L. Auslander, Simply Transitive Groups of Affine Motions, American Journal of Mathematics, vol.99, issue.4, pp.215-222, 1977.
DOI : 10.2307/2373867

J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2?branes 105 arXiv:0712, Comments on multiple M2?branes, JHEP 0802 Selfdual strings and loop space Nahm equations Hou, and Y. Matsuo, Lie 3?Algebra and multiple M2?branes, pp.6-020, 2008.

A. M. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry of critical fluctuations in two dimensions, Journal of Statistical Physics, vol.12, issue.5-6, pp.763-774, 1984.
DOI : 10.1007/BF01009438

A. M. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two dimensional quantum field theory, Nuclear Phys, pp.333-380, 1984.

F. A. Berezin, The method of second quantization, Pure and Applied Physics, vol.24, p.228, 1966.

D. Burde, Left-Invariant Affine Structures on Reductive Lie Groups, Journal of Algebra, vol.181, issue.3, pp.884-902, 1996.
DOI : 10.1006/jabr.1996.0151

E. Cartan, Les groupes de transformations continus, infinis, simples, Annales scientifiques de l'??cole normale sup??rieure, vol.26, issue.3, pp.93-161, 1909.
DOI : 10.24033/asens.603

T. L. Curtright, D. B. Fairlie, and C. K. Zachos, Ternary Virasoro???Witt algebra, Physics Letters B, vol.666, issue.4, pp.386-390, 2008.
DOI : 10.1016/j.physletb.2008.06.060

T. Curtright and C. Zachos, Classical and quantum Nambu mechanics Zachos, Membranes and consistent quantization of Nambu dynamics, Kac-Moody extensions of 3?algebras and M2?branes, p.85001, 2003.

B. A. Dubrovin, Differential geometry of strongly integrable systems of hydrodynamic type, Funktsional'nyi Analiz i, Ego Prilozheniya, vol.24, issue.4, pp.25-30, 1990.

A. Fialowski, Deformations of some infinite???dimensional Lie algebras, Journal of Mathematical Physics, vol.31, issue.6, pp.1340-1343, 1990.
DOI : 10.1063/1.528720

P. , D. Francesco, P. Mathieu, and D. Senechal, Conformal field theory, Graduate Texts in Contemporary Physics, 1997.

D. B. Fuchs and I. M. Gelfand, Cohomologies of Lie algebra of vector fields on the circle, (Russian) Funkcional, English translation in Fucntional Anal, pp.92-93, 1968.

B. Fuchssteiner, The Lie algebra structure of nonlinear evolution equations admitting infinite dimensional abelian symmetry groups, Progess in Theor, Phys, vol.65, issue.3, pp.861-876, 1981.

B. Fuchssteiner, Compatibility in absract algebraic structures, in Agebraic aspects of integrable systems, Proceedings in memory of Irene Dorfman, 1996.

M. Gerstenhaber, I. Ii, and A. Math, On the deformation of rings and algebras I, pp.79-59, 1964.

Y. Nambu, Generalized Hamiltonian Dynamics, Physical Review D, vol.7, issue.8, pp.2405-2412, 1973.
DOI : 10.1103/PhysRevD.7.2405

I. T. Habibullin, V. V. Sokolov, and R. I. Yamilov, Multi-component integrable systems and nonassociative structures Workshop on Nonlinear Physics: Theory and Experiment, Proceedings of 1st Int, pp.139-168, 1995.

V. G. Kac and A. K. Raina, Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 1987.

A. Ya and . Kazakov, Riccati scheme for integrating nonlinear systems of differential equations, Theoretical and Mathematical Physics, vol.102, issue.3, pp.257-264, 1995.

H. Kim, The geometry of left-symmetric algebra, J. Korean Math. Soc, vol.33, issue.4, pp.1047-1066, 1996.

X. Kong, H. Chen, and C. Bai, CLASSIFICATION OF GRADED LEFT-SYMMETRIC ALGEBRAIC STRUCTURES ON WITT AND VIRASORO ALGEBRAS, International Journal of Mathematics, vol.22, issue.02, pp.201-222, 2011.
DOI : 10.1142/S0129167X11006751

B. A. Kupershmidt, On the Nature of the Virasoro Algebra, Journal of Nonlinear Mathematical Physics, vol.12, issue.2, pp.222-245, 1998.
DOI : 10.2991/jnmp.1999.6.2.7

B. A. Kupershmidt, Left-Symmetric Algebras in Hydrodynamics, Letters in Mathematical Physics, vol.23, issue.1, pp.1-18, 2006.
DOI : 10.1007/s11005-006-0061-y

B. M. Mccoy and T. T. Wu, The two-dimensional Ising model, 1973.

J. Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math, pp.178-187, 1977.

S. Palcoux, Panorama around the Virasoro algebra

A. M. Perea, Flat left-invariant connections adapted to the automorphism structure of a Lie group, Journal of Differential Geometry, vol.16, issue.3, pp.445-474, 1981.
DOI : 10.4310/jdg/1214436223

R. D. Schafer, An introduction to nonassociative algebras, 1961.

M. Schlichenmaier, An elementary proof of the vanishing of the second cohomology of the Witt and Virasoro algebra with values in the adjoint module, Forum Math, pp.913-929, 2014.

V. V. Sokolov and S. I. Svinolupov, Deformations of nonassociative algebras and integrable differential equations, Acta Applicandae Mathematicae, vol.17, issue.4, pp.323-339, 1995.
DOI : 10.1007/BF00996121

S. P. Tsarev, On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type, Soviet Math. Dokl, vol.31, issue.3, pp.488-491, 1985.

M. A. Virasoro, Subsidiary Conditions and Ghosts in Dual-Resonance Models, Physical Review D, vol.1, issue.10, p.29332936, 1970.
DOI : 10.1103/PhysRevD.1.2933

A. J. Wassermann, Lecture notes on the Kac-Moody and Virasoro algebras, 1998.

A. Winterhalder, Linear Nijenhuis-tensors and the construction of integrable systems, arXiv: physics 9709008v1

E. Witt, Collected papers Gesammelte Abhandlungen. (German) With an essay by Gunter Harder on Witt vectors, 1998.
DOI : 10.1007/978-3-642-41970-6