
HAL Id: hal-01391788
https://hal.science/hal-01391788

Submitted on 3 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Globally convergent evolution strategies for constrained
optimization

Youssef Diouane, Serge Gratton, L. Nunes Vicente

To cite this version:
Youssef Diouane, Serge Gratton, L. Nunes Vicente. Globally convergent evolution strategies for con-
strained optimization. Computational Optimization and Applications, 2015, vol. 62 (n° 2), pp.
323-346. �10.1007/s10589-015-9747-3�. �hal-01391788�

https://hal.science/hal-01391788
https://hal.archives-ouvertes.fr

To link to this article: DOI: 10.1007/s10589-015-9747-3
URL: http://dx.doi.org/10.1007/s10589-015-9747-3

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 16217

To cite this version: Diouane, Youssef and Gratton, Serge and Vicente, L. Nunes
Globally convergent evolution strategies for constrained optimization. (2015)
Computational Optimization and Applications, vol. 62 (n° 2). pp. 323-346. ISSN
0926-6003

Globally Convergent Evolution Strategies

for Constrained Optimization

Y. Diouane∗ S. Gratton† L. N. Vicente‡

March 17, 2015

Abstract

In this paper we propose, analyze, and test algorithms for constrained optimization when
no use of derivatives of the objective function is made. The proposed methodology is built
upon the globally convergent evolution strategies previously introduced by the authors for
unconstrained optimization. Two approaches are encompassed to handle the constraints. In
a first approach, feasibility is first enforced by a barrier function and the objective function
is then evaluated directly at the feasible generated points. A second approach projects first
all the generated points onto the feasible domain before evaluating the objective function.

The resulting algorithms enjoy favorable global convergence properties (convergence to
stationarity from arbitrary starting points), regardless of the linearity of the constraints.

The algorithmic implementation (i) includes a step where previously evaluated points
are used to accelerate the search (by minimizing quadratic models) and (ii) addresses the
particular cases of bounds on the variables and linear constraints. Our solver is compared
to others, and the numerical results confirm its competitiveness in terms of efficiency and
robustness.

Keywords: Evolution strategies, constrained optimization, global convergence, extreme barrier
function, projection, search step, quadratic models, bound and linear constraints.

1 Introduction

Let us consider a constrained optimization problem of the form

min f(x)

s.t. x ∈ Ω ⊂ R
n.

(1)

∗CERFACS, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France (diouane@cerfacs.fr). Support
for this author has been provided by Depth Imaging and High Performance Computing TOTAL Exploration &
Production, Avenue Larribau, 64018 Pau, France (PI Dr. Henri Calandra).

†ENSEEIHT, INPT, rue Charles Camichel, B.P. 7122 31071, Toulouse Cedex 7, France
(serge.gratton@enseeiht.fr).

‡CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal (lnv@mat.uc.pt).
Support for this research was provided by FCT under grants PTDC/MAT/116736/2010 and PEst-
C/MAT/UI0324/2011 and by the Réseau Thématique de Recherche Avancée, Fondation de Coopération Sciences
et Technologies pour l’Aéronautique et l’Espace, under the grant ADTAO.

1

In the computational tests reported in this paper we devote particular attention to the case
where Ω is defined by a finite number of linear inequalities. Our theory applies to the case
where the constraints are nonlinear and some numerical tests for this case are reported as well.
In any case, the constraints will be treated as nonrelaxable (meaning that the objective function
cannot be evaluated outside the feasible region), and thus the algorithms considered will start
feasible and will generate feasible iterates throughout the course of the iterations. The objective
function f will be assumed bounded from below in R

n and Lipschitz continuous near appropriate
limit points.

Evolution Strategies (ES’s) [46] are evolutionary algorithms designed for global optimization
in a continuous space. In [17] we dealt with a large class of ES’s, where in each iteration µ points
(called parents) are selected as the best in terms of the objective function f of a broader set of λ
(≥ µ) points (called offspring), corresponding to the notation (µ, λ)–ES. At the k-th iteration of
these ES’s, the new offspring {y1k+1, . . . , y

λ
k+1} are generated around a weighted mean xk of the

previous parents, corresponding to the notation (µ/µW , λ)–ES. The generation process is done
by yik+1 = xk + σES

k dik, i = 1, . . . , λ, where dik is drawn from a certain distribution and σES
k is a

chosen step size. One relevant instance of such an ES is CMA-ES [27].
In [17] it has been shown, for unconstrained optimization, how to modify the above men-

tioned class of ES’s to rigorously achieve a form of global convergence, meaning convergence
to stationary points independently of the starting point. The modifications in [17] consisted
essentially on the reduction of the size of the steps whenever a sufficient decrease condition
on the objective function values is not verified. When such a condition is satisfied, the step
size can be reset to the step size σES

k maintained by the ES’s themselves, as long as this latter
one is sufficiently large. A number of ways were suggested in [17] to impose sufficient decrease
for which global convergence holds under reasonable assumptions. The numerical experiments
therein measured the effect of these modifications into CMA-ES [27]. The overall conclusions
were that modifying ES’s to promote smaller steps when the larger steps are uphill leads to an
improvement in the efficiency of the algorithms in the search of a stationary point. Although
(µ/µW , λ)–ES are non-elitist, our modified versions do introduce some elitism in the sense that
the point used to monitor sufficient decrease is the all time best one.

Since the constrained setting poses a number of additional difficulties and technicalities, the
paper [17] was confined to unconstrained optimization. In the general context of ES’s, various
algorithms have been proposed to handle constraints. Coello [11] and Kramer [36] provide a
comprehensive survey of the most popular constrained optimization methods currently used
within ES’s. Most approaches use penalty functions [48], where a term penalizing infeasibility
is added to the objective function. Other more sophisticated approaches are based on the use
of multiobjective optimization [20] or biologically inspired techniques [21, 47].

In this paper we develop a general globally convergent framework for unrelaxable constraints
and make it concrete and operational for the bound and linearly constrained cases. For that
purpose, two different approaches are considered. A first one relies on techniques used in di-
rectional direct-search methods (see the surveys [13, 33]), where one uses a barrier function to
prevent infeasible displacements together with the possible use of directions that conform to the
local geometry of the feasible region. The second approach is based first on enforcing all the
generated sample points to be feasible, by using a projection mapping of the form:

ΦΩ : R
n → Ω, Φ2

Ω = ΦΩ. (2)

The projection is not necessarily the Euclidean one or defined using some other distance, al-

2

though in the case of bound constraints we will use the ℓ2-projection (as it is trivial to evaluate)
and in the case of linear constraints (meaning that at least one of them is not a simple bound)
we will use the ℓ1-projection (as it reduces to the solution of an LP).

The two approaches above described are computationally compared to some of the best
solvers available for minimizing a function without derivatives over bound/linear constraints.
All the solvers tested, but a trust-region one, are designed for global optimization in an heuristic
sense. For bound-constrained problems, the implementation is enhanced by applying a search
step, before the main ES one, based on the minimization of quadratic models built upon previ-
ously evaluated points. The numerical results confirm the competitiveness our two approaches
in terms of both of efficiency and robustness. For non-linear constraints we did a more prelimi-
nary type of testing, essentially just a proof of concept, comparing our best approach to a local
direct-search solver (both without any search type step).

The paper is organized as follows. We start by introducing in Section 2 the globally conver-
gent ES’s for constrained optimization, explaining how that framework rigorously encompasses
what we propose to do in this paper for linearly constrained optimization. Our implementation
choices are described in more detail in Section 3. Numerical results for a wide test set of prob-
lems are presented in Section 4. At the end we make some concluding remarks in Section 5. By
default all norms used in this paper are the ℓ2 ones.

2 Globally convergent evolution strategies for constrained opti-
mization

The main contribution in [17] is essentially the monitoring of the quality of the sampling pro-
cedure by checking if the objective function has been sufficiently decreased. When that is not
the case the step size σk is reduced and the iteration becomes unsuccessful. Otherwise, the
iteration is successful and the step size σk might recover the original ES value σES

k if this latter
one is sufficiently large. There are different ways to impose sufficient decrease conditions in
ES’s. We will adopt here the version that consists of applying sufficient decrease directly to the
weighted mean xtrialk+1 of the new parents (see (4) below), which has been shown in [17] to yield
global convergence for unconstrained optimization without any convexity like assumption and
to numerically perform the best among the different versions tested. By sufficient decreasing
the objective function at the weighted mean, we mean f(xtrialk+1) ≤ f(xk)− ρ(σk), where ρ(·) is a
forcing function [33], i.e., a positive, nondecreasing function satisfying ρ(σ)/σ → 0 when σ → 0.

The extension of the globally convergent ES’s to the constrained setting follows a feasible
approach, where one starts feasible and then prevent stepping outside the feasible region by
means of a barrier approach. The sufficient decrease condition is applied not to f but to the
barrier function fΩ defined by:

fΩ(x) =

{

f(x) if x ∈ Ω,
+∞ otherwise.

(3)

We will follow the terminology introduced in [7] and refer to fΩ(x) as the extreme barrier func-
tion. Such a function is known as the death penalty function in the terminology of evolutionary
algorithms. We consider that ties of +∞ are broken arbitrarily in the ordering of the offspring
samples.

3

These globally convergent ES’s are described in detail below, in Algorithm 2.1. First we note
that the distribution Ck used to generate the ES directions dik is left unspecified (since, in fact,
our global convergence results are not dependant of the choice this of distribution). Despite the
extension to constraints, there is a difference from [17] is that the directions used to compute
the offspring are not necessarily the randomly generated ES directions, in what can be seen as
a modification made in preparation to what comes next. We will denote the directions used to
compute the offspring by d̃ik. Note that Steps 2 and 3 of Algorithm 2.1 make use of the extreme
barrier function (3).

Algorithm 2.1 A class of globally convergent ES’s (for unrelaxable constraints)

Initialization: Choose positive integers λ and µ such that λ ≥ µ. Select an initial x0 ∈ Ω and
evaluate f(x0). Choose initial step lengths σ0, σ

ES
0 > 0 and initial weights (ω1

0, . . . , ω
µ
0) ∈ S.

Choose constants β1, β2, dmin, dmax such that 0 < β1 ≤ β2 < 1 and 0 < dmin < dmax. Select
a forcing function ρ(·). Set k = 0.

Until some stopping criterion is satisfied:

1. Offspring Generation: Compute new sample points Yk+1 = {y1k+1, . . . , y
λ
k+1} such that

yik+1 = xk + σkd̃
i
k, i = 1, . . . , λ, (4)

where the directions d̃ik’s are computed from the original ES directions dik’s (which in turn
are drawn from a chosen ES distribution Ck and scaled if necessary to satisfy dmin ≤ ‖dik‖ ≤
dmax).

2. Parent Selection: Evaluate fΩ(y
i
k+1), i = 1, . . . , λ, and reorder the offspring points in

Yk+1 = {ỹ1k+1, . . . , ỹ
λ
k+1} by increasing order: fΩ(ỹ

1
k+1) ≤ · · · ≤ fΩ(ỹ

λ
k+1).

Select the new parents as the best µ offspring sample points {ỹ1k+1, . . . , ỹ
µ
k+1}, and compute

their weighted mean

xtrialk+1 =

µ
∑

i=1

ωi
kỹ

i
k+1.

Evaluate fΩ(x
trial
k+1).

3. Imposing Sufficient Decrease:

If fΩ(x
trial
k+1) ≤ f(xk)− ρ(σk), then consider the iteration successful, set xk+1 = xtrialk+1 , and

σk+1 ≥ σk (for example σk+1 = max{σk, σ
ES
k }).

Otherwise, consider the iteration unsuccessful, set xk+1 = xk and σk+1 = β̄kσk, with
β̄k ∈ (β1, β2).

4. ES Updates: Update the ES step length σES
k+1, the distribution Ck, and the weights (ω1

k+1,
. . . , ωµ

k+1) ∈ S. Increment k and return to Step 1.

Due to the sufficient decrease condition, one can guarantee that a subsequence of step sizes
will converge to zero. From this property and the fact that the step size is significantly reduced
(at least by β2) in unsuccessful iterations, one proves that there exists a subsequence K of un-
successful iterates driving the step size to zero (what is referred to as a refining subsequence [6]).

4

Consequently, assuming boundedness of the sequence of iterates, it is possible to assure the ex-
istence of a convergent refining subsequence. We summarize such a result below. The proof can
be found in [17], and it is based on the imposition of sufficient decrease by means of a forcing
function as in [14, 33].

Lemma 2.1 Consider a sequence of iterations generated by Algorithm 2.1 without any stopping
criterion. Let f be bounded below. There exists a subsequence K of unsuccessful iterates for
which limk∈K σk = 0. In addition, if the sequence {xk} is bounded, then there exists an x∗ and
a subsequence K of unsuccessful iterates for which limk∈K σk = 0 and limk∈K xk = x∗.

The global convergence is then achieved by establishing that some type of directional deriva-
tives are nonnegative at limit points of refining subsequences along certain limit directions (to
be made more precise later). When f is Lipschitz continuous near x∗, one can make use of the
Clarke-Jahn generalized derivative along a direction d

f◦(x∗; d) = lim sup
x → x∗, x ∈ Ω
t ↓ 0, x+ td ∈ Ω

f(x+ td)− f(x)

t
.

(Such a derivative is essentially the Clarke generalized directional derivative [10], adapted by
Jahn [32] to the presence of constraints.) However, for the proper definition of f◦(x∗; d), one
needs to guarantee that x + td ∈ Ω for x ∈ Ω arbitrarily close to x∗ which is assured if d is
hypertangent to Ω at x∗. In the following definition we will use the notation B(x; ∆) = {y ∈
R
n : ‖y − x‖ ≤ ∆}.

Definition 2.1 A vector d ∈ R
n is said to be a hypertangent vector to the set Ω ⊆ R

n at the
point x in Ω if there exists a scalar ǫ > 0 such that

y + tw ∈ Ω, ∀y ∈ Ω ∩B(x; ǫ), w ∈ B(d; ǫ), and 0 < t < ǫ.

The hypertangent cone to Ω at x, denoted by TH
Ω (x), is then the set of all hypertangent

vectors to Ω at x. Then, the Clarke tangent cone to Ω at x (denoted by TΩ(x)) can be defined
as the closure of the hypertangent cone TH

Ω (x) (when the former is nonempty, an assumption we
need to make for global convergence anyway). The Clarke tangent cone generalizes the notion
of tangent cone in Nonlinear Programming [45], and the original definition d ∈ TΩ(x) is given
below.

Definition 2.2 A vector d ∈ R
n is said to be a Clarke tangent vector to the set Ω ⊆ R

n at the
point x in the closure of Ω if for every sequence {yk} of elements of Ω that converges to x and
for every sequence of positive real numbers {tk} converging to zero, there exists a sequence of
vectors {wk} converging to d such that yk + tkwk ∈ Ω.

Given a direction v in the tangent cone, possibly not in the hypertangent one, one can
consider the Clarke-Jahn generalized derivative to Ω at x∗ as the limit

f◦(x∗; v) = lim
d∈TH

Ω
(x∗),d→v

f◦(x∗; d)

(see [7]). A point x∗ ∈ Ω is considered Clarke stationary if f◦(x∗; d) ≥ 0, ∀d ∈ TΩ(x∗).

5

To state the global convergence results it remains to define the notion of refining direction
(see [7]), associated with a convergent refining subsequence K, as a limit point of {ak/‖ak‖} for
all k ∈ K sufficiently large such that xk + σkak ∈ Ω, where, in the particular case of taking the
weighted mean as the object of evaluation, one has ak =

∑µ
i=1 ω

i
kd̃

i
k.

2.1 Asymptotic results when derivatives are unknown

In this section we treat constraints as a pure black box in the sense that no information is assumed
known about the constrained set Ω, rather than a yes/no answer to the question whether a given
point is feasible. The following theorem is in the vein of those first established in [7] for simple
decrease and Lipschitz continuous functions (and later generalized in [53] for sufficient decrease
and directionally Lipschitz functions).

Theorem 2.1 Let x∗ ∈ Ω be the limit point of a convergent subsequence of unsuccessful iterates
{xk}K for which limk∈K σk = 0. Assume that f is Lipschitz continuous near x∗ with constant
ν > 0 and that TH

Ω (x∗) 6= ∅.
Let ak =

∑µ
i=1 ω

i
kd̃

i
k. Assume that the directions d̃ik’s and the weights ωi

k’s are such that (i)
σk‖ak‖ tends to zero when σk does, and (ii) ρ(σk)/(σk‖ak‖) also tends to zero.

If d ∈ TH
Ω (x∗) is a refining direction associated with {ak/‖ak‖}K , then f◦(x∗; d) ≥ 0.

If the set of refining directions associated with {ak/‖ak‖}K is dense in the unit sphere, then
x∗ is a Clarke stationary point.

Proof. Let d be a limit point of {ak/‖ak‖}K . Then it must exist a subsequence K ′ of K
such that ak/‖ak‖ → d on K ′. On the other hand, we have for all k that

xtrialk+1 =

µ
∑

i=1

ωi
kỹ

i
k+1 = xk + σk

µ
∑

i=1

ωi
kd̃

i
k = xk + σkak,

and, for k ∈ K sufficiently large, from the fact that d ∈ TH
Ω (x∗), one has

fΩ(xk + σkak) = f(xk + σkak) > f(xk)− ρ(σk).

Thus, from the definition of the Clarke generalized derivative,

f◦(x∗; d) = lim sup
x→x∗,t↓0

f(x+ td)− f(x)

t

≥ lim sup
k∈K′

f(xk + σk‖ak‖(ak/‖ak‖))− f(xk) + ρ(σk)

σk‖ak‖
−

ρ(σk)

σk‖ak‖
− rk

= lim sup
k∈K′

f(xk + σkak)− f(xk) + ρ(σk)

σk‖ak‖

≥ 0.

In the first inequality, we used the fact that σk‖ak‖ tends to zero on K ′ (from assumption)
and added and subtracted appropriate terms. In the second equality, we used the fact that
ρ(σk)/(σk‖ak‖) and rk both tend to zero on K ′ (the former from assumption; the latter from
the fact that ak/‖ak‖ → d on K ′, see [17]).

6

To prove the second part, we first conclude from the density of the refining directions on
the unit sphere and the continuity of f◦(x∗; ·) in TH

Ω (x∗), that f
◦(x∗; d) ≥ 0 for all d ∈ TH

Ω (x∗).
Finally, we conclude that f◦(x∗; v) = limd∈TH

Ω
(x∗),d→v f

◦(x∗; d) ≥ 0 for all v ∈ TΩ(x∗).

When f is strictly differentiable at x∗ (in the sense of Clarke [10], meaning that there exists
∇f(x∗) such that f◦(x∗; d) = 〈∇f(x∗), d〉 for all d), the final result of Theorem 2.1 (as well as
of Theorem 2.2 below) reduces to say that the projection of ∇f(x∗) onto TΩ(x∗) is zero.

2.2 Asymptotic results when derivatives are known

Although the approach analyzed in Subsection 2.1 can in principle be applied to any type
of constraints, it is obviously more appropriate to the case where one cannot compute the
derivatives of the functions algebraically defining the constraints.

Now we consider the case where we can compute tangent cones at points on the boundary
of the feasible set Ω. This is the case whenever Ω is defined by {x ∈ R

n : ci(x) ≤ 0, i ∈ I}
and the derivatives of the functions ci are known. Two particular cases that appear frequently
in practice are bound and linear constraints.

For theoretical purposes, let ǫ be a positive scalar and k0 a positive integer. Let us also
denote by TΩ,ǫ,k0 the union of all Clarke tangent cones TΩ(y) for all points y at the boundary
of Ω such that ‖y − xk‖ ≤ ǫ for all k ≥ k0:

TΩ,ǫ,k0 = ∪y∈N(ǫ,k0)TΩ(y) where N(ǫ, k0) = {y ∈ fr(Ω) : ‖y − xk‖ ≤ ǫ ∀k ≥ k0}.

Theorem 2.2 Let x∗ ∈ Ω be the limit point of a convergent subsequence of unsuccessful iterates
{xk}K for which limk∈K σk = 0. Assume that f is Lipschitz continuous near x∗ with constant
ν > 0 and that TH

Ω (x∗) 6= ∅.
Let ak =

∑µ
i=1 ω

i
kd̃

i
k. Assume that the directions d̃ik’s and the weights ωi

k’s are such that (i)
σk‖ak‖ tends to zero when σk does, and (ii) ρ(σk)/(σk‖ak‖) also tends to zero.

If d ∈ TH
Ω (x∗) is a refining direction associated with {ak/‖ak‖}K , then f◦(x∗; d) ≥ 0.

If the set of refining directions associated with {ak/‖ak‖}K is dense in the intersection
of TΩ,ǫ,k0 with the unit sphere (for some ǫ > 0 and positive integer k0), then x∗ is a Clarke
stationary point.

Proof. It has already been shown in Theorem 2.1 that if d ∈ TH
Ω (x∗) is a refining direction

associated with {ak/‖ak‖}K , then f◦(x∗; d) ≥ 0.
The rest of the proof results from the fact that the Clarke tangent cone TΩ(x∗) is contained in

TΩ,ǫ,k0 for any limit point x∗ of a subsequence of iterates (and in particular for the subsequenceK
in the statement of the theorem). Thus, f◦(x∗; v) = limd∈TH

Ω
(x∗),d→v f

◦(x∗; d) ≥ 0 for all v ∈

TΩ(x∗).

A known derivative-free technique for handling the constrained case with known constraint
gradients is based on computing sets of positive generators for appropriate tangent cones
(see [33])1. By a set of positive generators of a convex cone, it is meant a set of vectors that
spans the cone with nonnegative coefficients. On the other hand, the two known globalization

1There are a number of globally convergent hybrid approaches using penalty or augmented Lagrangian functions
(see [39]) or filter techniques (see [8]) without attempting to compute positive generators of the appropriated
tangent cones related to the nonlinear part of the constraints.

7

strategies for direct search (for driving the step-size parameter to zero) are generation of iterates
on integer/rational lattices and imposition of a sufficient decrease condition for accepting new
iterates.

A difficulty when using the first above mentioned strategy for nonlinear constraints is that
the positive generators of the tangent cones in consideration can lack of rationality, interfering
in the generation of iterates in such lattices. But then, if no tangent cone information is used,
the directions have to be densely generated in the whole unit sphere. What makes it possible to
derive a result like Theorem 2.2 valid for nonlinear constraints is the use of sufficient decrease
(which takes care of the need to drive the step-size parameter to zero). Being free of lattice type
requirements, the directions can then be restricted to tangent cones (even if densely generated
in such cones, as stated in Theorem 2.2).

An approach based on extreme barrier and the inclusion of positive generators

We also point out that asynchronous parallel directional direct-search methods based on the
generating set search framework [33] have been proposed by Griffin, Kolda, and Lewis [24] for
linearly-constrained optimization

In the literature of direct-search methods (of directional type) for constraints, one finds
approaches specifically developed for the bound or linear constrained cases (see [24, 33, 34, 38]),
where positive generators of the appropriated tangent cones are computed and used for what is
called polling (i.e., for evaluating the objective function at points of the form xk + σkd, where d
is a positive generator). Although we also address constraints of that type in this paper, we do
not want to resort our poll of directions completely to such positive generators as that would
not allow to take advantage of the ES random mechanism (Theorem 2.2 would however provide
a possible theoretical coverage for such an approach). Instead, we propose to modify the set of
directions generated by ES’s to include positive generators of appropriate tangent cones. The
details will be given in the next section.

The point to make here is that the global convergence result of Theorem 2.1 remains valid
as long as the set {d̃ik, i = 1, . . . , λ} still verifies Assumptions (i) and (ii). Assumption (i) is
trivially satisfied as long as all the positive generators d̃ik are bounded above in norm, which
is explicit in the algorithm when d̃ik = dik is an ES randomly generated direction (and can be
trivially imposed if d̃ik is a positive generator). The satisfaction of Assumption (ii) is met, for
instance, if ak is bounded below in norm. That in turn depends on the calculation of the all the
d̃ik’s and on the choice of the weights ωi

k’s, but can always be achieved in the limit case where
one weight is set to one and the others to zero.

An approach based on projecting onto the feasible region

The second globally convergent approach is based on projecting onto the feasible domain all
the generated sampled points xk + σkd

i
k, and then taking instead ΦΩ(xk + σkd

i
k). We note that

projecting onto the feasible region in the context of derivative-free optimization has been already
advocated in [41].

This procedure is however equivalent to consider

d̃ik =
ΦΩ(xk + σkd

i
k)− xk

σk

8

in the framework of Algorithm 2.1. By substituting all the infeasible generated sampled points
by their projections one also conforms the distribution of the offspring to the local geometry of
the constraints. When Ω is convex, unlike in the first approach, one does not need here to make
use of the extreme barrier function and thus its presence in Steps 2 and 3 of Algorithm 2.1 is
innocuous. The details will also be given in the next section.

Again, the global convergence result of Theorem 2.1 remains valid as long as the set {d̃ik, i =
1, . . . , λ} still verifies Assumptions (i) and (ii). If we look at Assumption (i), one sees that

σk‖ak‖ =

∥

∥

∥

∥

∥

µ
∑

i=1

ωi
k[ΦΩ(xk + σkd

i
k)− xk]

∥

∥

∥

∥

∥

≤ σk

µ
∑

i=1

ωi
kLΦΩ

‖dik‖,

since xk = ΦΩ(xk), where we assumed that the projection mapping ΦΩ is Lipschitz continuous
with constant LΦΩ

> 0. Since the dik’s are bounded above in norm, one concludes that σk‖ak‖
does indeed tend to zero. Note that the projection ΦΩ is Lipschitz continuous when defined in
the best approximation sense using some norm or distance (being the constant LΦΩ

equal to 1
in the Euclidean/ℓ2 case). The satisfaction of Assumption (ii) is achieved if ak is bounded below
in norm and similar considerations as in the previous approach apply here too.

3 Implementation choices

In this section, we address linearly constrained problems of the form (1) where Ω is defined as
{x ∈ R

n : Cx ≤ d}, C ∈ R
m×n, and d ∈ R

m, for some positive integer m.

For the approach based on extreme barrier and the inclusion of positive gen-
erators

In this approach we form the set of directions {d̃ik} by adding positive generators of an appro-
priated tangent cone to the ES randomly generated directions dik, whenever the current iterate
is closer to the boundary of the feasible region.

More specifically, at the current iterate xk, given ǫk > 0, we first identify the ǫk-active
constraints Ik = {i ∈ {1, . . . ,m} : cixk−di ≥ −ǫk}, where ci denotes the i-th line of C, and then
represent by Ck ∈ R

|Ik|×n the submatrix of C formed by the rows associated with the ǫk-active
constraints. The directions to be considered for inclusion are the positive generators Dk of the
tangent cone formed at a point where the active constraints are those in Ik. We choose ǫk to be
O(σk) as in [34] (to avoid considering all positive generators for all tangent cones for all ǫ ∈ [0, ǫ∗]
where ǫ∗ > 0 is independently of the iteration counter as proposed in [38]). We then use the
following algorithm from [52] to compute the set Dk of positive generators for corresponding
tangent cone (in turn inspired by the work in [38, 3]). Basically, the idea of this algorithm
is to dynamically decrease ǫk in the search for a set of positive generators of a tangent cone
corresponding to a full row rank matrix Ck.

Algorithm 3.1 Calculating the positive generators Dk

Initialization: Choose ǫk = min(0.1, 10σk) and ǫlimit = min(0.1, ǫ2k).

While ǫ > ǫlimit

9

1. Construct the matrix Ck.

2. If 0 < dim(Ck) < n and Ck is full rank, then

a. Compute a QR factorization of the matrix C⊤
k .

b. Let Zk = QR−⊤, Yk = I − ZkCk, and stop with Dk = [Zk −Zk Yk −Yk].

3. If dim(Ck) = 0, then stop (and return Dk = []), else ǫk = ǫk/2.

End While.

The final set of directions {d̃ik, i = 1, . . . , λ} is then formed by selecting among {dik, i =
1, . . . , λ} ∪Dk those that lead to the best objective function value at the points xk + σkd with
d ∈ {dik, i = 1, . . . , λ}∪Dk. Our experience tells us that the ES directions are still predominant,
representing more than 90% of the overall selected directions. The solver produced in this case
will be called ES-LC-B standing for an Evolution Strategy to handle Linear Constraints using
a Barrier approach.

For the approach based on projecting onto the feasible region

In the approach based on projecting onto the feasible region one needs to define the projection
mapping ΦΩ. Given a norm ‖ · ‖ and a nonempty closed, convex set Ω, the mapping ΦΩ can be
defined as:

ΦΩ(x) ∈ argmin{‖z − x‖ : z ∈ Ω}. (5)

For purely bound constrained problems, when Ω = {x ∈ R
n : l ≤ x ≤ u}, we will use the ℓ2-

norm since it reduces to a trivial computation. In fact, in the Euclidean case, the projection (5)
is unique and simply given by (for i = 1, . . . , n)

[ΦΩ(x)]i =







li if xi < li,
ui if xi > ui,
xi otherwise.

For linearly constrained problems, the Euclidean/ℓ2 projection (5) reduces to the unique
solution of a QP problem with inequality constraints. We will rather use a projection (5) when
the norm is the ℓ1 one as its evaluation requires instead the solution of an LP problem.

Another possibility would be to damp the step and allow the longest displacement along
each direction, in other words to compute for each direction d̃ik the largest αi

k ∈ (0, 1] such that
yik+1 = xk + αi

k(σkd̃
i
k) ∈ Ω. Although such a projection does not require the solution of any

auxiliary problem, it depends on the iteration counter and, furthermore, it did not lead to better
overall results when compared to the ℓ1 one.

The related solver will be called ES-LC-P standing for an Evolution Strategy to handle
Linear Constraints using a Projection approach.

For a search step

Our modified ES algorithms evaluate the objective function at a significantly large number of
points at each iteration, independently of its success or unsuccess. In a certain sense, they are
even worse than opportunistic direct-search methods were polling is declared successful once a
new, better point is found. However, the previously evaluated points can be used in a number
of ways to speed up convergence and make ES type algorithms more efficient.

10

At the beginning of each iteration, a new step called search step can be taken as in the
search-poll framework of direct search [9]. For that purpose, a surrogate quadratic model of the
objective function f can be minimized in a certain region using previously evaluated points. If
the trial point y resulting from this process sufficiently reduces the objective function, meaning
if fΩ(y) ≤ f(xk)− ρ(σk), then the search step and the current iteration are declared successful,
the trial point is taken (xk+1 = y), the step size is left unchanged (σk+1 = σk), and the ES main
iteration step is skipped. If not, the iteration proceeds as in Algorithm 2.1. As in direct-search
methods, the search step is optional and has no influence in the global convergence properties
since (a) one can still easily prove that there are subsequences of unsuccessful iterations driving
the step size to zero (refining subsequences), and (b) the analysis focuses then entirely on
subsequences of unsuccessful iterations and those are only attainable by the ES mechanism
itself.

To build the surrogate quadratic models, one interpolates over previously evaluated points,
following the implementation choices suggested in [15]. The search step is skipped if there are
less than n + 1 previously evaluated points. If there are less points than needed for complete
quadratic interpolation (meaning less than (n+1)(n+2)/2), one uses minimum Frobenius norm
models [13, Chapter 5]. When there are more than (n + 1)(n + 2)/2 previously evaluated,
the models are computed by least squares regression, up to a maximum number of points of
(n + 1)(n + 2). If there are more points evaluated than (n + 1)(n + 2), 80% of this number
are selected as the closest to the current iterate and 20% as the farthest away. The quadratic
model is then minimized in a ball (or trust region) B(xk; ∆k) = {x ∈ R

n : ‖x − xk‖∞ ≤ ∆k},
centered at xk with radius ∆k = θσk (where θ takes the value 1 if the previous iteration was
unsuccessful, or 2 otherwise). The outcome solution of such a minimization is then projected
onto the feasible region (using the same projections mentioned above) to yield the trial point y
for the search step (and we will have fΩ(y) = f(y)). The application of such a search step has
been shown advantageous for our globally convergent ES’s in the unconstrained case [16].

4 Numerical results

We evaluated the performance of the algorithms proposed in Section 2, under the choices de-
scribed in Section 3, using different solvers, different comparison procedures, and a large col-
lection of bound and linearly constrained problems. Our goal was to assess the efficiency and
robustness of the proposed algorithms. At the end of this section we report also preliminary
results for non-linear constraints.

4.1 Solvers tested

The solvers used for our numerical comparisons for bound and linear constraints were BCDFO,
CMA-ES, MCS, and PSWARM:

• BCDFO [22], Matlab version of Oct. 25, 2011. BCDFO is a local quadratic interpolation-
based trust-region algorithm for bound constrained problems.

• CMA-ES (covariance matrix adaptation evolution strategy) for bound constrained opti-
mization, 3.61.beta Matlab version [25, 26]. This constrained version adds to the objective
function a penalization term measuring the distance between the current point and its
ℓ2-projection onto the feasible region.

11

• MCS [30] for bound constrained optimization, 2.0 Matlab version. MCS does a multi-
level coordinate search that balances global and local search (the latter using quadratic
interpolation).

• PSWARM, the same Matlab version used in [51, 52]. PSWARM implements a polling type
direct-search algorithm enhanced by a search step based on swarm optimization for global
search. Available for linear constraints.

With the exception of BCDFO, these solvers are designed for global optimization (in an
heuristic sense). In the comparative study published in [49], MCS was among the best solvers
in terms of both efficiency and robustness. Among the stochastic solvers tested there, CMA-ES
and PSWARM have appeared well ranked. BCDFO was developed after this study was carried
out but it was shown to perform very well [22].

The default parameters of these four solvers were kept untouched, except the starting point,
the initial step size, and the maximal budget, which were chosen the same for all of them
including ours.

4.2 Our parameter choices

The parameter choices of Algorithm 2.1 match those of [17] for unconstrained optimization. The
values of λ and µ and of the initial weights are the same as in the CMA-ES implementation for
unconstrained optimization [25]:

λ = 4 + floor(3 log(n)),

µ = floor(λ/2),

ωi
0 = ai/(a1 + · · ·+ aµ), with ai = log(λ/2 + 1/2)− log(i), i = 1, . . . , µ,

where floor(·) rounds to the nearest integer no larger than the number given. The choices of
the distribution Ck and of the update of σES

k are also those used in CMA-ES for unconstrained
optimization (see [25]).

The forcing function selected is ρ(σ) = 10−4σ2. To reduce the step length in unsuccessful
iterations we use σk+1 = 0.9σk which corresponds to setting β1 = β2 = 0.9. In successful
iterations we set σk+1 = max{σk, σ

CMA-ES
k } (with σCMA-ES

k the CMA step size used in ES’s). The
directions dik, i = 1, . . . , λ, were scaled if necessary to obey the safeguards dmin ≤ ‖dik‖ ≤ dmax,
with dmin = 10−10 and dmax = 1010.

The initial step size is estimated using only the bound constraints, as in [52]: If there is a
pair of finite lower and upper bounds for a variable, then σ0 is set to half of the minimum of such
distances, otherwise σ0 = 20. The starting point is set to what is suggested in the problem file
(or to the origin when there is no suggestion), if such a choice is feasible. When such a choice is
not feasible (the majority of the cases), the starting point is the center of the maximum volume
ellipsoid inscribed in the feasible region. As in [52], for computing such an ellipsoid we used the
software implementation in [54].

In Algorithm ES-LC-P, the projection using the ℓ1-norm was carried out by solving the
corresponding LP problems by the Matlab linprog routine.

The advantage of the search step was clear for the bound constraints case. However, for
linear constraints, the search step did not lead to an improvement of the performance and was
switched off.

12

4.3 Test problems (bound and linear constraints)

The problems are coded in AMPL and divided into two groups. The first group includes only
pure bound constraints problems and it gathers 114 problems essentially from [4, 31, 40, 43].
These problems have been coded in [51] and all but three are non-convex. The second group
includes 107 linearly constrained problems, collected essentially from [1, 50] for the study in [52].
They are not as non-convex as the bound constrained ones since are mostly coming from non-
linear programming testing collections. All the solvers were thus interfaced to AMPL. Table 1
shows the distribution of the number of variables and constraints of the problems in the test set.
Relatively to the list of test problems made available in [51, 52] we have excluded the bounded
constrained problems lms1a, lms1b, lms2, lms3, lms5 due to library linkage and the linearly
constrained problems antenna2, powell20 for which none of the solvers were able to find a
feasible starting point.

Dimension n of problems 1 ≤ n ≤ 10 11 ≤ n ≤ 20 21 ≤ n ≤ 50 n ≥ 51
of problems (bound constraints) 90 10 3 11
of problems (linear constraints) 72 13 4 18

Number m of constraints 1 ≤ m ≤ 10 11 ≤ m ≤ 20 21 ≤ m ≤ 50 m ≥ 51
of problems (linear constraints) 36 17 19 35

Table 1: The distribution of the number of variables and constraints of the problems in the test
set.

4.4 Results using performance profiles

Among the existing procedures to compare various solvers over a variety of problems are per-
formance profiles [18]. Given a set of problems P (of cardinality |P|) and a set of solvers S,
the performance profile [18] ρs(τ) of a solver s is defined as the fraction of problems where the
performance ratio rp,s is at most τ

ρs(τ) =
1

|P|
size{p ∈ P : rp,s ≤ τ}.

The performance ratio rp,s is in turn defined by

rp,s =
tp,s

min{tp,s : s ∈ S}
,

where tp,s > 0 measures the performance of the solver s when solving problem p (seen as a
cost; in this paper the number of function evaluations). The convention rp,s = +∞ is used
when the solver s fails to satisfy the convergence test on problem p. Better performance of the
solver s, relatively to the other solvers on the set of problems, is indicated by higher values of
ρs(τ). In particular, efficiency is measured by ρs(1) (the fraction of problems for which solver s
performs the best) and robustness is measured by ρs(τ) for τ sufficiently large (the fraction of
problems solved by s). Following the suggestion in [18] for a better visualization, we will plot
the performance profiles in a log2-scale (for which τ = 1 will correspond to τ = 0).

It was suggested in [19] to use the same (scale invariant) convergence test for all solvers
compared using performance profiles. The convergence test used in our experiments was

f(x)− f∗ ≤ α(|f∗|+ 1),

13

where α is an accuracy level and f∗ is an approximation for the optimal value of the problem
being tested. We set f∗ to the global minimum when it is known, otherwise it was chosen as
the best objective function value found by all the tested solvers (including all the runs made for
averaging the stochastic solvers) using an extremely large computational budget (a number of
function evaluations equal to 500000). Thus, in such a case it makes more sense not to select the
accuracy level too small, and our tests were performed with α = 10−2, 10−4. The performance
profiles were then computed for a maximum of 3000 function evaluations.

The plots in Figures 1–3 depict the performance profiles obtained by the different solvers
on the two classes of test problems selected. We begin by noting that for bound-constrained
problems (Figures 1–2), one observes a clear advantage in using a search step, and thus we
will draw conclusions only based on the right plots (b) of these two figures. One can see that
BCDFO performed the best in terms of efficiency and the CMA-ES the worst. In terms of
robustness, ES-LC-B and MCS performed the best and BCDFO and CMA-ES the worst. The
efficiency of MCS and BCDFO is not surprising since they are based on interpolation models
and most of the objective functions tested are smooth. Moreover, both solvers are specifically
designed to solve bound-constrained problems. For linearly constrained problems (Figure 3),
the projection approach (ES-LC-P) performs, both in efficiency and robustness, better than
PSWARM. However, the barrier approach (ES-LC-B) yielded the worst profile.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log
2
 scaled performance profiles, α = 10−2

ES−LC−B
ES−LC−P
PSWARM
CMA−ES
MCS
BCDFO

(a) Search step disabled.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log
2
 scaled performance profiles, α = 10−2

ES−LC−B
ES−LC−P
PSWARM
CMA−ES
MCS
BCDFO

(b) Search step enabled.

Figure 1: Performance profiles for 114 bound constrained problems using an accuracy level of
10−2 (average objective function values for 10 runs).

4.5 Results for data profiles

Data profiles [44] were designed for derivative-free optimization, to show how well a solver
performs, given some computational budget, when asked to reach a specific reduction in the
objective function value, measured by

f(x0)− f(x) ≥ (1− α)[f(x0)− fL], (6)

where α ∈ (0, 1) is the level of accuracy, x0 is the initial iterate, and fL is the best objective value
found by all solvers tested for a specific problem within a given maximal computational budget.

14

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log
2
 scaled performance profiles, α = 10−4

ES−LC−B
ES−LC−P
PSWARM
CMA−ES
MCS
BCDFO

(a) Search step disabled.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log
2
 scaled performance profiles, α = 10−4

ES−LC−B
ES−LC−P
PSWARM
CMA−ES
MCS
BCDFO

(b) Search step enabled.

Figure 2: Performance profiles for 114 bound constrained problems using an accuracy level of
10−4 (average objective function values for 10 runs).

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log
2
 scaled performance profiles, α = 10−2

ES−LC−B
ES−LC−P
PSWARM

(a) Accuracy level of 10−2.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

Log
2
 scaled performance profiles, α = 10−4

ES−LC−B
ES−LC−P
PSWARM

(b) Accuracy level of 10−4.

Figure 3: Performance profiles for 107 linearly constrained problems (average objective function
values for 10 runs).

In derivative-free optimization, such budgets are typically measured in terms of the number of
objective function evaluations. For a stochastic solver, given a number N of runs for the same
problem, the value taken for the calculation of fL is rather set to the average (

∑N
i=1 f

i
L)/N ,

where f i
L is the best objective value found during the i-th run of the solver.

Data profiles plot the percentage of problems solved by the solvers under consideration for
different values of the computational budget. A data profile is computed, for each solver s ∈ S,
as the percentage of the problems that can be solved within κ function evaluations:

ds(κ) =
1

|P|
size

{

p ∈ P :
tp,s

np + 1
≤ κ

}

, (7)

15

where np is the number of variables of problem p ∈ P, and tp,s is the number of function
evaluations required by solver s ∈ S on problem p to satisfy (6) for a given tolerance α (tp,s = +∞
if the convergence test (6) is not satisfied after the maximum budget of function evaluations).
(When the solver is stochastic we plot the average of (7) over the number of runs. These
budgets are expressed in number of points (np + 1) required to form a simplex set, allowing
the combination of problems of different dimensions in the same profile. Note that a different
function of np could be chosen, but np + 1 is natural in derivative-free optimization, since it is
the minimum number of points required to form a positive basis, a simplex gradient, or a model
with first-order accuracy.)

We used in our experiments a maximal computational budget consisting of 1500 function
evaluations, as we are primarily interested in the behavior of the algorithms for problems where
the evaluation of the objective function is expensive. As for the levels of accuracy, we chose
two values, α = 10−3 and α = 10−7. Since the average of the best objective value fL is chosen
as the average best value found by all solvers considered, but under a relatively low maximal
computational budget, it makes some sense then to consider a high accuracy level (like 10−7 or
less).

We now comment on the data profiles obtained by the different solvers on the two classes
of problems selected. For bound-constrained problems (Figures 4(b)–5(b)), solvers BCDFO and
MCS performed the best for small budgets. For large budgets, ES-LC-B appears as the best
solver when looking at both accuracies. Regarding linear constraints (Figure 6), the data profiles
show now an advantage for PSWARM which was not observed in the performance profiles where
the convergence test was more stringent. As in the performance profiles, ES-LC-P exhibits a
better performance than ES-LC-B.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles, α = 10−3

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

ES−LC−B
ES−LC−P
PSWARM
CMA−ES
MCS
BCDFO

(a) Search step disabled.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles, α = 10−3

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

ES−LC−B
ES−LC−P
PSWARM
CMA−ES
MCS
BCDFO

(b) Search step enabled.

Figure 4: Data profiles for 114 bound constrained problems using an accuracy level of 10−3

(average objective function values for 10 runs).

4.6 Non-linear constraints

We now illustrate the numerical behavior of our globally convergent ES’s when the constraints
are non-linear. The projection approach is no longer attractive in this case, and thus only the

16

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles, α = 10−7

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

ES−LC−B
ES−LC−P
PSWARM
CMA−ES
MCS
BCDFO

(a) Search step disabled.

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles, α = 10−7

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

ES−LC−B
ES−LC−P
PSWARM
CMA−ES
MCS
BCDFO

(b) Search step enabled.

Figure 5: Data profiles for 114 bound constrained problems using an accuracy level of 10−7

(average objective function values for 10 runs).

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles, α = 10−3

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

ES−LC−B
ES−LC−P
PSWARM

(a) Accuracy level of 10−3.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data profiles, α = 10−7

Units of budget

P
er

ce
nt

ag
e

of
 p

ro
bl

em
s

so
lv

ed

ES−LC−B
ES−LC−P
PSWARM

(b) Accuracy level of 10−7.

Figure 6: Data profiles for 107 linearly constrained problems (average objective function values
for 10 runs).

extreme barrier will be used. The solver tested is then based on Algorithm 2.1 using the extreme
barrier and without the generation of positive generators. Simple bounds on the variables are
imposed using the ℓ2-projection. We will call it ES-EB, standing for Evolution Strategy using
the Extreme Barrier approach.

Our solver will be compared to MADS-EB [7], a direct-search method that uses the extreme
barrier function and generates the polling directions asymptotically dense in the unit sphere.
We used the MADS-EB implementation given in the NOMAD package [2, 5, 37], version 3.6.1
(a C++ version linked to Matlab via a mex interface), without using any modeling in the search
step (option DISABLE MODELS).

Since both extreme barrier solvers require a feasible starting point, one applies a common

17

trick in feasible type methods for Optimization. In fact, it is known that finding a feasible
point can be accomplished by computing a global minimizer to the problem of minimizing the
constraint violation, in our case defined as

min g(x) =
∑

i∈I

max(ci(x), 0)

s.t. x ∈ R
n.

(8)

4.6.1 Test problems

Our test set here is the one used in [28, 29, 35, 42] and comprises 13 well-known test problems G1–
G13 (see Table 2). These test problems exhibit a diversity of features and the kind of difficulties
that appear in constrained global optimization. In addition to such problems, we added three
other engineering optimization problems [28, 12]: PVD the pressure vessel design problem, TCS
the tension-compression string problem, and WBD the welded beam design problem. Problems
G2, G3, and G8 are maximization problems and were converted to minimization. Problems G3,
G5, G11, and WBD contain equality constraints. When a constraint is of the form cei (x) = 0, we
use the following relaxed inequality constraint instead ci(x) = |cei (x)| ≤ 10−4.

Name G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 PVD TCS WBD

n 13 20 20 5 4 2 10 2 7 8 2 3 5 4 3 4
m 9 2 1 6 5 2 8 2 4 6 1 1 3 3 4 6

Table 2: Some of the features of the non-linear constrained optimization problems: the dimen-
sion n and the number of the constraints m (in addition to the bounds).

4.6.2 Numerical results

Tables 3 and 4 report results (for the average of 10 runs) for both ES-EB and MADS-ES using
a maximal budget of 2000 and 20000, respectively. For each problem, we display the best
objective value found by each solver. The number of function evaluations is reported also. To
be more precise, we display separately the number of constraints violation evaluations #g used
to compute a starting feasible point (when necessary) and then the number of objective function
evaluations #f used from then on. Note that for two problems (G10 and WBD), MADS-EB did
not succeed in finding a feasible point for all the ten runs (in which case it used the feasible
point found by ES-EB for optimization); see “(F)” in Tables 3 and 4.

For a maximum number of function evaluations of 2000 (Table 3), ES-EB had no difficulty
finding a feasible point when the starting point is infeasible, while MADS-ES did not succeed
in doing so for problems G10 and WBD. The two solvers were not able to converge to the global
optimum value for all the problems, having identified only a stationary point for problems G6,
G8, G11, G12, PVD, and TCS. ES-EB converged to a better point compared to MADS-EB for
problems G1, G2, G3, G13, and WBD. MADS-EB performed better on problems G4, G5, G6, G7, G9,
PVD, and TCS. MADS-EB and ES-EB converged to the same optimum for G6, G8, G11, and G12

with a slight advantage to MADS-EB in terms of the effort spent.
For a larger budget of 20000 function evaluations (Table 4), ES-EB and MADS-EB identified

the global optimum for even more problems. The advantage of ES-EB over MADS-EB becomes

18

Name Best known ES-EB MADS-EB
f value final f #f #g final f #f #g

G1 −15 −14.2988 2000 271 −7.82754 2000 583
G2 −0.803619 −0.261765 2000 0 −0.206025 2000 0
G3 −1 −0.0423359 2000 1518 −6.36481e− 233 1310 841
G4 −30665.5 −30545.3 2000 12 −30658.3 2000 259
G5 5126.5 5976.79 1653 1531 5609.84 2000 249
G6 −6961.81 −6961.81 1158 56 −6961.81 1863 150
G7 24.3062 36.8157 2000 295 30.3777 2000 603
G8 −0.095825 −0.095825 438 46 −0.095825 343 130
G9 680.63 683.891 2000 0 681.667 2000 0
G10 7049.33 15857 2000 460 7187.31 2000 493 (F)
G11 0.75 0.99998 211 0 0.9998 193 0
G12 −1 −1 247 0 −1 173 0
G13 0.0539498 2.67619 2000 628 2.77742 2000 263
PVD 5868.76 106034 1989 10 6986.89 1552 240
TCS 0.0126653 0.0135891 760 288 0.0127541 711 181
WBD 1.725 2.35943 2000 244 3.03672 1135 232 (F)

Table 3: Results for the extreme barrier approach using a maximal budget of 2000 (average of
10 runs).

clearer using the larger budget. In fact, ES-EB reached a better solution than MADS-EB (if
not the global optimum) for 8 problems (more precisely G1, G2, G3, G4, G7, G9, G13, and WBD).
Both solvers converged to the same optimum value for four problems (G6, G8, G11, and G12).
MADS-EB performed better on the other problems (G5, G10, TCS, and PVD).

5 Conclusions

The goal of this paper was to examine whether globally convergent evolution strategies (ES’s) are
capable of efficiently handling bounds on the variables and linear constraints. Our motivation
originated from the fact that the globally convergent ES’s proposed in [17] already yielded
encouraging results for unconstrained optimization. We payed particular attention to the need
to adapt or conform the generation of the ES offspring to the local geometry of the constraints,
and tried to follow the globally convergent principles.

The numerical experiments reported in this paper show that such ES approaches are compet-
itive with state-of-the-art solvers for derivative-free bound and linearly constrained optimization.
The results presented for the nonlinear constrained case were not as extensive as those presented
for the linear one but have also validated the proposed ES methodology.

In this paper we considered all constraints as unrelaxable, and thus the objective function
was never evaluated outside the feasible region. The treatment of relaxable constraints requires
the combination of other techniques. In the PhD thesis [16] of the first author, it was analyzed
and tested the incorporation of a merit function approach (proposed in [23] for the coverage of
relaxable constraints) in our ES methodology, with encouraging results.

19

Name Best known ES-EB MADS-EB
f value final f #f #g final f #f #g

G1 −15 −15 15904 271 −7.82761 10093 583
G2 −0.803619 −0.261765 4235 0 −0.206864 11027 0
G3 −1 −0.340501 20000 1518 −6.36481e− 233 1310 841
G4 −30665.5 −30665.5 6008 12 −30664.9 6666 259
G5 5126.5 5976.79 1653 1531 5609.84 2542 249
G6 −6961.81 −6961.81 1158 56 −6961.81 1863 150
G7 24.3062 24.7203 14606 295 29.9121 7825 603
G8 −0.095825 −0.095825 438 46 −0.095825 343 130
G9 680.63 680.641 11114 0 681.301 3443 0
G10 7049.33 11129.7 20000 460 7186.62 20000 493 (F)
G11 0.75 0.99998 211 0 0.9998 193 0
G12 −1 −1 247 0 −1 173 0
G13 0.0539498 2.52108 5413 628 2.64292 20000 263
PVD 5868.76 35238.9 4063 10 6986.89 1719 240
TCS 0.0126653 0.0135891 760 288 0.0127541 711 181
WBD 1.725 2.35943 2172 244 3.03672 1135 232 (F)

Table 4: Results for the extreme barrier approach using a maximal budget of 20000 (average of
10 runs).

References

[1] GLOBAL Library. http://www.gamsworld.org/global/globallib.htm.

[2] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis Jr., S. Le Digabel, and C. Tribes. The NOMAD
project. Software available at http://www.gerad.ca/nomad.

[3] M. A. Abramson, O. A. Brezhneva, J. E. Dennis, and R. L. Pingel. Pattern search in the presence
of degenerate linear constraints. Optim. Methods Softw., 23:297–319, 2008.

[4] M. M. Ali, C. Khompatraporn, and Z. B. Zabinsky. A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems. J. Global Optim., 31:635–672,
2005.

[5] C. Audet, S. Le Digabel, and C. Tribes. NOMAD user guide. Technical Report G-2009-37, Les
cahiers du GERAD, 2009.

[6] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J. Optim., 13:889–903,
2002.

[7] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained optimization.
SIAM J. Optim., 17:188–217, 2006.

[8] C. Audet and J. E. Dennis Jr. A progressive barrier for derivative-free nonlinear programming.
SIAM J. Optim., 20:445–472, 2009.

[9] A. J. Booker, J. E. Dennis Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset. A rigorous
framework for optimization of expensive functions by surrogates. Structural and Multidisciplinary
Optimization, 17:1–13, 1998.

[10] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983. Reissued
by SIAM, Philadelphia, 1990.

20

[11] C. A. Coello Coello. Theoretical and numerical constraint-handling techniques used with evolu-
tionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and
Engineering, 191:1245–1287, 2002.

[12] C. A. Coello Coello and E. M. Montes. Constraint-handling in genetic algorithms through the use
of dominance-based tournament selection. Advanced Engineering Informatics, 16:193–203, 2002.

[13] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[14] I. D. Coope and C. J. Price. Frame based methods for unconstrained optimization. J. Optim. Theory
Appl., 107:261–274, 2000.

[15] A. L. Custódio, H. Rocha, and L. N. Vicente. Incorporating minimum Frobenius norm models in
direct search. Comput. Optim. Appl., 46:265–278, 2010.

[16] Y. Diouane. Globally Convergent Evolution Strategies with Application to an Earth Imaging Problem
in Geophysics. PhD thesis, INPT, Toulouse, France, 2014.

[17] Y. Diouane, S. Gratton, and L. N. Vicente. Globally convergente evolution strategies. Math. Pro-
gram., 2015, to appear.

[18] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Math.
Program., 91:201–213, 2002.

[19] E. D. Dolan, J. J. Moré, and T. S. Munson. Optimality measures for performance profiles. SIAM
J. Optim., 16:891–909, 2006.

[20] C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms in multiobjective opti-
mization. Evolutionary Computation, 3:1–16, 1995.

[21] S. Forrest and A. S. Perelson. Genetic algorithms and the immune system. In H.-P. Schwefel and
R. Männer, editors, Parallel Problem Solving from Nature, volume 496 of Lecture Notes in Computer
Science, pages 319–325. Springer, 1991.

[22] S. Gratton, Ph. L. Toint, and A. Tröltzsch. An active-set trust-region method for derivative-free
nonlinear bound-constrained optimization. Optim. Methods Softw., 26:873–894, 2011.

[23] S. Gratton and L. N. Vicente. A merit function approach for direct search. SIAM J. Optim.,
24:1980–1998, 2014.

[24] J. D. Griffin, T. G. Kolda, and R. M. Lewis. Asynchronous parallel generating set search for linearly-
constrained optimization. SIAM J. Sci. Comput., 30:1892–1924, 2008.

[25] N. Hansen. The CMA Evolution Strategy: A Tutorial. June 28, 2011.

[26] N. Hansen, A. S. P. Niederberger, L. Guzzella, and P. Koumoutsakos. A method for handling
uncertainty in evolutionary optimization with an application to feedback control of combustion.
IEEE Trans. Evolutionary Computation, 13:180–197, 2009.

[27] N. Hansen, A. Ostermeier, and A. Gawelczyk. On the adaptation of arbitrary normal mutation dis-
tributions in evolution strategies: The generating set adaptation. In L. Eshelman, editor, Proceedings
of the Sixth International Conference on Genetic Algorithms, Pittsburgh, pages 57–64, 1995.

[28] A. Hedar and M. Fukushima. Derivative-free filter simulated annealing method for constrained
continuous global optimization. J. Global Optim., 35:2006, 2004.

[29] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1981.

[30] W. Huyer and A. Neumaier. Global optimization by multilevel coordinate search. J. Global Optim.,
14:331–355, 1999.

21

[31] L. Ingber and B. Rosen. Genetic algorithms and very fast simulated reannealing: A comparison.
Math. Comput. Modelling, 16:87–100, 1992.

[32] J. Jahn. Introduction to the Theory of Nonlinear Optimization. Springer-Verlag, Berlin, 1996.

[33] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[34] T. G. Kolda, R. M. Lewis, and V. Torczon. Stationarity results for generating set search for linearly
constrained optimization. SIAM J. Optim., 17:943–968, 2006.

[35] S. Koziel and Z. Michalewicz. Evolutionary algorithms, homomorphous mappings, and constrained
parameter optimization. Evol. Comput., 7:19–44, March 1999.

[36] O. Kramer. A review of constraint-handling techniques for evolution strategies. Applied Computa-
tional Intelligence and Soft Computing, 2010:1–11, 2010.

[37] S. Le Digabel. Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm. ACM
Trans. Math. Software, 37:1–15, 2011.

[38] R. M. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization. SIAM
J. Optim., 10:917–941, 2000.

[39] R. M. Lewis and V. Torczon. A globally convergent augmented Lagrangian pattern search algorithm
for optimization with general constraints and simple bounds. SIAM J. Optim., 12:1075–1089, 2002.

[40] M. Locatelli. A note on the Griewank test function. J. Global Optim., 25:169–174, 2003.

[41] S. Lucidi, M. Sciandrone, and P. Tseng. Objective-derivative-free methods for constrained optimiza-
tion. Math. Program., 92:37–59, 2002.

[42] Z. Michalewicz and M. Schoenauer. Evolutionary algorithms for constrained parameter optimization
problems. Evol. Comput., 4:1–32, 1996.

[43] M. Mongeau, H. Karsenty, V. Rouzé, and J.-B. Hiriart-Urruty. Comparison of public-domain software
for black box global optimization. Optim. Methods Softw., 13:203–226, 2000.

[44] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM J. Optim.,
20:172–191, 2009.

[45] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, Berlin, second edition, 2006.

[46] I. Rechenberg. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologis-
chen Evolution. Frommann-Holzboog, Stuttgart, 1973.

[47] R. G. Reynolds, Z. Michalewicz, and M. J. Cavaretta. Using cultural algorithms for constraint
handling in GENOCOP. In Evolutionary Programming, pages 289–305, 1995.

[48] J. T. Richardson, M. R. Palmer, G. E. Liepins, and M. Hilliard. Some guidelines for genetic al-
gorithms with penalty functions. In Proceedings of the third international conference on Genetic
algorithms, pages 191–197, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[49] L. M. Rios and N. V. Sahinidis. Derivative-free optimization: A review of algorithms and comparison
of software implementations. J. Global Optim., 56:1247–1293, 2013.

[50] R. J. Vanderbei. Benchmarks for Nonlinear Optimization. http://www.princeton.edu/~rvdb/

bench.html.

[51] A. I. F. Vaz and L. N. Vicente. A particle swarm pattern search method for bound constrained
global optimization. J. Global Optim., 39:197–219, 2007.

[52] A. I. F. Vaz and L. N. Vicente. Pswarm: A hybrid solver for linearly constrained global derivative-free
optimization. Optim. Methods Softw., 24:669–685, 2009.

22

[53] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions. Math.
Program., 133:299–325, 2012.

[54] Y. Zhang and L. Gao. On numerical solution of the maximum volume ellipsoid problem. SIAM J.
Optim., 14:53–76, 2003.

23

