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Abstract

We present a homogenized model for the analysis of a 2D continuum with two straight
families of inextensible fibres embedded in it. The kinematics of the continuum is analyzed
and, motivated by phenomenological observations, it is assumed that the strain energy de-
pends on the shear deformation of the fibres and on their bending curvature. It is shown
that in order to account for the latter deformation it is necessary to introduce second gra-
dient strains. The problem is formulated as a nonlinear constrained minimization, after
introducing a suitable discretization of the domain. Some deformation processes are simu-
lated using different constitutive hypotheses, comparing the predictions obtained assuming
the presence of only first gradient or second gradient deformations, or a combination of
both. It is found that the first gradient model leads to the presence of discontinuities in
the rotation of the fibres, while the second gradient model regularizes these discontinuities
by means of boundary layers. In particular in some deformation processes an instability
of geometrical nature is observed when the second gradient model is used, that can be
suppressed by the first gradient contribution.
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1. Introduction

The characterization of the mechanical behaviour of woven fabrics is of paramount
importance in the design of mechanical elements and of the material itself, in order to
take advantage of all the peculiar properties of the composite. With respect to traditional
composites, woven fabrics present dimensional stability, balanced properties in the rein-
forcement plane, high impact resistance, good drapability, so that they are suitable to
be formed as doubly curved components. In this work we refer to 2D fabrics, obtained
interlocking two families of fibres. This is the most common type of fabric used in the
engineering practice, and owes its mechanical properties to the interaction between the
fibres. While extension in the fibre direction is almost negligible, due to the large elastic
modulus of the fibres (often carbon, glass or other high performance materials are used),
shear deformation, i.e. the ability of the fibres to undergo relative rotation, can usually
be large [1]. The latter mode of deformation is mostly responsible of the easiness of the
fabric to modify its shape and to adapt to the final form required in the design. Friction
and slippage of fibres is also a major issue in plane fabrics, when the deformation becomes
large. In this context, some significant studies are presented in [2, 3].

Disregarding the latter effects, that introduce energy dissipation, a fabric characterized
by shear deformation alone, under the action of external loads, would develop sharp vari-
ations of the rotation along lines, giving rise to kinks in the deformation pattern. Indeed
this feature is exploited in simplified models for interpreting the results of experimental
tests [4, 5, 6]. A careful examination of the deformation pattern, as done in [7] reveals,
however, that such sharp kinks do not occur, since the fibres bear some finite flexural
rigidity, so that bending is observed.

Apparently, shear and bending are the main deformation modes of woven fabrics, at
least for plane deformation and for moderately large displacements. The overall response
of the fabric depends on a competition between these two modes. If the shear stiffness pre-
vails, sharp transition zones appear in the element, and eventually the deformation locks.
On the contrary, if the bending stiffness prevails, a smoother deformation is obtained, but
the element, or part of it, can present floppy modes.

In the work we analyze the relative influence of shear and bending stiffness on the plane
deformation of a bidirectional tissue, disregarding all other mechanisms of deformation.
Particularly, in addition to the dissipation mechanisms already mentioned, we disregard
the out of plane displacement due to wrinkling, that occurs when some part of the element
undergoes compression stresses. This aspect will be the object of future investigations,
where the methodologies proposed among others in [8, 9, 10] will be employed.

The source of instability in the fabric is an important issue, and its origin needs to be
investigated. In models proposed in the literature for the onset of instability the fabric is
considered as a thin plate, and classical von Karman’s theory is applied [11, 12]. However,
those studies do not consider the presence of direction of quasi inextensibility, nor the in
plane bending mechanism of deformation. In the paper it will be analyzed the effect of the
two deformation mechanisms (shear and bending) on the occurrence of in plane unstable
deformation modes.
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Testing methods for the mechanical characterization of fabric concentrate on the mea-
sure of the shear energy associated to the relative rotation between the fibres. Specific
test have been designed to this end, like the direct shear test, the Picture Frame test,
and especially the Bias Extension Test that is largely used in the engineering practice, see
[13, 14, 15, 16, 17, 18, 19, 20]. In [6, 21] the latter test, and some modified versions of it,
were examined, and it was shown that, in general, both shear and bending deformations
influence the response of the specimen. According to the relative stiffness of the two modes
of deformation, different response were obtained. However, the results in [6] were found
on the basis of simplified kinematic assumptions, that, as will be shown in the present
work, only hold when the deformation tends to a limit value. In general, a non uniform
deformation state arises in the specimen. In this paper a more accurate analysis of plane
deformation states of rectangular samples will be carried out.

The material will be considered as an homogenized continuum, at each point of which
there are two inextensible directions, coinciding with the fibre directions. Two families of
straight parallel fibres will be considered, according to the most common types of woven
fabrics.

The material will be modeled as a second gradient continuum, identifying the first
gradient deformation with the shear strain (extensional strains, if needed, could be added),
while the bending deformation of the fibres will be identified with the second gradient
deformation. In this way a reduced couple stress model is obtained. Analogous approaches
can be founded in [4, 7, 22]. In this context the symmetry analysis presented in [23, 24]
can be very useful for characterizing the anisotropic properties of the model. Several
homogenization approaches for macro model of woven fabrics can be found in [25, 26, 27,
28, 29] or in [30, 31]. Alternatively micro-models as those proposed [32, 33, 34] can be
used for the identification of the mechanical parameters.

Summarizing aim of the work is to investigate the relative influence of the shear and
bending deformation on the response of the woven fabric. A simple geometry will be
investigated, that is a rectangular strip with the fibres symmetrically oriented with respect
to the specimen axis, with one end built in.

2. Kinematics

In this section the representation of the placement of a bi-dimensional sheet with
inextensible fibres will be introduced. A theorem due to Rivlin and Pipkin [35, 36, 37]
will be exploited in order to get an implicit account of the inextensibility constraint.

2.1. Constrained placement

Let B0 be the reference domain occupied by the sheet, having an uniform thickness
t (for a woven fabric the concept of thickness has to be intended in an average sense).
We consider the case of two families of straight parallel inextensible fibers embedded in
the continuum, with directions given by the vectors D1,D2. It is convenient to assume
a reference system with axes parallel to the fiber directions, so that, calling ξ1, ξ2 two
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coordinates having values in a subset Ξ ⊂ R2, the differential of the reference placement
is:

dp0 = dξ1 D1 + dξ2D2. (1)

Here Di = ∂p0

∂ξi
are the covariant bases of the manifold described by (1). The vectors

Di can be taken, without loss of generality, unitary. Calling p the position at a generic
configuration, we have

dp = dξ1 d1 + dξ2 d2, (2)

with

d1 =
∂p

∂ξ1
= D1 +

∂u

∂ξ1
, d2 =

∂p

∂ξ2
= D2 +

∂u

∂ξ2
, (3)

having indicated by u the displacement vector.
Since the fibers are inextensible, the directors cannot stretch but can only rotate. Let’s

indicate with R1(θ1),R2(θ2) two rotation matrices, the first anticlockwise, the second
clockwise, and by D1,D2 the contravariant basis vectors (unitary if Di are unitary). The
directors (3) can then be represented as (see figure 1):

d1 =R1(θ1)D1 = d1 ·D1 D1 + d1 ·D2 D2 = cos
(
θ1 +

π

2
− α

)
D1 + sin(θ1)D2,

d2 =R2(θ2)D2 = d2 ·D1 D1 + d2 ·D2 D2 = sin(θ2)D1 + cos
(
θ2 +

π

2
− α

)
D2.

(4)

Figure 1: Definitions of the rotation angles.

For the rotations to represent a compatible deformation it must be:
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∂d1

∂ξ2
=

∂d2

∂ξ1
(5)

that is

− sin
(
θ1 +

π

2
− α

) ∂θ1
∂ξ2

D1 + cos(θ1)
∂θ1
∂ξ2

D2 = − sin
(
θ2 +

π

2
− α

) ∂θ2
∂ξ1

D2 + cos(θ2)
∂θ2
∂ξ1

D1

(6)
Equating the components in the two directions D1,D2 one gets two homogeneous

equations in ∂θ1
∂ξ2

, ∂θ2
∂ξ1

:(
cos(α− θ1) cos(θ2)
cos(θ1) cos(α− θ2)

)( ∂θ1
∂ξ2
∂θ2
∂ξ1

)
=

(
0
0

)
(7)

which admits as solutions only ∂θ1
∂ξ2

= 0, ∂θ2
∂ξ1

= 0, unless the determinant of the matrix on

the left hand side of (7) becomes zero, which happens only for θ1 + θ2 = α, that is when
the fibres superpose to each other, which is a degenerate condition that will be excluded
from the analysis.

Therefore the rotation angle θ1 is a function of ξ1 only and θ2 is a function of ξ2

only. The results generalizes Rivlin’s theorem that for a net constituted by two families
of orthogonal inextensible fibres the deformation along each of the two families of lines is
independent form the other direction.

In this work it will be examined the case of two orthogonal families of fibres, so that
(4) specialize to:

d1 =R1(θ1)D1 = cos(θ1)D1 + sin(θ1)D2,

d2 =R2(θ2)D2 = sin(θ2)D1 + cos(θ2)D2.
(8)

2.2. Strain tensors

From equation (2) it follows that the Green’s strain tensor is:

E =
1

2

[(
1 d1 · d2

d1 · d2 1

)
−
(

1 D1 ·D2

D1 ·D2 1

)]
. (9)

The component E12 = 1
2
(d1 · d2 −D1 ·D2) is denoted by γ

2
and represents the shear

deformation. With the notation of figure 1 it is

γ = cos (α− (θ1 + θ2))− cos(α) = cos(α) (cos(θ1 + θ2)− 1) + sin(α) sin(θ1 + θ2) (10)

that, for small relative rotations of the directors, can be linearized as

lim
θ1+θ2→0

γ = sin(α)(θ1 + θ2) (11)
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In the case of orthogonal fibres it is

γ = d1 · d2 = sin (θ1 + θ2) . (12)

whose linearized approximation is

lim
θ1+θ2→0

γ = θ1 + θ2. (13)

Second gradient deformation is also considered in this work. Denoting by ∇E the
strain gradient tensor, its only non vanishing components are:

(∇E)121 = (∇E)211 =
1

2
sin (α− (θ1 + θ2))

∂θ1
∂ξ1

(∇E)122 = (∇E)212 =
1

2
sin (α− (θ1 + θ2))

∂θ2
∂ξ2

(14)

In the limit for vanishing relative rotation we get the linearized forms:

lim
θ1+θ2→0

(∇E)121 =
1

2
sin(α)

∂θ1
∂ξ1

lim
θ1+θ2→0

(∇E)122 =
1

2
sin(α)

∂θ2
∂ξ2

(15)

The latter expressions for α = π/2 specializes to:

(∇E)121 = (∇E)211 =
1

2
cos(θ1 + θ2)

∂θ1
∂ξ1

(∇E)122 = (∇E)212 =
1

2
cos(θ1 + θ2)

∂θ2
∂ξ2

(16)

whose linearized forms are (∇E)lin121 =
1
2
∂θ1
∂ξ1

, (∇E)lin122 =
1
2
∂θ2
∂ξ2

.
The strain gradient components account then for the bending deformation of the fibres,

since the line derivatives of the rotations represent the bending curvature of the fibres.
However in the exact expression of the strain gradient (16) the measure of the curvature
is influenced by the amplitude of the relative rotation of the fibres. The more the fibres
tend to overlap the smaller is the bending strain.

2.3. Constitutive models

Only elastic deformation is considered in the paper, so that dissipation mechanisms
(friction, damage etc.) are ruled out. The hypothesis appears restrictive, but it is sufficient
for simulating a monotonic loading process, at least up to fairly large deformation. The
strain energy is assumed as the sum of two independent contributions, the first depending
on the second invariant of the Green’s strain tensor (first energy model), and the second on
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the strain gradient components, which represents the part of energy absorbed by bending
(second gradient energy):

Φ =

∫
B0

g1 (γ) dB +

∫
B0

g2 (∇γ) dB (17)

For both functions a quadratic form is assumed. Particularly, g1 is taken as a function
of the second invariant of the Green’s strain tensor (the only non null invariant), I2 = γ2,
that is

g1(E) =
1

2
k1γ

2 (18)

with k1 a positive constant having the dimension of a stress. Also g2 is assumed as a
quadratic form of the components of ∇E,

g2(∇E) =
1

2
k2
(
(∇E)2121 + (∇E)2122

)
. (19)

The stiffness coefficients k1, k2 are independent properties, however, it is possible to
give an interpretation for their ratio, attributing k1 to the shear energy per unit volume
needed to deform the fabric, directly proportional to the width l of the fibre, and k2 to
the bending stiffness of a fibre, proportional to the cube of its width, so that one has

k2
k1

∼ l2 (20)

In [38] a sound physical argument has been given for the ratio (20) on the basis of
an homogenization procedure, together with a more rigorous evaluation. Denoting by l a
scale parameter representative of the microscale of the network, not necessarily equal to
the width of the fibres, we can take k2 = k1l

2, so that equation (17) becomes

Φ =
1

2
k1

(∫
B0

γ2 dB + l2
∫
B0

∥∇E∥2 dB
)

(21)

The parameter l will then rule the relative weight of the two contributions of the energy
to the overall deformation. For a vanishing l a first gradient material is obtained, while a
large l represents a material for which the second gradient (bending) deformation is the
most relevant energy storage phenomenon.

3. Geometrical model

3.1. Geometry of the sample

The rectangular strip of figure 2(a) is considered in the paper. Its left edge Σ1 is
built in, while its right edge Σ2 is free to translate and rotate but is restrained to remain
undeformed. The width and the length of the specimen are W and H. A double family
of orthogonal inextensible fibres at 45◦ degrees with the specimen axis is embedded in the
sheet. In figure 2(a) is represented the reference frame used in the numerical simulations.

7



A length to width ratio 3:1 is used unless otherwise specified. The specimen can be divided
in regions, as highlighted in figure 2(b), in which different pattern of deformation can be
recognized. Regions ∆00 and ∆33, whose sides cannot elongate, remain undeformed, region
∆33 undergoes, then, a rigid body motion.

The geometry was already investigated in [6, 39] in connection with the Bias Extension
test and a modified form of it.

(a) (b)

Figure 2: Reference configuration: (a) Initial configuration and referential inextensible directors, (b)
Partitioning and labeling of subregions.

3.2. Boundary conditions

Displacements or forces are applied at the free edge Σ2 of the specimen, and, since the
region ∆33 remains rigid, those displacements can be expressed as a function of the three
degrees of freedom, u1

O, u
2
O, ϕo, of the point O, see figure 3(a). In particular it is convenient

to express the boundary conditions referring to point Q as:

uQ(θ1, θ2) = ūQ (22)

where uQ(θ1, θ2) is the displacement of point Q evaluated from the kinematic fields, and
ūQ is the displacement of point Q obtained from the imposed displacements at point O
as:

ūQ = uO + (R(ϕO)− I) (Q−O) (23)

with uO is the displacement vector of point O, R(•) is the anti clockwise unit rotation
operator around point O and I is the identity matrix.

Since P is a fixed point, the term uQ(θ1, θ2) can be evaluated as
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(uQ − uP ) =

∫
Γ

(dp− dp0)dΓ (24)

being Γ a line joining points Q and P. Substituting the expressions (8) one gets:

∫
Γ

(dp− dp0)dΓ =

∫ ξ1Q

ξ1P

(cos(θ1)D1 + sin(θ1)D2) dξ
1+

+

∫ ξ2Q

ξ1P

(cos(θ2)D2 + sin(θ2)D1) dξ
2+

− (ξ1P − ξ1Q)D1 − (ξ2P − ξ2Q)D2

(25)

4. Problem Formulation

The deformation field of the 2D sheet described in section 3 is obtained solving a con-
strained minimization problem in the rotation angles θ1, θ2. The objective functional is
given by the energy potential (17), depending only on θ1(ξ

1) and θ2(ξ
2), under the inequal-

ity constraints on the rotation angle fields, that enforce the condition of non-overlapping
rotation of the fibres:

min
(θ1,θ2)

Φ

(
θ1, θ2,

dθ1
dξ1

,
dθ2
dξ2

)
− λ · (uQ(θ1, θ2)− ūQ) , (26)

subjected to : −π

2
≤ θ1 + θ2 ≤

π

2
(27)

with Φ defined by (21). The second term in the objective functional enforces the boundary
conditions expressed by the condition (22), by means of the Lagrangian multiplier vector
λ, that represents the reacting force applied at point Q. Notice that in the case the
displacement is not assigned, so that ūQ vanishes, the latter term in (26) represents the
external work done by a load applied at point Q.

In the case displacement boundary conditions are applied, the reaction T dual of the
applied displacement is obtained by means of Catigliano’s theorem, see [6] for details.

The problem is solved discretizing the domain in quadrilateral elements, and consid-
ering a piece-wise constant Q0-interpolation for the two rotation fields θ1(ξ

1) and θ2(ξ
2)

on the uniform quadrilateral mesh. The primal kinematical variables are the two rotation
fields while the displacement is obtained by means of an integration procedure. The dis-
cretized values of the rotations are denoted by θ1,ij, θ2,ij, with i = 1, ..., ne and j = 1, ..., 3ne

and ne the number of elements along the short side of the specimen. According to Rivlin’s
representation all the elements having the same value ξ1 (resp. ξ2) of the centroid coordi-
nate have the same value for θ2 (resp. θ1), as represented in figures 3(b) and 3(c), where
are also shown the elements whose rotation are imposed by the boundary conditions. In
figure 3(d) is synthesized the distribution of the sum of the two rotations in the regions of
the specimen.
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Since a piece-wise constant interpolation has been used, the gradients of the rotations
cannot be directly evaluated. They have therefore been collocated in the vertices of the
mesh, evaluating for each node i, j the gradients of the two scalar rotation fields as

(∂S1ϑ1)i,j =
ϑ1,i j+1 − ϑ1,i+1 j√

2he

,

(∂S2ϑ2)i,j =
ϑ2,i+1 j+1 − ϑ2,ij√

2he

.

(28)

where he = W/ne is the element side length. The second gradient deformation has been
calculated in a similar way.
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(a) (b)

(c) (d)

Figure 3: Boundary conditions evaluation and distribution of the rotations in the sample (a) evaluation
of the boundary conditions, (b) distribution of the angle θ1, (c) distribution of the angle θ2, (d) regions
where the θ1 + θ2 get different forms.
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5. Numerical Investigations

For each of the cases investigated in the paper we will compare the predictions of the
model obtained assuming that only the first gradient term (resp. the second gradient
term) appears in the energy functional (21). Furthermore, for each simulation two cases
will be considered, that differs for the evaluation of the strain. In the first case, the exact
non linear expressions of the strains (12), (16) will be considered. In the second case the
linearized expressions for the strains will be used. Notice that in both cases the strain
energy, being quadratic, is convex, so that material instability are ruled out from the
model. In the first case, however, the strain displacement relation is non linear, so that
a geometric effect may arise. The question is of great importance in the occurrence of an
unstable response in the plane.

The results obtained with the first gradient model will be labeled by 1gS, 1gQ, where
S, Q indicate that the non linear or the linear expression has been used for the shear.
Likewise, the results obtained with the second gradient model will be labeled 2gS, 2gQ.

5.1. Bias Extension Test

In this subsection we consider the case that an axial translation is applied to the
specimen, in order to simulate a standard Bias Extension Test. In [6] it has been shown
that in this case a limit displacement is reached when in the central zone of the specimen
the fibres get aligned (θ1 + θ2 = π/2), so no further extension is allowed. The value of the
limit displacement is ulim =

(√
2− 1

)
(H −W ).

The results of the simulation are presented in dimensionless form. The dimensionless
displacement is uQ/ulim, ranging in (0, 1). The reaction T is divided by the initial slope
S0 of the reaction-displacement curve, Tadim = T/(S0ulim). In this way all the force-
displacement curves have the same initial tangent, so that they can be directly compared.
The dimensionless form of the strain energy used is Φ/(tW 2k1), where t is the thickness
of the sample. Moreover the dimensionless scale parameter α = l/W is also used. Since α
ranges in (0,∞), it has been replaced by α2 = ζ

1−ζ
, so that ζ = 0 for α = 0 (first gradient

model), and ζ = 1 for α = ∞ (second gradient model).
The dimensionless plots of the reaction vs. the imposed displacement are presented in

figure 4(a) for the two energy models considered and for the two forms of the strain. In
all cases the reaction tends to diverge when the displacement approaches the limit value.
However the first gradient model shows a sharper neck in the force-displacement curve
when the limit displacement is approached, and lower values of the dimensionless reaction
for an assigned displacement.

In figure 4(b) is plotted the dimensionless strain energy vs. the applied displacement.
The first gradient energy approaches a limit value, when the deformation in the sample
reaches its limit configuration, shown in figure 5(b). In it the relative rotation θ1 + θ2
in the central zone becomes π/2, while θ1 + θ2 = π

4
in regions ∆01,∆10,∆23,∆32. The

dimensionless strain energy (21) becomes in this condition equal to 1 if the non linear
expression of the strain is used, and equal to 2.159 if the linear expression of the strain is
used. In the second gradient energy model, on the contrary, it appears that no limit value
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of the energy is attained, due to the presence of a boundary layer where the deformation
concentrates.

2gQ-model

2gS-model

1gQ-model

1gS-model

0 .25 .5 .75 1
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S 0
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L

(a)

2gQ-model
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0

1
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3

4

5
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F
�H

k 1
W

2
tL

(b)

Figure 4: Bias Extension Test: (a) Dimensionless force versus uQ/ulim and (b) Strain energy versus
uQ/ulim for the first and second gradient models, (ζ = 0 and ζ = 1).

As has been observed in previous works ([5, 40, 21]), the deformation of the sample in
the first gradient model presents sharp discontinuities along the boundaries of the regions,
as is highlighted in figure 5(a), 5(b), whatever is the level of the imposed displacement.
The presence of jumps in the strain field implies that along the discontinuity lines arise
concentrated line forces that equilibrate the difference in the shear stresses. This peculiar
phenomenon will be investigated in a future work, where an interpretation of the concen-
trated line forces will be proposed in analogy with what occurs in cable nets [41, 42].

In the deformation obtained with the second gradient energy model, instead, this sharp
discontinuities are substituted by layers where a smooth transition occurs (figures 6(a),
6(b)).
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(a) u = 2/3ulim
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(b) u = ulim

Figure 5: Bias Extension Test - model 1gS, first gradient energy model: reference and deformed configu-
rations for two values of the displacements.
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(a) u = 2/3ulim
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(b) u = ulim

Figure 6: Bias Extension Test - model 2gS, second gradient energy model: reference and deformed
configurations for two values of the displacements.
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Figure 7 shows that for the first gradient model the deformation, in addition to present
sharp discontinuities, is not uniform in the central area of the specimen, but reaches the
theoretical piecewise constant deformation for the limit displacement. The plot of the
distribution of the energy shows a similar trend. The situation when the second gradient
model is used is very different (figure 8). The deformation does not present discontinuities,
and even for values of the imposed displacement very close to the limit one a transition
layer is present. The distribution of the energy is completely different form the first
gradient results. For the latter case the plot of the strain energy density is similar to the
distribution of the shear deformation. In the former case, instead, the main contributions
to the strain energy tend to concentrate in the transition layers. For values of the imposed
displacement close to the limit one almost all the strain energy is stored in these layers,
corresponding to the fact that the deformation in the specimen gets close to the piecewise
constant distribution found in the first gradient energy, except for the presence of the
transition layers.
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(a) (ϑ1 + ϑ2)max = 0.259946. (b) h2g1,max = 0.0000809379.

(c) (ϑ1 + ϑ2)max = 0.539297. (d) h2g1,max = 0.000323304.

(e) (ϑ1 + ϑ2)max = 0.849624. (f) h2g1,max = 0.000692719.

(g) (ϑ1 + ϑ2)max
∼= π/2. (h) h2g1,max = 0.00124388.

Figure 7: Bias Extension test with 1gS-model (ζ = 0) - relative rotation and first gradient shear energy
distribution for several imposed displacements: (a-b) u = ulim/4, (c-d) u = ulim/2, (e-f) u = 2ulim/3,
(g-h) u = ulim. h = mesh size
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(a) (ϑ1 + ϑ2)max = 0.661287. (b) h2g2,max = 0.0012501.

(c) (ϑ1 + ϑ2)max = 1.10961. (d) h2g2,max = 0.00452326.

(e) (ϑ1 + ϑ2)max = 1.56873. (f) h2g2,max = 0.057245.

(g) (ϑ1 + ϑ2)max
∼= π/2. (h) h2g2,max = 0.230074.

Figure 8: Bias Extension test with 2gS-model (ζ = 1) - relative rotation and second gradient shear energy
distributions for several imposed displacements: (a-b) u = ulim/2, (c-d) u = 2ulim/3, (e-f) u = 0.95ulim,
(g-h) u = 0.99ulim. 80× 240 elements mesh. h = mesh size
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A comparison of the relative rotations of the fibres along the central axis of the specimen
is presented in figure 9 for an imposed displacement u = ulim/2 and u = 0.99ulim. Both
cases of the exact and of the linearized kinematics are presented. The presence of a
boundary layer on the second gradient deformation as opposed to the jump experienced
by the first gradient solution is apparent. The use of the linearized kinematics, for which
the second gradient strain is only function of the curvature and not of the relative rotation
also, does not appear to modify the shape of the boundary layer.
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Figure 9: Bias Extension Test. Top: Relative rotation of the fibres θ1 + θ2 along the central axis of
the specimen, first and second gradient energy models. Bottom: contour plots of θ1 + θ2 for the model
2gS (left) and 2gQ (right): (a) 1gS− and 2gS−models for u1 = u2 = (0.99ulim)/2, (b) 1gQ− and
2gQ−models for u1 = u2 = (0.99ulim)/2, (c) 1gS− and 2gS−models for u1 = u2 = 0.99ulim, (d) 1gQ−
and 2gQ−models for u1 = u2 = 0.99ulim.

It is interesting to estimate the width of the transition layer, that should be related to
the ratio α2 = (l/W )2 of the stiffness constants k1 and k2. However for the pure second
gradient model (ζ = 1) this parameter diverges, so that the interpretation of the internal
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scale is not trivial. To this end in figure 10 has been plotted the rotation θ1 along the line
directed in the ξ1 direction shown in the figure (along this line the rotation θ2 is zero),
for several values of the parameter ζ ∈ (0, 1), using the exact kinematics and for 4 values
of the imposed displacement: u = ulim/4, u = ulim/2, u = 3ulim/4, u = 0.99ulim. On
the horizontal axis are indicated the number of elements along the selected line. Two
observations may be done. First, examining the plot relative to a single step, it can be
seen that for ζ = 0 there exists a jump in the value of the rotations, which disappears for
any other value of the parameter ζ > 0. Also, apparently, for values of ζ larger than 0.1 it
seems that the boundary layer width remains almost constant. Notice that for ζ = 0.3 one
gets l ≃ W/3. However, examining the last figure 10(d) relative to a deformation close to
the limit one, the boundary layer is still present but gets thinner and thinner. Moreover,
as already observed, the deformation in the specimen outside of the layer tends to become
constant, more rapidly than it happens with the first gradient solution (ζ = 0).

The deformation of the specimen for u = ulim thus tends in the limit to develop also
for the second gradient model sharp kinks, where a diverging bending deformation occurs.
It should be observed that numerically it is very difficult to find this limit state, since
convergence becomes slower and slower. The plots of figure 11 presents the convergence
for the strain energy and for the reaction at several levels of the imposed displacement
as function of the number of element along the width of the sample, for the second gra-
dient model. While when the first gradient model is used convergence is always reached
with a reasonable discretization, for the second gradient solution it can be observed that
convergence slows down dramatically for large values of the imposed displacement.
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Figure 10: Bias Extension Test. θ1 along the line indicated in the figure, for increasing values of ζ and for
several values of the displacement: (a) u = (0.99ulim)/4, (b) u = (0.99ulim)/2, (c) u = 3(0.99ulim)/4,
(d) u = 0.99ulim. The contour plots refer to the model 2gS (ζ = 1).
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Figure 11: Bias Extension Test. Convergence of the energy and of the end reaction for several imposed
displacement for the 2gS−model: (a) Energy versus number of the elements along the width of the sample,
(b) Reaction versus number of the elements along the width of the sample.
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5.2. Shear Test

In this simulation a monotonically growing tangential displacement is imposed to the
point O , and hence to point Q, as illustrated in figure 12. The region ∆33 translates rigidly,
while the central zone of the specimen deforms. The test is similar to the double bending
of a cantilever, however, due to the inextensibility constraints, the deformation is quite
different. Figures 13 and 14 show the evolution of the deformation for the two limit cases
that the strain energy depends on only the first (resp. second) gradient deformation. When
the first gradient energy model is used it can be observed that, similarly to what happens
in the Bias Extension Test, jumps in the rotations of the fibres occur along the boundaries
of the triangular regions in the specimen. Consequently, a limit state is reached in which
the rotation is piecewise constant, equal to zero in regions ∆00,∆01,∆33,∆32, and to π/2
in the rest of the specimen, so that all the fibres get aligned and no further deformation is
possible. The limit displacement is vlim = H −W . At this stage the first gradient strain
energy stored in the sample is equal to Φ = 1

2
k1γ

2tH(H −W ), so that its dimensionless
value, for the 1:3 sample examined, becomes Φad =

Φ
t k1W 2 = 1, if for γ the exact kinematics

is used, and 2.467 if the linear kinematics is used.
The deformation obtained with the second gradient model does not show kinks, which

are replaced by transition layers. Since the shear stiffness in this model is zero, the sample
undergoes larger rotations with respect to the first gradient model, and the fibres tend
to overlap along a diagonal line, as can be seem comparing for instance figures 13(c) and
14(c).

Figure 12: Schematics of the Shear test.
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Figure 13: Shear Test - First gradient energy model (1gS-model): reference and deformed configurations
for several values of the applied displacement.
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Figure 14: Shear Test - Second gradient energy model (2gS-model): reference and deformed configurations
for several values of the applied displacement.
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The plot of the reaction vs. the applied displacement is presented in dimensionless
form in figure 15(a), for both energy models and for the exact and linearized forms of the
strains. In figure 15(b) is plotted the strain energy as function of the dimensionless applied
displacement v/vlim. Differently than in the case of the Bias Extension Test, the second
gradient model presents a softening behaviour. For an applied displacement v/vlim ≃ 0.6
the reaction reaches a maximum and then decreases. Subsequently, approaching the limit
displacement, the reaction grows again, tending to diverge, as with the other models. The
presence of this instability is confirmed in the plot of the strain energy for the second
gradient model, that shows a discontinuity on the slope. Notice that the results obtained
with the second gradient model but using the linearized strain do not present instability,
thus suggesting that the origin of the instability is of a geometrical nature related to the
strain-displacement relation.

In order to further investigate the onset of the instability, a series of simulations have
been carried out on samples with increasing slendernessH/W . The results are summarized
in figure 16, where the end reaction has been plotted vs. the displacement normalized
with respect to the limit value vlim = H −W . The limit loads decreases with increasing
slenderness of the sample, strengthening the attribution of the instability to a geometrical
phenomenon. It is interesting to notice that the limit load occurs for all the slenderness
ratios investigated at the same value of the normalized displacement.
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Figure 15: Shear Test: (a) shear reaction vs. applied displacement, (b) strain energy vs. applied displace-
ment.
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Figure 16: Shear Test: shear reaction vs. applied displacement for samples with variable slenderness
H/W . Model 2gS.
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Graphs of the relative rotations along the central line of the specimen for four values
of the applied displacement are presented in figure 17 for several values of the parameter
ζ. The contour plots also presented in the figure refer to the relative rotation evaluated
with the model 2gS, ζ = 1. In this example the results obtained changing the parameter
ζ differ substantially. Notice that the thickness of the boundary layers can be appreciated
from the contour plots reported in the figure for the second gradient model.

The distribution of the strain energy shows a similar trend to what found in the Bias
Extension Test. While for the first gradient energy model the strain energy tends to
become uniform in the central zone of the specimen, it tends instead to concentrate along
the transition regions in the second gradient model, while vanishing in the remaining part
of the sample (figures 18, 19).

In order to better investigate the behaviour of the sample it has been evaluated its
response in the case both the first gradient and the second gradient strains contribute to
the strain energy, that is using a finite scale parameter α = l/W . The results are presented
in figures 20(a) and 20(b) for the reaction and the strain energy. In these plots the
reaction has been adimensionalized dividing by the initial slope of the force displacement
curve, while the dimensionless strain energy as been defined as (1− ζ)Φ/(k1tW

2), in order
to avoid the divergency of the scale parameter. For values of ζ > 0.2, (α > 0.5) the
load-displacement curve presents a limit point. The first gradient strain appears then to
regularize the instability that occurs when the second gradient strain only is considered.
The relative influence of the first and second gradient strain on the plane deformation of
a pantographic model was already examined in [43].
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Figure 17: Shear Test. Top: distribution of θ1 + θ2 along the central line of the specimen, for several
values of ζ. Bottom: θ1 + θ2 for model 2gS, (ζ = 1).: (a) v = (0.99 vlim)/4, (b) v = (0.99 vlim)/2, (c)
v = 3(0.99 vlim)/4, (d) v = 0.99 vlim.
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(a) (θ1 + θ2)max = 0.121750. (b) h2g1,max = 0.0001241.

(c) (θ1 + θ2)max = 0.639797. (d) h2g1,max = 0.0004455.

(e) (θ1 + θ2)max = 0.952254. (f) h2g1,max = 0.0008297.

(g) (θ1 + θ2)max = π/2. (h) h2g1,max = 0.00125.

Figure 18: Shear Test with 1gS-model (ζ = 0) - Relative rotation of the fibres (left) and normalized first
gradient shear energy distribution on the specimen (right) for several displacements: (a-b) v = 1/4 vlim,
(c-d) v = 1/2 vlim, (e-f) v = 3/4 vlim, (g-h) v = vlim.
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(a) (θ1 + θ2)max = 0.402747. (b) h2g2,max = 0.0011425.

(c) (θ1 + θ2)max = 0.863245. (d) h2g2,max = 0.00427587.

(e) (θ1 + θ2)max = 1.35398. (f) h2g2,max = 0.0109329.

(g) (θ1 + θ2)max = π/2. (h) h2g2,max = 0.130174.

Figure 19: Shear Test with 2gS-model (ζ = 1) - Relative rotation of the fibres (left) and normalized second
gradient shear energy distribution on the specimen (right) for several displacements: (a-b) v = 1/4 vlim,
(c-d) v = 1/2 vlim, (e-f) v = 3/4 vlim, (g-h) v = 0.95 vlim.
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Figure 20: Shear Test: (a) reaction T versus the applied displacement, (b) strain energy versus the applied
displacement, for several values of the constitutive parameter ζ.
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5.3. End Rotation Test

A clockwise rotation of the free edge around point O is now applied. Figure 21 shows a
sketch of the simulation. Also in this case a limit rotation exists, when the fibres in region
∆23 get aligned but, since there is no symmetry in the deformation, the limit rotation
cannot be predicted, as was already indicated in [6]. In the case examined here, the limit
rotation has been found to be π/3. The deformation of the sample, presented in figure 22,
23 for the first and second gradient models with the exact kinematics, shows that indeed
the specimen axis bends.

Figure 21: Schematics of the End Rotation Test.

Also in this case the force displacement curve presents an instability for the 2gS model
at a rotation about equal to π/6. In this case also the 1gS model presents a softening in the
stiffness before the limit rotation is reached, At this stage, as can be observed from figure
23(c), a concentration tends to develop along a diagonal line in the specimen. Figures 25,
26 highlight this phenomenon. Comparing them it can again be observed the presence of
boundary layers that characterize the second gradient solution, where the energy tends
to concentrate, as opposite to the solution of the first gradient model, that presents also
in this case jumps in the values of the rotations. A phenomenological explanation of
this behaviour has to be sought in the competing actions of the shear deformation, whose
rigidity decreases with increasing deformation, and of the inextensibility constraint, whose
effect becomes dominant when the fibres tend to align. The use of a combined model
eliminates the limit point for a value of ζ roughly smaller than 0.5 (α = 1), see figure 27.
Figure 28 shows the evolution of the relative rotation of the fibres along the central line
of the sample as the parameter ζ grows from 0 to 1.
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Figure 22: End Rotation Test - first gradient model (1gS-model): reference and deformed configurations
for the four values of the applied rotation.
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Figure 23: End Rotation Test - second gradient energy model (2gS-model): reference and deformed
configurations for the four values of the applied rotation.
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Figure 24: End Rotation Test: (a) moment vs. rotation, (b) strain energy vs. rotation.
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(a) (θ1 + θ2)max = 0.404591. (b) h2g1,max = 0.0001937.

(c) (θ1 + θ2)max = 0.789074. (d) h2g1,max = 0.0006296.

(e) (θ1 + θ2)max = 1.20018. (f) h2g1,max = 0.00108603.

(g) (θ1 + θ2)21,max = π/2. (h) h2g1,max = 0.00125.

Figure 25: End Rotation Test with 1gS-model (ζ = 0) - Relative rotation of the fibres (left) and normalized
first gradient shear energy distribution (right) on the specimen for several rotations: (a-b) ϕo = π/12,
(c-d) ϕo = π/6, (e-f) ϕo = π/4, (g-h) ϕo = π/3. 38



(a) (θ1 + θ2)max = 0.521131. (b) h2g2,max = 0.00116466.

(c) (θ1 + θ2)max = 1.08234. (d) h2g2,max = 0.00402006.

(e) (θ1 + θ2)max = π/2. (f) h2g2,max = 0.00971574.

(g) (θ1 + θ2)max = π/2. (h) h2g2,max = 0.0995264.

Figure 26: End Rotation Test with 2gS-model (ζ = 1) - Relative rotation of the fibres (left) and normalized
second gradient shear energy distribution (right) on the specimen for several rotations: (a-b) ϕo = π/12,
(c-d) ϕo = π/6, (e-f) ϕo = π/4, (g-h) ϕo = 0.99× π/3.
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Figure 27: End Rotation Test: (a) End moment M versus the rotation angle ϕo, (b) Energy versus the
rotation angle ϕo, for several values of the parameter ζ.
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Figure 28: End Rotation Test. Top: plots of θ1 + θ2 along the central line of the specimen, for various ζ.
Bottom: θ1+θ2 for the model 2gS; (a) ϕo = (0.99ϕlim)/4, (b) ϕo = (0.99ϕlim)/2, (c) ϕo = 3(0.99ϕlim)/4,
(d) ϕo = 0.99ϕlim.

41



5.3.1. Cantilever

In the final test all degrees of freedom of the free edge are together activated. A
monotonically increasing tangential conservative load is applied at point Q, as indicated
in figure 29(a) The deformation of the specimen is represented in figures 30 for the first
gradient model, and 31 for the second gradient model. The steps at which the deformation
is represented are indicated by points A,...D on the load displacement plot of figure 29(b).
In the figure is plotted the value of the applied force vs. the component of the displacement
of point Q in the direction of the force. In the first gradient model the deformation initially
concentrates near the built in end of the specimen, until the applied force aligns with the
deformed axis of the specimen. From this instant on the specimen deforms in a way similar
to an Extension Test, with the formation of lines of discontinuity. In the case of the second
gradient model, being the deformation ruled by bending of the fibres, a boundary layer
quickly appears on the top side of the sample, which is reflected in the softening of the
load displacement curve that occurs between points A and B.
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Figure 29: Cantilever test: (a) Set-up of the problem, (b) Force versus displacement, for the 1gS- and
2gS-models.
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(a) uF /W = 1.6814, point A.
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(b) uF /W = 2.1346, point B.
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(c) uF /W = 2.287, point C.
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(d) uF /W = 2.5958, point D.

Figure 30: Cantilever test, 1gS-model: reference and deformed configuration.
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(a) uF /W = 0.7035, point A.
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(b) uF /W = 1.3557, point B.
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(d) uF /W = 2.3553, point D.

Figure 31: Cantilever test, 2gS-model: reference and deformed configuration.
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6. Conclusions

In the paper we have examined the plane deformation of a bidimensional tissue con-
stituted by two orthogonal families of fibres that have been considered inextensible. The
kinematics of the model has been obtained on the basis of a theorem of Pipkin, that al-
lows to take as independent variables describing the deformation of the continuum the
rotation fields of the fibres. It has been recognized that the mechanical beahviour of such
a material depends on the shear deformation (relative rotation of the fibres) and on the
bending deformation of the fibres. The first deformation model has been associated with
the first gradient shear strain measure, while the second deformation is related to the
gradient of the strain. A numerical model has been used to investigate the response of a
planar sheet to some simple tests. A rectangular specimen with one end built in has been
analysed. Different constitutive hypotheses have been used, that is it has been examined
the response of the specimen in the case the fabric behaves like a first gradient or like a
second gradient material, or in the case the material response is a combination of the two.

It has been found that in the case a first gradient material model is employed disconti-
nuities in the deformation field are always found, for any value of the applied displacement,
since the fibres bear no resistance to bending. The discontinuities disappear if a second
gradient material model is employed, substituted by boundary layers whose thickness,
however, tends to zero when a limit deformation is approached where the inextensibility
effect prevails. The thickness of the boundary layer in the examples analysed remains
approximately the same also if a linearized measure of the second gradient deformation is
used.

It has been found that for some non symmetric deformation field the second gradient
material model presents an in plane instability if a non linear measure of the bending
(second gradient) strain is used. This instability is a different phenomenon from wrinkling,
that is an out of plane deformation, but can interact with the latter. The introduction of
a contribution of the first gradient shear deformation in the model tends to stabilize the
response. This can be an useful design suggestion, in order to produce fabrics that have a
stable in plane behaviour.

A structural application has been presented with reference to a cantilever, whose defor-
mation field is very different from the one exhibited by a standard elastic cantilever, either
a first gradient or a second gradient model is used. This is mainly due to the inextensibil-
ity constraint introduced by the fibres. Future studies will examine the links between the
macroscopical mechanism of deformation and the microstructure of the fabric. Estimates
of the constitutive parameters of the material will be sought using either homogeniza-
tion procedures or defining a set of fabric parameters defining the microstructure of the
composite as done in [44].
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