s00348-006-0176-z

URL : https://hal.archives-ouvertes.fr/hal-01443354

J. Pitakarnnop, S. Varoutis, D. Valougeorgis, S. Geoffroy, L. Baldas et al., A novel experimental setup for gas microflows Microfluid. Nanofluid, pp.57-72, 2010.

M. Bergoglio, D. Mari, J. Chen, S. H. Mohand, H. et al., Experimental and computational study of gas flow delivered by a rectangular microchannels leak Measurement 73 551, Heat Transfer and Fluid Flow in Minichannels and Microchannels, p.62, 2013.

S. G. Kandlikar, C. S. Peles, Y. Garimella, S. Pease, R. F. Brandner et al., Heat Transfer in Microchannels???2012 Status and Research Needs, Heat transfer in microchannels 2012 status and research needs J. Heat Transf, p.91001, 2013.
DOI : 10.1115/1.4024354

C. Aubert and C. S. , High order boundary conditions for gaseous flows in rectangular microchannels Microscale Thermophys. Eng, pp.41-54, 2001.

S. S. Hsieh, H. H. Tsai, C. Y. Lin, C. F. Huang, and C. Chien, Gas flow in a long microchannel, International Journal of Heat and Mass Transfer, vol.47, issue.17-18, pp.3877-87, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2004.03.027

T. Ewart, P. Perrier, I. Graur, and J. Méolans, Tangential momemtum accommodation in microtube, Microfluidics and Nanofluidics, vol.472, issue.N9, pp.689-95, 2007.
DOI : 10.1007/s10404-007-0158-3

URL : https://hal.archives-ouvertes.fr/hal-01443359

T. Ewart, P. Perrier, I. A. Graur, and J. Méolans, Mass flow rate measurements in a microchannel, from hydrodynamic to near free molecular regimes J. Fluid Mech, pp.337-56, 2007.

I. Graur, P. Perrier, W. Ghozlani, and J. Meolans, Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel Phys, p.102004, 2009.

P. Perrier, I. A. Graur, T. Ewart, and J. Méolans, Mass flow rate measurements in microtubes: From hydrodynamic to near free molecular regime, Physics of Fluids, vol.23, issue.4, p.42004, 2011.
DOI : 10.1063/1.3562948

URL : https://hal.archives-ouvertes.fr/hal-01443385

H. Yamaguchi, T. Hanawa, O. Yamamoto, Y. Matsuda, Y. Egami et al., Experimental measurement on tangential momentum accommodation coefficient in a single microtube, Microfluidics and Nanofluidics, vol.27, issue.1, pp.57-64, 2011.
DOI : 10.1007/s10404-011-0773-x

H. Yamaguchi, Y. Matsuda, and N. , Tangential Momentum Accommodation Coefficient measurements for various materials and gas species, Journal of Physics: Conference Series, vol.362, p.12035, 2012.
DOI : 10.1088/1742-6596/362/1/012035

S. Y. Yoon, J. W. Ross, M. M. Mench, and K. Sharp, Gas-phase particle image velocimetry (PIV) for application to the design of fuel cell reactant flow channels, Journal of Power Sources, vol.160, issue.2, pp.1017-1042, 2006.
DOI : 10.1016/j.jpowsour.2006.02.043

F. Samouda, C. S. Barrot, C. Baldas, L. Brandner, and J. J. , Micro molecular tagging velocimetry for analysis of gas flows in mini and micro systems Microsyst, Technol, vol.21, pp.527-564, 2015.

A. Frezzotti, S. H. Mohand, H. Barrot, C. , and C. S. , Role of diffusion on molecular tagging velocimetry technique for rarefied gas flow analysis Microfluid. Nanofluid, pp.1335-1383, 2015.

E. Bonaccurso, M. Kappl, and H. J. Butt, Hydrodynamic Force Measurements: Boundary Slip of Water on Hydrophilic Surfaces and Electrokinetic Effects, Physical Review Letters, vol.88, issue.7, p.76103, 2002.
DOI : 10.1103/PhysRevLett.88.076103

E. Bonaccurso, H. J. Butt, and C. , Surface Roughness and Hydrodynamic Boundary Slip of a Newtonian Fluid in a Completely Wetting System, Physical Review Letters, vol.90, issue.14, p.144501, 2003.
DOI : 10.1103/PhysRevLett.90.144501

C. Neto, V. Craig, and W. , Evidence of shear dependent boundary slip in newtonian liquids Eur, Phys. J. E, vol.12, p.71, 2003.

C. Neto, D. R. Evans, E. Bonaccurso, H. J. Butt, and C. , Boundary slip in Newtonian liquids: a review of experimental studies, Reports on Progress in Physics, vol.68, issue.12, p.2859, 2005.
DOI : 10.1088/0034-4885/68/12/R05

C. Honig and W. A. Ducker, No-Slip Hydrodynamic Boundary Condition for Hydrophilic Particles, Physical Review Letters, vol.98, issue.2, p.28305, 2007.
DOI : 10.1103/PhysRevLett.98.028305

O. Vinogradova, Drainage of a Thin Liquid Film Confined between Hydrophobic Surfaces, Langmuir, vol.11, issue.6, p.2213, 1995.
DOI : 10.1021/la00006a059

A. Maali and B. Bhushan, Slip length measurement of confined air flow using dynamic atomic force microscopy Phys. Rev, p.27302, 2008.

Y. Pan, B. Bhushan, and A. Maali, Slip Length Measurement of Confined Air Flow on Three Smooth Surfaces, Langmuir, vol.29, issue.13, p.4298, 2013.
DOI : 10.1021/la400199k

URL : https://hal.archives-ouvertes.fr/hal-00834329

A. Siria, A. Drezet, F. Marchi, F. Comin, S. Huant et al., Viscous Cavity Damping of a Microlever in a Simple Fluid, Physical Review Letters, vol.102, issue.25, p.254503, 2009.
DOI : 10.1103/PhysRevLett.102.254503

URL : https://hal.archives-ouvertes.fr/hal-00985260

C. Honig and W. A. Ducker, Effect of Molecularly-Thin Films on Lubrication Forces and Accommodation Coefficients in Air, The Journal of Physical Chemistry C, vol.114, issue.47, pp.20114-20123, 2010.
DOI : 10.1021/jp107106f

C. Honig, J. E. Sader, P. Mulvaney, and W. A. Ducker, Lubrication forces in air and accommodation coefficient measured by a thermal damping method using an atomic force microscope Phys, p.56305, 2010.

A. Bowles and W. Ducker, Gas flow near a smooth plate, Physical Review E, vol.83, issue.5, p.56328, 2011.
DOI : 10.1103/PhysRevE.83.056328

J. Ou and J. Rothstein, Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces, Physics of Fluids, vol.17, issue.10, p.103606, 2005.
DOI : 10.1063/1.2109867

P. Joseph, C. Bizonne, C. Benoît, J. M. Ybert, C. Journet et al., Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels, Physical Review Letters, vol.97, issue.15, p.156104, 2006.
DOI : 10.1103/PhysRevLett.97.156104

. D. Seo and W. A. Ducker, situ control of gas flow by modification of gas solid interactions PRL, p.174502, 2013.