N. Abukhshim, P. Mativenga, and M. Sheikh, Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining, International Journal of Machine Tools and Manufacture, vol.46, issue.7-8, pp.7-8782, 2006.
DOI : 10.1016/j.ijmachtools.2005.07.024

Y. Ayed, C. Robert, G. Germain, and A. Ammar, Development of a numerical model for the understanding of the chip formation in high-pressure water-jet assisted machining, Finite Elements in Analysis and Design, vol.108, pp.1-8, 2016.
DOI : 10.1016/j.finel.2015.09.003

URL : https://hal.archives-ouvertes.fr/hal-01224932

M. Baker, J. Rosler, and C. Siemers, The influence of thermal conductivity on segmented chip formation, Computational Materials Science, vol.26, pp.175-182, 2003.
DOI : 10.1016/S0927-0256(02)00396-8

T. Braham-bouchnak, Etude du comportement en sollicitations extrêmes et l'usinabilité d'un nouvel alliage de titane aéronautique : le ti555-3 An internal variable constitutive model fir the hot working of metals, 1987.

E. Cadoni, L. Fenu, and D. Forni, Strain rate behaviour in tension of austenitic stainless steel used for reinforcing bars, Construction and Building Materials, vol.35, pp.399-407, 2012.
DOI : 10.1016/j.conbuildmat.2012.04.081

M. Calamaz, D. Coupard, and F. Girot, A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti???6Al???4V, International Journal of Machine Tools and Manufacture, vol.48, issue.3-4, pp.3-4275, 2008.
DOI : 10.1016/j.ijmachtools.2007.10.014

URL : https://hal.archives-ouvertes.fr/hal-00911076

B. Changeux, Loi de comportement pour l'usinage. Localisation de la déformation et aspects microstructuraux, 2001.

A. Clausen, T. Borvik, O. Hopperstad, and A. Benallal, Flow and fracture characteristics of aluminium alloy AA5083???H116 as function of strain rate, temperature and triaxiality, Materials Science and Engineering: A, vol.364, issue.1-2, pp.260-272, 2004.
DOI : 10.1016/j.msea.2003.08.027

F. Ducobu, E. Riviere-lorphevre, and E. Filippi, Material constitutive model and chip separation criterion influence on the modeling of Ti6Al4V machining with experimental validation in strictly orthogonal cutting condition, International Journal of Mechanical Sciences, vol.107, pp.136-149, 2016.
DOI : 10.1016/j.ijmecsci.2016.01.008

M. Habak, Etude de l'influence de la microstructure et des paramètres de coupe sur le comportement en tournage dur de l'acier roulement 100cr6, 2006.

A. He, G. Xie, H. Zhang, and X. Wang, A comparative study on Johnson???Cook, modified Johnson???Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel, Materials & Design (1980-2015), vol.52, pp.677-685, 2013.
DOI : 10.1016/j.matdes.2013.06.010

Q. Hou and J. Wang, A modified Johnson???Cook constitutive model for Mg???Gd???Y alloy extended to a wide range of temperatures, Computational Materials Science, vol.50, issue.1, pp.147-152, 2010.
DOI : 10.1016/j.commatsci.2010.07.018

A. Hor, Simulation physique des conditions thermomécaniques de forgeage et d'usinage -caractérisation et modélisation de la rhéologie et de l'endommagement, 2011.

G. Johnson and W. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and temperature, International Symposium on ballistics, p.7, 1983.

K. Cheng and D. Huo, Micro-cutting: fundamentals and appli- cations, p.2013, 2013.
DOI : 10.1002/9781118536605

H. Li, X. Wang, J. Duan, and J. Liu, A modified Johnson Cook model for elevated temperature flow behavior of T24 steel, Materials Science and Engineering: A, vol.577, pp.138-146, 2013.
DOI : 10.1016/j.msea.2013.04.041

G. List, G. Sutter, and A. Bouthiche, Cutting temperature prediction in high speed machining by numerical modelling of chip formation and its dependence with crater wear, International Journal of Machine Tools and Manufacture, vol.54, issue.55, pp.54-551, 2012.
DOI : 10.1016/j.ijmachtools.2011.11.009

O. Lurdos, Lois de comportement et recristallisation dynamique: approches empirique et physique, 2008.

M. Meyers, G. Subhash, B. Kad, and L. Prasad, Evolution of microstructure and shear-band formation in ??-hcp titanium, Mechanics of Materials, vol.17, issue.2-3, pp.2-3175, 1994.
DOI : 10.1016/0167-6636(94)90058-2

M. Meyers, Y. Xu, Q. Xue, M. Pérez-prado, and T. Mcnelley, Microstructural evolution in adiabatic shear localization in stainless steel, Acta Materialia, vol.51, issue.5, pp.1307-1325, 2003.
DOI : 10.1016/S1359-6454(02)00526-8

F. Mirza, C. D. , L. D. , and Z. X. , A modified Johnson-Cook constitutive relationship for a rare-earth containing magnesium alloy, Journal of Rare Earths, vol.31, issue.12, pp.1202-1207, 2013.
DOI : 10.1016/S1002-0721(12)60427-X

M. 'saouibi and R. , Aspects thermiques et microstructuraux de la coupe. Application A?aA?a la coupe orthogonale des aciers austénitiques, 1998.

H. Pan, J. Liu, Y. Choi, C. Xu, Y. Bai et al., Zones of material separation in simulations of cutting, International Journal of Mechanical Sciences, vol.115, issue.116, pp.262-279, 2016.
DOI : 10.1016/j.ijmecsci.2016.06.019

J. Pujana, L. Campo, R. Pérez-sáez, M. Gallego, and P. Arrazola, Radiation thermometry applied to temperature measurement in the cutting process, Measurement Science and Technology, vol.18, issue.11, pp.1-3475, 2008.
DOI : 10.1088/0957-0233/18/11/022

I. Rohr, H. Nahme, T. Kjr, and . Ca, Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates, International Journal of Impact Engineering, vol.35, issue.8, pp.811-819, 2008.
DOI : 10.1016/j.ijimpeng.2007.12.006

URL : https://hal.archives-ouvertes.fr/hal-00499107

D. Samantaray, S. Mandal, and A. Bhaduri, A comparative study on Johnson Cook, modified Zerilli???Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr???1Mo steel, Computational Materials Science, vol.47, issue.2, pp.568-576, 2009.
DOI : 10.1016/j.commatsci.2009.09.025

M. Scapin, L. Peroni, and M. Peroni, Parameters identification in strain-rate and thermal sensitive visco-plastic material model for an alumina dispersion strengthened copper, International Journal of Impact Engineering, vol.40, issue.41, pp.40-4158, 2012.
DOI : 10.1016/j.ijimpeng.2011.10.002

W. Schonberg, R. Kupchella, D. Stowe, X. Xiao, A. Algoso et al., Proceedings of the 2015 hypervelocity impact symposium (hvis 2015) incorporation of material variability in the johnson cook model, Procedia Eng, vol.103, pp.318-325, 2015.

G. Taylor and H. Quinney, The Latent Energy Remaining in a Metal after Cold Working, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.143, issue.849, pp.307-326, 1934.
DOI : 10.1098/rspa.1934.0004

J. Teixeira, Etude expérimentale et modélisation desévolutions des´desévolutions microstructurales au cours des traitements thermiques post forgeage dans l'alliage de titane ti17, 2005.

X. Teng and T. Wierzbicki, Evaluation of six fracture models in high velocity perforation, Engineering Fracture Mechanics, vol.73, issue.12, pp.1653-1678, 2006.
DOI : 10.1016/j.engfracmech.2006.01.009

T. Wierzbicki, Y. Bao, Y. Lee, and Y. Bai, Calibration and evaluation of seven fracture models, International Journal of Mechanical Sciences, vol.47, issue.4-5, pp.4-5719, 2005.
DOI : 10.1016/j.ijmecsci.2005.03.003

M. Yaich, Y. Ayed, Z. Bouaziz, and G. Germain, Numerical analysis of constitutive coefficients effects on FE simulation of the 2D orthogonal cutting process: application to the Ti6Al4V, The International Journal of Advanced Manufacturing Technology, vol.55, issue.156, pp.1-21, 2016.
DOI : 10.1007/s00170-016-8934-4

URL : https://hal.archives-ouvertes.fr/hal-01361858

F. Zerilli and R. Armstrong, Dislocation???mechanics???based constitutive relations for material dynamics calculations, Journal of Applied Physics, vol.61, issue.5, pp.1816-1825, 1988.
DOI : 10.1063/1.338024

H. Zhao, A constitutive model for metals over a large range of strain rates Identification for mild-steel and aluminium sheets, Materials Science and Engineering: A, vol.230, issue.1-2, 1997.
DOI : 10.1016/S0921-5093(97)00024-5

D. Zhang, Q. Shangguan, C. Xie, and F. Liu, A modified Johnson???Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy, Journal of Alloys and Compounds, vol.619, pp.186-194, 2015.
DOI : 10.1016/j.jallcom.2014.09.002