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Abstract

This paper deals with the time-domain simulation of an electro-mechanical pi-
ano: the Fender Rhodes. A simplified description of this multi-physical system
is considered. It is composed of a hammer (nonlinear mechanical component), a
cantilever beam (linear damped vibrating component) and a pickup (nonlinear
magneto-electronic transducer). The approach is to propose a power-balanced
formulation of the complete system, from which a guaranteed-passive simulation
is derived to generate physically-based realistic sound synthesis.

Theses issues are addressed in four steps. First, a class of Port-Hamiltonian
Systems is introduced: these input-to-output systems fulfill a power balance
that can be decomposed into conservative, dissipative and source parts. Sec-
ond, physical models are proposed for each component and are recast in the
port-Hamiltonian formulation. In particular, a finite-dimensional model of the
cantilever beam is derived, based on a standard modal decomposition applied to
the Euler-Bernoulli model. Third, these systems are interconnected, providing
a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth,
a passive-guaranteed numerical method is proposed.

This method is built to preserve the power balance in the discrete-time do-
main, and more precisely, its decomposition structured into conservative, dissi-
pative and source parts. Finally, simulations are performed for a set of physical
parameters, based on empirical but realistic values. They provide a variety of
audio signals which are perceptively relevant and qualitatively similar to some
signals measured on a real instrument.
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Introduction

Sound synthesis based on physical modeling aims at recovering natural be-
haviors of existing (or imaginary) instruments. This includes transients, effects
due to damping phenomena, timbre variations due to nonlinearities, etc. How-
ever, since the models are nonlinear, guaranteeing numerical stability is not5

straightforward. In this context, approaches based on energy have been devel-
oped and applied to simulate musical instruments [1, 2, 3, 4]. The principle
relies on passivity: conservative (or dissipative) phenomena make the energy
time-variation equal to (or lower than) the power received from external sources.
Passivity provides energy bounds, from which state bounds stem, so that pre-10

serving this property in simulations can be used to address stability issues.
Most of these methods involve space-time discretizations and numerical

schemes that are devoted to handle conservative problems and that can success-
fully be applied to more realistic dissipative models. Technically, these methods
are usually designed in such a way that a numerical power balance is fulfilled15

for the discretized quantities (e.g. as the product of discrete velocities and
forces). In this paper, this point of view is modified and handled in two steps:
(I) derive a passive model in the continuous time-domain, through conservative
interconnections of passive elementary components; (II) transpose the complete
system in discrete-time domain in such a way that the original power balance20

is naturally fulfilled and passivity is naturally preserved.

Numerous methods are available to reach step (I). They can be divided in
two main classes: (WS) wave scattering methods and (KV) Kirchhoff’s variables
methods (see e.g. [5]). Mixed WS/KV methods have also been proposed [6].25

Several methods are also available for step (II). Wave-digital filters (WDF) [7]
and digital wave-guide (DWG) [8] are commonly used in audio and acoustic
applications. These formalisms belong to the class of WS methods. They allow
block-based modeling approaches [6], by introducing links that mimic the serial
and parallel connections, and result in passive models for linear systems [9].30

WDF and DWG approaches lead to realizable and explicit numerical systems.
They are appreciated in real-time sound synthesis applications. However, their
benefits are lost for nonlinear systems.

This paper deals with a nonlinear system: the Fender Rhodes piano. Its35

passive modeling is derived in the class of Port-Hamiltonian Systems, introduced
in the 1990s [10, 11, 12]. These systems can be considered as an extension of
Hamiltonian systems [13] in the sense that these dynamical systems can be
composed of conservative components. But they also can include dissipative
components as well as some ports connected to external sources and through40

which energy can transit. These systems admit a power balance that can be
decomposed into conservative, dissipative and source parts. They also can be
simulated in such a way that the power balance (structured into conservative,
dissipative and source parts) is preserved in the discrete-time domain, including
for nonlinear systems, see [14, p.32] and [15]. These modeling and simulation45
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tools are chosen, adapted and used to address the sound synthesis of the Fender
Rhodes piano. Preliminary results have been presented in [16].

The paper is organized as follows. In section 1 the problem statement
presents a simplified description of the Rhodes piano and sets the objectives.
Section 2 introduces the port-Hamiltonian (pH) formulation. Section 3 is de-50

voted to the physical modeling and the finite-dimensional pH formulation of
elementary components. In particular, a finite-dimensional model of an Euler-
Bernoulli cantilever beam is derived, based on a standard modal decomposition.

Then, in section 4, elementary components are connected, yielding the non-
linear finite-dimensional port-Hamiltonian system to simulate (step I). Section 555

details the numerical method that preserves the power balance (step II). Finally,
in section 6, numerical results are presented and some signals are compared to
a few measurements.

1. Problem statement

This section describes the Rhodes piano electromechanism. It focuses on the60

components that are selected to derive the physical model. Then, it states the
scientific issues to be addressed to reach guaranteed-passive sound synthesis.

1.1. Overview and main components

A description of the Rhodes piano is given in figure 1. The complete system
is quite complex (38 components mentioned for each note in figure 1 a○). The65

resonator is an asymmetric tuning fork (elements 7 to 13 and 19 in figure 1 b○),
where one of the prong is call the tine (element 13) and is struck by the hammer
(elements 14 and 15), the other prong is called the tone bar (element 11). The
constant magnetic induction field due to the pickup magnet in free air is mod-
ulated by the movement of the (magnetically conducting) tine, which results in70

a change of the magnetic flux in the coil, that generates an electromotive force
(voltage) from Faraday’s law of induction.

This paper focuses on the part depicted in figure 1 b○, from the hammer
(excited by a force) to the pickup (producing an output voltage). This part is
simplified and modeled by three multi-physical elements (c.f. figure 2):75

1. a nonlinear hysteretic hammer h, with adjustable material characteristics
and geometry,

2. a linear damped cantilever beam b, which can be tuned according to the
shape and material properties,

3. a nonlinear pickup p, the transverse and longitudinal position of which can80

be adjusted compared to the free-end beam extremity, which is connected
to a RC analog filter (not represented in figure 2).

This simplification is justified or limited by the following considerations and
assumptions. Elements 1–6 and 26–38 are excluded from figure 1 b○. They are
the body or the key action mechanism. The body is assumed to be ideally rigid.85

The key action mechanism is ignored in the modeling. Indeed, the exhaust
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Figure 1: Overview of a single note of a Rhodes piano: a○ original schematics [17] (ex-
tracted from http://www.fenderrhodes.com courtesy of Frederik Adlers); b○ part selected for
modeling.

Figure 2: Schematic of the simplified electromechanical piano, with hammer h, beam b and
pickup p.

mechanism makes it out of contact with the hammer at the impact time. The
hammer (elements 14–15) is then isolated and considered as the excitation part
of the proposed model (see [18] for a study on a grand piano). The tuning fork
module (elements 7–13 and 19) is the vibrating part of the system. Its modeling90

is simplified according to the following assumptions:

(A1) The cylindrical tine 13 is modeled as a linear damped Euler-Bernoulli
beam.

(A2) The tone bar 11 is neglected, as well as its coupling with the tine through
the solid pieces 10 and 12, on which the tine is clamped. Its main role is95

to store and restore mechanical energy to enhance the sustain. It also has
an impact on the transient, the effect of which is not investigated here.

(A3) Elements 7–9 are composed of screws combined with springs with a high
stiffness to adjust the transverse position of the tin with respect to the
pickup. They are modeled as an ideally rigid connection with the body,100

located at an adjustable position.
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(A4) The fine tuning of the beam is addressed by adjusting the length of the
beam rather than including the tuning mass (element 19).

These assumptions are motivated by the following reasons. The linear behavior
assumed in (A1) has been validated in [19]. Assumption (A2) is the most critical105

one in practice, as the tone bar pumps and restores mechanical energy to the
tine. It has an impact on the transient and enhances the sustain. These effects
are not investigated here in order to simplify the study. Assumptions (A3–
A4) correspond to the boundary conditions of a cantilever beam. This allows
an exact model order reduction through a decomposition on analytic eigen-110

functions. The pickup and its placement (elements 20–21) are included in the
modeling as they are known to have the main nonlinear impact on the output
signal [20]. The damper module (elements 16–18 and 22–25) is ignored in the
modeling, meaning that the key release is not taken into account and that the
beam is let free until the vibration extinction.115

1.2. Objectives

The main objective of this work is to provide a physically-based sound syn-
thesis that generates a large variety of realistic sounds. The second objective is
to derive a simulation that preserves fundamental physical principles (causality,
stability and, more soundly, passivity and power balance) and that minimizes120

the computational load. To this end, the following approach is adopted: port-
Hamiltonian formulation of the complete system, model order reduction of the
infinite dimensional component (beam b), numerical method that preserves the
power balance in the discrete-time domain, derivation of a C++ code from sym-
bolic calculation to accelerate some costly operations.125

2. Port-Hamiltonian Systems

This section starts from basic considerations on energy and passivity. It
progressively introduces and recalls the port-Hamiltonian (pH) formalism [10,
11, 12]. It also presents an illustrative example. It is shown how this structure
guarantees the passivity of the model in the continuous time-domain.130

2.1. Considerations on energy and passivity

Denote E(t) ≥ 0 the energy stored in an open physical system. If the system
is autonomous and conservative, its time variation dE

dt (t) is zero. If the system

is controlled (non-autonomous) and conservative, dE
dt (t) is the power Pext(t)

supplied by sources through external ports. For systems including dissipative
phenomena with dissipated power Q(t) ≥ 0, the energy varies according to the
power balance:

dE
dt

(t) = Pext(t)−Q(t). (1)

Such systems are passive in the sense that dE
dt ≤ Pext. In particular, if the sources

are not activated, dE
dt ≤ 0. The dynamic input-to-output behavior of such a sys-

tem is the result of the power exchanges between isolated lumped or distributed
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components. For finite-dimensional systems, those components are sorted as135

(or can be a combination of): NE components that store energy E ≥ 0 (mov-
ing mass, capacitors), NQ components that dissipate power Q ≥ 0 (mechanical
damping, transistors), Next external ports that convey power Pext (∈ R) from
sources (external forces, electrical batteries, etc) or any external system (active,
dissipative or mixed). The behavior of each component is described by a relation140

between two sets of variables: flows f (velocities, currents, variations of magnetic
flux, etc) and their associated efforts e (forces, voltages, magneto-motive forces,
etc). All these quantities are defined in receiver convention, where P = fᵀe
denotes the power received by the components.

145

The energy level of a storage component n depends on an appropriate vari-
able xn (the elongation xn = ` for a spring, the charge xn = q for a capacitor,
the magnetic flux xn = φ for a coil, etc). This defines an energy function Hn
(Hn(`) = (K`2)/2 for a linear spring with stiffness K, Hn(q) = q2/(2C) for
a linear capacitor with capacitance C, Hn(φ) = φ2/(2L) for a linear coil with
inductance L, etc). The total stored energy E is a function H of the state

x = [x1, · · · , xNE ]ᵀ given by the sum E = H(x) =
∑NE
n=1Hn(xn). The energy

variation dE
dt in (1) is related to the state x with

dE
dt

= ∇H(x)ᵀ
dx

dt
(2)

This variation is precisely the received power, that is sum of the products of
flows and efforts for all the components dE

dt = fᵀEeE with fE = [f1, · · · , fNE ]ᵀ

and eE = [e1, · · · , eNE ]ᵀ (receiver convention). The external power supplied by
sources is the sum of the products of flows and efforts localized at the ports
(emitter convention), that is, Pext = fᵀexteext with fext = [f1, · · · , fNext

]ᵀ and
eext = [e1, · · · , eNext

]ᵀ. These flows fext and efforts eext can be rearranged in two
vectors, u (considered as a system input) and y (the associated output). This
means that (un, yn) = (fn, en) or (un, yn) = (en, fn) for each pair in (fext, eext)
and yields

Pext = uᵀy. (3)

Finally, relating the flows and efforts of dissipative components (receiver con-
vention) to the state and port variables, and expressing the total dissipated
power as a sum of their product yield

Q(x,u) =

(
∇H(x)

u

)ᵀ

R

(
∇H(x)

u

)
, (4)

the positivity of which is conditioned by that of matrix R, which can depend
on x (see section 2.3 for a simple example and sections 3 and 4 for the Rhodes
piano).

2.2. State-space representation of port-Hamiltonian systems

The governing equations of a physical system relate the flows and the efforts
introduced above. The port-Hamiltonian systems introduced in [10] (see also
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[11, 12, 21]) provide a formulation of such a class of equations for systems that
fulfill the power balance (1) with (2), (3) and (4). A differential state-space
representation is given by (see e.g. [12, eq 2.53]):(

dx
dt
−y

)
︸ ︷︷ ︸

b

= (J(x)−R(x))︸ ︷︷ ︸
M

·
(
∇H(x)

u

)
︸ ︷︷ ︸

a

, (5)

where H is the Hamiltonian, J is a skew-symmetric matrix (Jᵀ = −J for all
x) and R is a positive semidefinite matrix (xᵀRx ≥ 0 for all x). The system
matrices are structured as follows:

J(x) =

(
Jx(x) G(x)
−G(x)ᵀ Jy(x)

)
, R(x) =

(
Rx(x) Rxy(x)
Rxy(x)ᵀ Ry(x)

)
, (6)

with skew-symmetric matrices Jx ∈ RNE×NE and Jy ∈ RNext×Next , positive150

semidefinite matrices Rx ∈ RNE×NE and Ry ∈ RNext×Next , and Rxy such that
R is positive semidefinite.
As mentioned above, the pH system (5–6) fulfills the definition of passivity (see
e.g. [22]), according to the following property.

Property 2.1 (Power Balance). The variation of the total energy E = H
(
x
)

of155

a system governed by (5–6) is given by (1), with total incoming power defined
in (3) and total dissipated power (4).

Proof. From the above definitions, we have a bT= dE
dt −Pext and a bT = −Q since

aᵀMa=−
(
∇H(x)

u

)ᵀ

R

(
∇H(x)

u

)
from skew-symmetry of J.

Remark 1 (Passivity, Lyapunov stability and numerical stability). A main
interest of port-Hamiltonian systems is that they satisfy property 2.1, which
ensures Lyapunov stability steming from passivity. In short, for a state space
representation dx

dt = f(x,u), y = g(x,u) (with dim(u) = dim(y)) and storage

function H, passivity means that dH(x)
dt ≤ yᵀu = Pext. Property 2.1 ensures this

inequality. This implies that if the excitation stops (u = 0 so that Pext = 0), the
storage function H stops increasing. More precisely, E = H(x) is constant in the
conservative case (Q = 0) and it decreases in the dissipative case (Q > 0). In
these cases, the LaSalle invariance principle states that the trajectory t 7→ x(t)
tends toward the maximal invariant subspace S as t→ +∞, with

S = {x ∈ RNE s.t. ∇H(x)ᵀ f(x,u = 0) = 0}. (7)

Then, the Lyapunov theorem ensures the system stability as far as H is positive160

definite (see also [22, §4.1, 4.2 and 6.2] for details). If H is not definite, S
provides the set of reachable asymptotic states. This property can be transfered
to simulations, using the numerical method presented in section 5 that preserves
the power balance in the discrete time domain.
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2.3. Example165

In the sequel, for sake of readability, constant values are denoted
by capital letters.

Consider the linear mass-spring-damper system depicted in figure 3, where grav-
ity is neglected. The mass position is denoted q, with q = 0 the spring equilib-
rium. The system is excited by an external force (fext).170

This system includes NE = 2 storage components, Next = 1 external port
and NQ = 1 dissipative component. The storage components are: mass M

with momentum x1 = d(Mq)
dt and kinetic energy H1(x1) = x21/(2M), and spring

K with elongation x2 = q and potential energy H2(x2) = (Kx22)/2. The ex-
ternal port is made of one input u = eext = fext (external force) and one175

output y = dq
dt . The dissipative component is the damper with dissipated power

QA(x) = H ′1(x1)AH ′1(x1) = A
(
dq
dt

)2
. For the mass, fM = dx1

dt = M d2q
dt2 is the

fictitious force (effort e1) and H′1(x1) = dq
dt is the velocity (flow f1). For the

spring, dx2

dt = dq
dt is the velocity (flow f2) and fK = H′2(x2) = Kq is the restoring

force (effort e2). For the damper, the counteracting force is fA = A dq
dt so that180

the associated effort is eA = AH′1(x1).

Figure 3: Damped harmonic oscillator with excitation.

Applying Newton’s second law to this simple system yields e1
f2
−fext

 =

 −A −1 +1
+1 0 0
−1 0 0

 ·
 f1

e2
eext

 . (8)

From the constitutive laws of components, this equation exactly restores for-
mulation (5–6), block by block. This is summarized in table 1.

3. Models of components

This section presents the multi-physical components that compose each note185

of a Rhodes piano: (h) a hammer in §3.1, (b) a cantilever beam in § 3.2 and (p)
a pickup connected to a RC analog filter in § 3.3. The hammer h is the nonlinear
hysteretic model proposed in [23]. This finite-dimensional system is associated
with a non-quadratic energy and a nonlinear damping. The beam b is a linear
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State:
x =

(
M dq

dt , q
)ᵀ Energy:

H(x) =
x2
1

2M +
Kx2

2

2

Input:
u = fext

Output:
y = dq

dt

J =

 0 −1 +1
+1 0 0
−1 0 0

, R =

 A 0 0
0 0 0
0 0 0

.

Table 1: Port-Hamiltonian formulation (5–6) for the example (8).

damped Euler-Bernoulli model [24], [25, §4.9]. A model order reduction of this190

infinite-dimensional model is derived, based on a standard modal decomposition.
The pickup p is a finite-dimensional nonlinear model [26]. It is composed of one
constant magnetic source (magnet), two linear components that stores energy
(coil and capacitor), one linear resistor and one electrical port that delivers
the output signal (voltage). Contrarily to the hammer, the nonlinearity of the195

pickup only comes from the magnetic flux induced in the coil by the movement
of the beam extremity. The models of these three components prove passive so
that they admit port-Hamiltonian formulations.

3.1. Hammer h

The hammer is composed of a rigid core that is covered by a deformable200

felt. In this paper, its modeling is inspired from that proposed in [23] and
used in e.g. [27, 28, 1] for the acoustic piano. This model describes nonlinear
elastic phenomena (see e.g. [29, 30] for experimental validations) and nonlinear
damping phenomena [31]. This combination yields realistic nonlinear hysteretic
effects that account for the shape memory of the felt.205

Governing equations. Denote qcont(t), qcore(t) and Lh, the position of the contact
point, the top position of the core and the thickness of the felt at rest, respec-
tively, in an inertial frame of reference (see figure 4). For the felt, the crushed
thickness is 0 if qcore(t) + Lh ≤ qcont(t) and is

qh(t) = qcore(t) + Lh − qcont(t) (9)

otherwise, so that the crushed rate is given by

ch(qh) =
max (qh, 0)

Lh

. (10)
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The elastic force fh
elast and the damping force fdamp

h due to the felt are nonlinear
functions of the crush rate given by

fh
elast(ch) = Fh ch

Bh ,

fdamp

h (ch) = AhLh
d(chBh)

dt ,
(11)

where the inertial force of the felt is neglected and parameters are detailed in
table 2. The hammer core can be considered as a mass Mh submitted to the
felt force −(fh

elast + fdamp

h ) and actuated by an external force f core
ext (see [18]). Its

governing equation is

Mh

d2qcore
dt2

= −fhelast
(
ch(qh)

)
− fdamp

h

(
ch(qh)

)
+ f core

ext . (12)

The mobile contact point with velocity vcont
ext = dqcont

dt experiences the reaction210

force fh
elast + fdamp

h so that the force exerted by the contact point on the felt is
f cont
ext = −(fh

elast + fdamp

h ), and the mechanical power provided to the system is
Pcont = f cont

ext v
cont
ext .

Mh

f h
damp

f h
elast

Lh

eq

qcore (t )
qcore (0)

f ext
core

qcont (0)
qcont (t)

Figure 4: Mass-spring-damper model of the hammer and notations.

Port-Hamiltonian formulation. The port Hamiltonian system of the hammer is
derived as in example 2.3. For the mass of the core, the state is the momentum
xh,1 = dMhqcore

dt with associated kinetic energy

Hh,1(xh,1) =
x2h,1
2Mh

. (13)

For a spring, the potential energy is given by Hspring(q) =
∫ q
0
fspring(ξ)dξ. In

example 2.3, the spring is symmetric and linear (fspring(q) = Kq) so that
Hspring(q) = Kq2/2 is quadratic. For the hammer felt, the spring is non-
symmetric (10) and nonlinear (11) so that the associated Hamiltonian Hh,2

10



Label Description Typical value Unit

Mh Total mass 3× 10−2 Kg
Lh Felt thickness at rest 15× 10−3 m
Bh Felt characteristic exponent 2.5 Dimensionless
Fh Elastic characteristic force 13.8 N
Ah Felt damping coefficient 0.184 N.s.m−1

Table 2: Physical parameters for the hammer h. These parameters correspond to typical

values found in [30, 23] or [32, (I.2.2)] with formula fh
elast ≡ Kep, fdamp

h ≡ R
d(ep)
dt

and

e = Lhch, that is, p = Bh = 2.5, K = L−Bh
h Fh = 5 × 105 N.m−2.5 and R = L1−Bh

h Ah = 100
N.s.m−2.5.

is a non-even and non-quadratic function of the state xh,2 = qh:

Hh,2(xh,2) =
LhFh

Bh + 1
ch(xh,2)Bh+1. (14)

The flows and efforts of the system are derived as follows. For the mass,
dxh,1
dt = d2(Mhqcore)

dt2 is the inertial force (effort labeled eh,1) andH′h,1(xh,1) = d
dtqcore

is the velocity (flow labeled fh,1). For the spring,
dxh,2
dt = dqh

dt is homogeneous
to a velocity (flow fh,2) and H′2(xh,2) = fh

elast
(
ch(qh)

)
is the spring force (effort

eh,2). For the damper, the damping force is fdamp

h (qh) = AhLh

Bh
ch(qh)

Bh−1 dqh
dt so

that the effort is edamp = rh(xh,2)
(
H′h,1(xh,1)− vcont

ext

)
with

rh(qh) =
AhLh

Bh

ch(qh)
Bh−1. (15)

The pH system of the hammer has two external ports. One is associated with
the core velocity dqcore

dt (flow fh,3 = fh,1) and the associated external force f core
ext215

(effort eh,3). The other one is associated with the contact point velocity vcont
ext

(flow fh,4) and the associated external force f cont
ext (effort eh,4 = −eh,2 − edamp so

that fh,4 eh,4 is the power provided by the contact point to the system). Inputs
and outputs are chosen to be uh = (eh,3, fh,4), yh = (fh,3, eh,4). This choice
restores the governing equation (12), summarized in table 3.220

3.2. Beam b

In this paper, the standard Euler-Bernoulli modeling of a damped cantilever
beam is used, which results in a linear partial-differential equation (see e.g.
[24]). To cope with numerical realizability, we firstly apply a standard modal
decomposition and recast the resulting set of ordinary differential equations as225

a finite dimensional pH system (see [33] and particularly [34, § 1.3] for infi-
nite dimensional pH description). This contrasts with the finite-element spatial
discretization [35] considered in e.g. [1, 2, 3, 4].
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State:
xh =

(
d
dt (Mhqcore), qh

)ᵀ Energy:
Hh(xh) = Hh,1(xh,1) +Hh,2(xh,2)

Input:
uh = (f core

ext , v
cont
ext )ᵀ

Output:
yh = ( d

dtqcore, f
cont
ext )ᵀ

J =


0 −1 +1 0

+1 0 0 −1
−1 0 0 0

0 +1 0 0

, R =


+rh(xh,2) 0 0 −rh(xh,2)

0 0 0 0
0 0 0 0

−rh(xh,2) 0 0 +rh(xh,2)

.

Table 3: Port-Hamiltonian formulation (5–6) for the hammer (see (9) and (13-15) for defi-
nitions). In this case, the invariant subspace (7) is described by (13–14) with (10), that is,
Sh = {xh ∈ R2 s.t. [xh]1 = 0, [xh]2 ≤ 0}. Inequality [xh]2 ≤ 0 is due to the fact that the ham-
mer position goes to minus infinity with constant velocity ([xh]1 = 0), after it has rebounded
on the contact point.

Euler-Bernoulli modeling. Denoting z ∈ (0, Lb) the spatial coordinate along the
beam, the Euler-Bernoulli modeling [24], [25, §4.9] of transverse deflect q(z, t)
is

Mb∂
2
t q +Ab∂tq +Kb∂

4
zq = fb (16)

where parameters are detailed in table 4. Initial conditions are q(z, 0) = 0 and
∂tq(z, 0) = 0. The configuration space of the deflect q is a Hilbert space
H = L2(0, Lb). The bounded inertia operator and damping operator associated
with (16) are M = Mb I and C = Ab I, respectively, where I denotes the
identity operator. The stiffness operator is Kq = Kb∂

4
zq with domain D(K) =

{q ∈ H4(0, Lb) s.t. q(0) = 0, ∂zq(0) = 0, ∂2zq(Lb) = 0, ∂3zq(Lb) = 0} (H4

denotes the standard Sobolev space), that includes the boundary conditions
for a cantilever beam, namely: (i) no displacement at the base q(0, t) = 0,
(ii) no bending at the base ∂zq(0, t) = 0, (iii) no bending moment at the free
end ∂2zq(1, t) = 0, (iv) no shearing force acting at the free end ∂3zq(1, t) = 0.
Operator K fulfills standard well-posedness properties such as being densely
defined, closed, unbounded and self-adjoint on the Hilbert space H (see [36, §2]
for technical details, [25, §4.9] for the details on the cantilever beam and [37, §4
and 5] for a complete functional setting of the Euler-Bernouilli modeling with
free ends in the port-Hamiltonian formalism). The total mechanical energy is
[38, §7]:

Eb =
1

2

∫ Lb

0

(
Kb

(
∂2zq
)2

+Mb

(
dq

dt

)2
)
dz. (17)

Finite dimensional approximation. The linear boundary value problem (16) ad-
mits an orthogonal basis of eigenfunctions B = {ψm}m∈N∗ on the Hilbert space
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Label Description Typical value Unit

Msteel Mass density 7750 kg.m−3

Esteel Young Modulus 180.109 N.m−2

Rb Radius 10−3 m
Ab Damping coefficient 5.10−2 N.s−1

Fb Tuning frequency 440 Hz
Mb Mass per unit length πR2

bMsteel kg.m−1

Ib Moment of inertia π
4R

4
b m4

Kb Flexural rigidity Esteel Ib N.m2

Lb Length 5.54.10−2 m

Table 4: Fixed and deduced physical parameters for a cylindrical beam b. The moment
of inertia of the cross section is given for a cylindrical shape. The length for the desired
tone ωb = 2π Fb is obtain from a numerical evaluation of (18) with κm = 4

√
ω2
mMb/Kb the

dispersion relation.

H. Functions ψm are the spatial modes, detailed in AppendixA.1. They satisfy
the boundary conditions (i-iv), ∂4zψ(z) = κ4ψ(z) for appropriate wave number κ
and 〈ψm, ψp〉 = δm,p (Kronecker’s symbol) for all (m, p) ∈ N2

∗, where the scalar

product on H is defined by 〈f, g〉 =
∫ Lb

0
f(z)g(z)dz. Wave numbers κm are the

solutions of
cosh(κmLb) cos(κmLb) + 1 = 0, (18)

with increasing modulus with respect to the index m ∈ N∗.230

The force f extb is distributed according to σh(z) = 1
Dh

1(z − zh)[−Dh/2,+Dh/2]

and excites all the eigenmodes of the linear model. For the sound synthe-
sis, we are interested by the eigenfrequencies νm below the Shannon frequency
1

2T (with T the sampling period). Hence, we select the M first modes such
that νM < 1

2T < νM+1. Then, we introduce f = (f1, . . . , fM )ᵀ = Ωf extb with
Ω = 〈σh,Ψ〉 for Ψ = (ψ1, . . . , ψM )ᵀ (see AppendixA.2). The relations satisfied
by the modal displacements qb = 〈q,Ψ〉 are obtained by projecting equation
(16) on truncated basis BM = {ψm}1≤m≤M . This yields the following ordinary
differential equations:

Mb

d2qb

dt2
+Ab

dqb

dt
+KbLqb = f = Ωf extb , (19)

with L = diag(κ41, . . . , κ
4
M ), which rewrites dxb

dt = Axb + Bub with input

ub = f extb , state xb =
(
qᵀ
b ,Mb

dqb

dt

ᵀ
)ᵀ

, B = (0,Ωᵀ)
ᵀ

and

A =

(
0 1

Mb
Id

−KbL − Ab

Mb
Id

)
,

where 0 denotes the null matrix and Id denotes the identity matrix.
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Port-Hamiltonian formulation. The power provided by the external force f extb is
the product of the later with the collocated velocity vextb reconstructed from the
modal velocities vextb = Ωᵀ dqb

dt . This yields to select the output yb = vextb = Bᵀ∇Hb

so that the incoming power is P = yᵀ
bub =

∫ Lb

0
yᵀ
bΨΨTubdz (with ub = f extb ).

From (17) and the modal reconstruction q = qᵀ
bΨ, the total energy of the beam

is the Hamiltonian Hb(xb) = 1
2x

T
b Wxb, with

W =

(
KbL 0

0 Mb
−1Id

)
. (20)

The resulting port-Hamiltonian system is given in table 5.

State:
xb =

(
qb,Mb

dqb

dt

)ᵀ Energy:
Hb(xb) = 1

2x
ᵀ
bWxb

Input:
ub = f extb

Output:
yb = vextb

J =

 0 Id 0
−Id 0 Ω

0 −Ωᵀ 0

, R =

 0 0 0
0 AbId 0
0 0 0

.

Table 5: Port-Hamiltonian formulation (5–6) for the Euler-Bernoulli beam (see (20) for
definition of W). In this case, the invariant subspace (7) is Sb = {0} ⊂ R2M .

3.3. Pickup p

The electromagnetic pickup p includes a magnet (source of constant mag-235

netic field Bmag
p ) and a coil with Ncoil wire turns (sensor for the magnetic field

variation). In this paper, the physical modeling of electric guitar pickups [26]
is adapted to the system depicted in figure 6 (see also the physical model in
[39], and physically inspired signal processing modules in [40, 41]). In short, a
piece of magnetic material (here the beam) changes the spatial distribution of240

the magnetic field due to the magnet only, hence a change to the flux in the coil
φp. Additionally, the coil is connected to a linear RC circuit, so that its total

flux is φcoil = φp + φRC with dφRC

dt = vcoil
Ncoil

(Faraday’s law of induction with coil

voltage vcoil).
245

First, the coil is modeled as a magnetic capacity in the magnetic domain
according to the gyrator-capacitor approach [42, 43]. Second, we recall the
main steps in the derivation of the flux φp from [26] for the system in figure 6.
Third, the coil is connected to the RC circuit and the resulting model is recast
as a port-Hamiltonian system.250
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Magneto-electric transducer. According to the gyrator-capacitor approach de-
tailed in [42, 43], we adopt the magnetic flux variation dφ

dt and the magneto-

motive force h as magnetic flow and effort variables, respectively ( dφ
dt h ≡ P).

This permits to model the coil as a linear magnetic capacity: xcoil = φcoil and
hcoil = H′coil(xcoil) with Hcoil(xcoil) = 1

2Ccoil
x2coil. The connection to the electrical

domain with vcoil the tension and icoil the current trough the coil is obtained
from the combination of Ampere’s theorem (hcoil = Ncoilicoil) and Faraday’s law
(vcoil = Ncoil

dφcoil

dt ), yielding a magneto-electric gyrator with ratio 1
Ncoil

:(
dφcoil

dt ≡ dxcoil

dt
−icoil

)
=

(
0 1

Ncoil

− 1
Ncoil

0

)(
hcoil ≡ H′coil(xcoil)

vcoil

)
. (21)

Notice this connection is conservative: vcoilicoil = hcoil
dφcoil

dt .

Figure 5: Schematic of the pickup connected to the RC circuit, with h0 the constant magne-
tomotive force due to the magnet, fp as in equation (25) and L the magnetic capacitance of
the coil with Ncoil wire turns. The input current is i0 = 0 (high resistive load).

Label Description Typical value Unit

Bp Magnetic field of the magnet π4.10−7 T
U0 Magnetic permeability of vacuum π4.10−7 H.m1

Usteel Magnetic permeability of steel 5.10−3 H.m1

Ccoil Magnetic capacity 3.07.10−5 H
Rp Coil radius 5.10−3 m
Lhor Horizontal decay 10−2 m
Lver Vertical decay 10−3 m
Ncoil Number of wire turns 100 Dimensionless
RRC Electrical resistance 103 Ω
CRC Electrical capacity 33.10−8 F

Urel Relative magnetic permeability of steel Usteel

U0
Dimensionless

Table 6: Physical parameters for the pickup p.

Mechano-magnetic transducer. The two dimensional modeling proposed in [26]
for the electric guitar pickup is recalled thereafter. A vibrating sphere with
radius Ab (same as the beam) is immersed in a constant magnetic induction
field Bmag

p due to the magnet. Since there is no conducting current, the total255

magnetic excitation field is irrotational and derives from a magnetic potential.
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Figure 6: Description of the pickup. qp(t) is the position of the end of the beam measured
from its rest position, Lver is a vertical decay, qc is the position of the center of the magnet
from the origin of the frame associated with the beam, Lhor is the distance between the coil

and the beam, Rp =
a2
c
2

is the radius of the coil.

The magnetization of the sphere with relative magnetic permeability Urel results
in an additional term to the potential due to the magnet only. The integration
of the total magnetic field over the area bounded by a single wire turn yields
the following magnetic flux (see coordinate system and description in figure 6):260

φp = 4Bmag

p R2
p

(
4R3

p∆U

(
fφ
(
− (qp + Lver)

)
+ fφ

(
qp + Lver

))
− 1

)
,(22)

fφ(qp) =
qp +Rp

L2
hor + (qp +Rp)2

, (23)

where qp(t) is the vertical displacement measured from rest position defined as
(Lhor, Lver) and ∆U = Urel−1

Urel+1 . The induced tension depends on the flux variation,
which reads

dφp
dt

= fp

(
qp,

dqp
dt

)
Hmag

p (24)

fp

(
qp,

dqp
dt

)
= 2a2bU0∆URp

(
f1(qp)− 2L2

hor

f21 (qp)
− f2(qp)− 2L2

hor

f22 (qp)

)
dqp
dt

(25)

f1(qp) = (qp −Rp + Lver)
2 + L2

hor, (26)

f2(qp) = (qp +Rp + Lver)
2 + L2

hor. (27)

Notice the movement of the sphere is not affected by the magnetic field. Finally,
the system composed of the magnet, the coil and the moving sphere is modeled

as a constant source of magneto-motive force Hmag
p =

Bmag
p

U0
, connected to a

gyrator modulated by the sphere position and velocity:(
dφp

dt

− dφmag
0

dt

)
=

(
0 fp
−fp 0

)(
hcoil

Hmag
p

)
. (28)
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Port-Hamiltonian modeling. The port-Hamiltonian modeling of the pickup con-
nected to the RC circuit is made of two storage components (magnetic and elec-265

tric capacitances with magnetic flux φcoil and electric charge qC as respective
states), one resistive element (electric resistance RRC) and two ports (constant
magnetomotive force due to the magnet Hmag

p and zero input current [39]), as
depicted in figure 5. The nonlinearity of this system is only due to the modu-
lating coefficient fp in gain matrix G. The resulting port-Hamiltonian system270

is given in table 7 (see also figure 5), with parameters in table 6.

State:
xp = (φcoil, qC)

ᵀ
Energy:

Hp(xp) = 1
2x

ᵀ
pdiag(Ccoil, CRC)xp

Input:
up = (Hmag

p , i0)ᵀ
Output:

yb = (
dφmag

0

dt , v0)ᵀ

J =


0 − 1

Ncoil
fp

(
qp,

dqp
dt

)
0

1
Ncoil

0 0 1

−fp
(
qp,

dqp
dt

)
0 0 0

0 −1 0 0

,

R =


RRC

Ncoil
2 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

.

Table 7: Port-Hamiltonian formulation (5–6) for the pickup p, with φcoil the magnetic flux in
the coil, qC the charge of the capacitor, Hmag

p the magnetomotive force imposed by the magnet
and v0 the output voltage (see figure 5). The expression for fp is given in equation (25), with
qp the reconstruction of deflect measured at the beam free end (z = Lb). In this case, the
invariant subspace (7) is Sp = {0} ⊂ R2.

4. Complete system

In this section we derive the global port-Hamiltonian modeling of the system
(h, b, p) from the interconnection of the elementary pH systems derived in section
3. First we connect the mechanical components (h, b) and second the pickup275

which is not energetically but geometrically coupled to the former part. Notice
the connection of two pH systems is again a pH system (see [44]). The total
state is the concatenation of the subsystems states, and the total Hamiltonian
is the sum of the subsystems Hamiltonians. A conservative interconnection is
then achieved by connecting each port of one system to exactly one port of the280

other.
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The connection of the hammer with the beam is as follows. The velocity
of the contact point vcont

ext that corresponds to the second input of the hammer
(see table 3) is the reconstruction of the beam velocity vextb , that is, the output
of the beam (see table 5): vcont

ext = (0,Ωᵀ)∇Hb(xb). Correspondingly, the input
force of the beam is the force experienced by the contact point of the hammer
f extb = −f cont

ext . This yields the following relations (see tables 3 and 5):{
[uh]2 = [yb]1 = (0,Ωᵀ)∇Hb(xb),
[ub]1 = −[yh]2 = (rh(xh,2), 1)∇Hh(xh)− rh(xh,2) (0,Ωᵀ)∇Hb(xb).

(29)
Notice this yields a passive interconnection in the sense that the power lost
by the hammer is exactly that received by the beam [ub]1 [yb]1 = −[uh]1 [yh]1.
The connection (29) is then replaced in the diagonal concatenation of structure
matrices J and R from tables 3 and 5.285

As already stated, the mechanical part is not energetically coupled to the
electromagnetic part, and the complete modeling is obtained by concatenating
the interconnection (h, b) with the pickup p. The arguments of the modulation

coefficient fp

(
qp,

dqp
dt

)
(see table 7) is obtained from the reconstruction of the290

movement of the beam free end with qp = q(Lb). Finally, the port-Hamiltonian
modeling of the system depicted in figure 2 is given in table 8.

5. Guaranteed passive numerical method

Numerous numerical methods have been developed to simulate dynamical

systems governed by dx(t)
dt = f(x(t), t), to approximate the solution x(tk), on

e.g. a regular grid defined by tk = kT , k ∈ Z. Many of these methods are based
on an approximation of d

dt and exploit the vector field f at specific instants
t ∈ [tk, tk+1], but do not preserve passivity. This section introduces a method
that preserves the power balance (1) in the discrete time-domain, so that a
numerical power balance holds:

E(tk+1)− E(tk)

T
= −Q(tk) + Pext(tk). (30)

The approach presented below is known as the discrete gradient method intro-
duced for classical Hamiltonian systems in [45] (see also [46, 47] and [48, §4.3]).295

5.1. Numerical scheme

Standard first order approximation of the differentials dx(t, dt)= dx
dt (t) · dt

and dH(x, dx)=∇H(x)ᵀ · dx are given by δx(tk)=x(tk+1)−x(tk), and δH
(
x, δx

)
=

H
(
x + δx

)
−H

(
x
)

= ∇dH
(
x, δx

)ᵀ · δx, respectively. For mono-variate storage

components with H
(
x(tk)

)
=
∑NE
n=1Hn

(
xn(tk)

)
(this is the case for the system
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State:
x = (xᵀ

h ,x
ᵀ
b ,x

ᵀ
p )ᵀ

Energy:
H(x) = Hh(xh) +Hb(xb) +Hp(xp)

Input:
u = (f core

ext , H
mag
p , i0)ᵀ

Output:

y = ( dqh
dt ,

dφmag
0

dt , v0)ᵀ

Jx =



0 −1 0 0 0 0
1 0 0 −Ωᵀ 0 0
0 0 0 Id 0 0
0 Ω −Id 0 0 0
0 0 0 0 0 − 1

Ncoil

0 0 0 0 1
Ncoil

0

, G =


1 0 0
0 0 0
0 0 0
0 0 0
0 fp(qp,

dqp
dt ) 0

0 0 1

,

Rx =


rh(xh,2) 0 0 −rh(xh,2)Ωᵀ 0 0

0 0 0 0 0 0
0 0 0 0 0 0

−rh(xh,2)Ω 0 0 AbId + Ωrh(xh,2)Ωᵀ 0 0
0 0 0 0 RRC

N2 0
0 0 0 0 0 0

.

Table 8: Port-Hamiltonian formulation (5–6) for the complete system (h, b, p,RC) (see ta-
bles 3, 5 and 7 for definitions), where unspecified matrices are zeros. Here, the invariant sub-
space (7) is the union of the invariant sets of the components so that Srhodes = Sh×Sb×Sp =
{x ∈ R2+2+2M s.t. [x]2 ≤ 0, [x]i = 0, i 6= 2}, that is, the hammer goes to minus infinity
with constant velocity after it has rebounded on the beam, and the latter with pickup circuit
return to equilibrium.

described in table 8), a discrete gradient is introduced and defined by

[∇dH
(
x(tk), δx(tk)

)
]n =

{
Hn
(
xn(tk)+δxn(tk)

)
−Hn

(
xn(tk)

)
δxn(tk)

if δxn(tk) 6= 0,

H′n
(
xn(tk)

)
otherwise,

(31)
so that a discrete chain rule is recovered

δE
(
tk
)

T
= ∇dH

(
x(tk), δx(tk)

)ᵀ δx(tk)

T
. (32)

Then, applying the following substitution in (5–6)

dx(tk)
dt → δx(tk)

T ,
∇H

(
x(tk)

)
→ ∇dH

(
x(tk), δx(tk)

)
≡ ∇dHk,

(33)
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leads to(
∇dHk
u(tk)

)ᵀ( δx(tk)
δt

−y(tk)

)
= ∇dHᵀ

k

δx(tk)

δt︸ ︷︷ ︸
δE(tk)

T

−u(tk)ᵀ y(tk)︸ ︷︷ ︸
Pext(tk)

= −
(
∇dHk
u(tk)

)ᵀ

R
(
x(tk)

)( ∇dHk
u(tk)

)
︸ ︷︷ ︸

Q(tk)

(34)

(same as proof of property 2.1). For a conservative system (R = 0, G = 0,
Jy = 0), this method yields δE(tk) = 0 so that E(tk+1) = E(tk) (the energy is
conserved). For a passive system (R 6= 0, G 6= 0, Jy 6= 0), this method restores
a discrete version of property 2.1 so that observations of remark 1 holds. Notice300

the invariant set Srhodes is the same as in the continuous time domain (see
caption of table 8).
The associated update is

x(tk+1) = x(tk) + δx(tk), (35)

δx(tk) = T (Jx −Rx) ∇dH(x(tk), δx(tk)) + T (G−Rxy) u(tk), (36)

y(tk) = (G + Rxy)
ᵀ ∇dH(x(tk), δx(tk))− (Jy −Ry) u(tk) (37)

where state-dependent matrices are evaluated at x(tk), and the implicit relation
on δx(tk) is solved at each time step by a fixed number of Newton-Raphson305

iterations. Notice the Rhodes model in table 8 includes a single nonlinear storage
component (spring effect associated with the hammer felt). In this case, the
Newton-Raphson algorithm only requires the inversion of a scalar function, that
allows real-time applications.

5.2. Convergence analysis310

Although the discrete power balance ensures the asymptotic stability of the
numerical solution, it does not provide information on the convergence of the
sequence x(tk) to the continuous solution. From Lax’s theorem, convergence
holds provided (i) the method is consistent with the system (5–6) and (ii) the
total error can be bounded (stability of the method). From [49, (3), §4.2], the
method that yields the slope σ(tk) = δxk

T is consistent if and only if

lim
T→0

σ(tk, T ) = f(x(tk), tk). (38)

Assuming that H satisfies a Lipschitz condition (this is the case for the system
in table 8), the discrete gradient is consistent with the continuous gradient:

lim
‖δx‖2→0

∇dH(x, δx) = ∇H(x). (39)

Now, provided the structure matrices J(x) and R(x) are bounded (this is the
case for the system in table 8), the slope σ(tk) is bounded so that limT→0 δx(tk) =
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0. This proves the numerical method is consistent up to order 1. Additionally,
the method (33) proves stable (in the sense that the total error due to the
accumulation of round-off and truncation errors is bounded) from the Lips-315

chitz property of the Hamiltonian H and the structure matrices (see [49, the-
orem 4.1]). This proves the convergence of the discrete gradient method for
port-Hamiltonian systems (5–6).

Remark 2 (Second order). Order 2 is achieved for constant matrices J and R,
and can be recovered for non constant structure with an additional computation320

step of Runge-Kutta type (see [15] for details).

Remark 3 (Coincidence with the midpoint rule). For port-Hamiltonian sys-
tems composed of a collection of linear energy storing components with quadratic

Hamiltonian Hn(xn) =
x2
n

2Cn
, we define Q = diag(C1 · · ·CNE )−1 so that the dis-

crete gradient (31) reads

∇dH
(
x,x + δx

)
= Q

(
x(k) + δx(k)

2

)
. (40)

For a constant structure, this restores the midpoint rule δxk
T = f

(
xk+xk+1

2

)
that

coincides in this case with the trapezoidal rule δxk
T = f(xk)+f(xk+1)

2 . However,
for nonlinear cases, (31) leads to a class of numerical schemes depending on
the nonlinearity, still preserving passivity. In these cases, the discrete gradient325

approach does not coincide anymore with the midpoint rule, which also does not
coincides anymore with the trapezoidal rule.

6. Results

In this section, the numerical scheme (33) is applied on the modeling pre-
sented in section 4. The sample rate is T−1 = 48kHz. Physical parameters are330

given in tables 2, 4 and 6. They are chosen to correspond to the musical note
A4 (440Hz). The basis of eigenmodes is truncated so that the highest eigenfre-
quency is below the Nyquist frequency, which yields M = 4 modes for note A4
at 48kHz. The corresponding eigenfrequencies are ν1 = 440Hz, ν2 ' 2757.49Hz,
ν3 ' 7721.07Hz and ν4 ' 15130.22Hz (see § 3.2 and appendix AppendixA.1).335

Audio example are available here2. The input force f core
ext is comprised between

0 and 103N, during 1ms. A simple exhaust mechanism is included (not shown
in tables 3 and 8) with f core

ext = 0 if qh > −0.5cm.

6.1. Mechanical energy
The dynamics of the hammer is shown in figure 7 for f core

ext = 500N. We see it340

accelerates between 1ms and 2ms and impacts the beam at ti ' 2.5ms. During
the impact, a part of the energy transferred from the hammer to the beam is
dissipated (see figure 8a). The energy in the beam is shown in figure 8b. We
see that a numerical energy balance is fulfilled.

2http://recherche.ircam.fr/anasyn/falaize/applis/rhodes/index.html
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Figure 7: Position, velocity and acceleration of the hammer.

(a) Mechanical energy at impact. (b) Mechanical energy after impact.

Figure 8: Evolution of the mechanical energy. Eb is the energy of the beam, Ediss is the dissi-
pated energy

∫
Qdt, Eh is the increment on the energy of the hammer Hh(xh(t))−Hh(xh(t0))

with t0 the impact moment and ∆E is the energy balance Eb + Eh + Ediss.

6.2. Electromagnetic energy345

The source of constant magnetomotive force is modulated according to sec-
tion 3.3. Note such a source can be locally a sink of power, as seen in figure 9
where the power passes slightly under 0W. Again, the numerical error on the
power balance is close to the machine epsilon.
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Figure 9: (Simulation) Power balance for the electro-magnetic part (pickup and RC ana-

log circuit) with energy variation
dEp
dt

= ∇Hᵀ
p
dxp

dt
, dissipated power Qp = RRC

Ncoil
2 [∇Hp]21,

source power Pp = uᵀ
pyp (see table 7), and deviation on the power balance ∆Pp =(

dEp
dt

+Qp − Pp
)
/〈Pp〉, relative to the the mean source power 〈Pp〉 ' 10−4W for the five

periods shown in the figure.

6.3. Output signal350

The output voltage υ0 is proportional to the beam free-end velocity multi-
plied by a nonlinear function of the position qp = q(z = Lb) given by (25). Since
the beam modeling is linear (see section 3.2), this transduction mechanism is
the only one that is responsible for the characteristic Rhodes piano tones, as
noticed in [19, 20]. Figure 10 displays the displacement and the velocity of the355

beam free-end as well as the output voltage υ0 (see figure 5 and tables 7 and 8).
These signals have been computed for f core

ext = 500N (note A4). We can notice in
figure 10b that higher modes of the resonator are not extensively excited, and
that the distinctive evolution of the tone is due to the pickup only.

6.4. Comparison with measurements360

The physical modeling approach to sound synthesis provides an easy tuning
of the model parameters to simulate a given device. This has been done based
on measurements provided by UVI3, a company specialized in building sample-
based real-time synthesizers of musical instruments. A rough comparison of
spectrograms for increasing hammer force (from 100N to 1000N in the pH model)365

is shown in figure11. A detailed comparison of the normalized waveforms in
the cases force 1, force 4 and force 7 is given in figure 12.

3http://www.uvi.net/
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(a) Reconstruction of beam displacement and velocity at
the beam free end z = Lb, and output voltage υ0.
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(b) Normalized spectra obtained from fast Fourier trans-
form on 211 samples with overlap ratio 50%.

Figure 10: (Simulation) Displacement qp = q(z = Lb) and velocity
dqp
dt

of the free end of the
beam, and corresponding output voltage υ0 that results from the pickup non-linearity (25).

6.5. Playing with the model

According to the Fender Rhodes manual, the position of the pickup with
respect to the beam’s axis has a critical effect on the resulting timbre and tran-370

sients of the output voltage. This can be easily verified in our simulations.
Results for the horizontal Lhor and vertical alignment Lver prove in good accor-
dance with predicted behaviors as shown in figures 13.

7. Conclusions

In this paper, a nonlinear finite-dimensional model of a simplified electro-375

mechanical piano has been developed, based on a set of elementary components
(hammer, beam and pickup), in the framework of port Hamiltonian systems.
This formalism splits the system into conservative, dissipative and source parts.
A numerical method has been derived, which preserves this decomposition and
the power balance in the discrete time domain. The analysis of numerical results380

proves the relevancy of the method: first, the analysis of the power exchanges
and of the total energy shows that passivity is fulfilled; second, the numerical
scheme proves compatible with real-time purposes; third, results are consistent
with measurements on a real device.

385

Several model sophistications and refinements could be considered in per-
spectives of this work, some of which are listed thereafter in order of importance
with respect to the sound realism. First of all is the modeling of both prongs
for the resonator (elements 7–13 in figure 1) with their energy transfer. This
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Figure 11: Spectral densities for the reference (upper) and simulation (middle), and normalized
output voltages (lower). See figure 12 for a detailed comparison of waveforms in the cases force
1, force 4 and force 7. The dynamics for the spectrograms is 100dB, which is perceptively
relevant for audio applications. We see the recorder tones (upper) exhibits additional spectral
content, mostly on the band [1–2]kHz. This could come from the double polarization of the
beam movement or from the coupling with the tone bar, that are not taken into account in
the proposed model. The low frequency content is associated with external noise induced in
the recorded signals. Finally, we see the model could benefit from an eigenmode dependent
damping coefficient Ab ≡ [Ab,m]1≤m≤M to fit with the decay of partials in the recorded tones.

should directly impact the transient and damping of output signal, as pointed390

out in [19]. Another critical element for playing with the instrument is the
damper module (elements 16–18 and 22–25 in figure 1), which permits to control
the duration of the vibration. The modeling of the hammer felt can be reused to
address this issue. A less critical refinement is concerned with the movement of
the tine that is not perfectly planar, thus inducing polarization effects that can395

appear in the output signal. This leads to consider a three-dimensional model
for the tine vibration, and to adapt the pickup model accordingly. Additionally,
the shear stress due to the deflect of the tine should be included; it does not
seem to be necessary to describe torsion nor compression waves, due to (i) the
filiform geometry and (ii) the axial excitation mechanism. The hammer model400

could be complemented by modeling the key action mechanism (see [50] and
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Figure 12: Comparison with reference signals (see figure 11 for correspondence of forces).

references therein), and the hammer felt model could be refined so as to exhibit
a realistic asymptotic behavior (that is, the felt can not be infinitely crushed).
Least of all, the mechano-electric transducer could be refined to include the
energetic exchange due to the coupling between the beam and the magnetic405

field, by considering the Maxwell force. This should not alter the output signal
except for increasing the damping; this point is to consider only in view of a
comprehensive multi-physical model.

A second perspective is to look for a method to extract the physical param-
eters from the measurements, in order to increase the sound realism. A third410

perpective is to examine second order explicit numerical schemes (see e.g. [15])
to improve accuracy and reduce the computational cost. Finally, a playable
instrument plugin could be developed based on C++ implementation.
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(a) With Lver = 0.5mm and Fh = 500N. (b) With Lhor = 1mm and Fh = 250N.

(c) Guide for tuning the distance Lhor. (d) Guide for tuning the distance Lver

Figure 13: Effect of vertical alignment Lver and horizontal distance Lhor on the output signal
v0.
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AppendixA. Modal decomposition420

AppendixA.1. Orthonormal basis

The spatial eigenvectors ψm(z) which satisfy the boundary conditions of
the cantilever beam (i-iv), ∂4zψ(z) = κ4ψ(z) and 〈ψm, ψp〉 = δm,p (Kronecker’s
symbol) for all (m, p) ∈ N2

∗, where the scalar product on L2(0, Lb) is defined by

〈f, g〉 =
∫ Lb

0
f(z)g(z)dz are

ψm(z) = γm ψ̂m(z)

ψ̂m(z) = θm (sinκmz − sinhκmz)+cosκmz−coshκmz
(A.1)
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for the normalizing coefficient

γm =
(
κmLb(cos 2κmLb+cosh 2κmLb−2)

2κm(cosκmLb+coshκmLb)2

coshκmLb(2 sinκmLb+coshκmLb sin 2κmLb)
2κm(cosκmLb+coshκmLb)2

) 1
2

,
(A.2)

with cos(κmLb) coshκmLb + 1 = 0 and θm = sin(κmLb)−sinh(κmLb)
cos(κmLb)+cosh(κmLb)

.

AppendixA.2. Projection

The projection of a point force f extb located at zh and distributed according
to σh(z) = 1(z − zh)[−Dh/2,+Dh/2] on the truncated basis B = {ψm}1≤m≤M is
Ωf extb with

am =
√

2
κm

[
2 sin

(
Ch

κm
2

) (
cos
(
κm(Lb − zh)

)
+ cos(κm zh) cosh(κm Lb)

− sin(κm zh) sinh(κm Lb))− 2 sinh
(
Ch

κm
2

) (
cosh

(
κm(Lb − zh)

)
+ cos(κm Lb) cosh(κm zh) + sin(κm Lb) sinh(κm zh))]

bm = κm Lb

(
cos(2κm Lb)− 2 + cosh(2κm Lb)

)
− cosh(κm Lb)(2 sin(κm Lb) + cosh(κm Lb) sin(2κm Lb))

[Ω]m = am√
bm

(A.3)
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[5] V. Välimäki, J. Pakarinen, C. Erkut, M. Karjalainen, Discrete-time mod-
elling of musical instruments, Reports on progress in physics 69.

[6] S. Petrausch, Block based physical modeling, Ph.D. thesis, Ph. D. disser-
tation, University of Erlangen Nuremberg (2007).440

[7] A. Fettweis, Wave digital filters: Theory and practice, Proceedings of the
IEEE 74 (2) (1986) 270–327.

28



[8] J. O. Smith, Physical modeling using digital waveguides, Computer music
journal (1992) 74–91.

[9] A. Fettweis, Pseudo-passivity, sensitivity, and stability of wave digital fil-445

ters, Circuit Theory, IEEE Transactions on 19 (6) (1972) 668–673.

[10] B. Maschke, A. J. Van Der Schaft, P. C. Breedveld, An intrinsic hamiltonian
formulation of network dynamics: Non-standard poisson structures and
gyrators, Journal of the Franklin institute 329 (5) (1992) 923–966.

[11] A. van der Schaft, Port-Hamiltonian systems: an introductory survey, in:450

Proceedings of the International Congress of Mathematicians, Madrid, Au-
gust 22–30, 2006, 2007, pp. 1339–1365.

[12] V. Duindam, A. Macchelli, S. Stramigioli, H. Bruyninckx, Modeling and
Control of Complex Physical Systems: The Port-Hamiltonian Approach,
Springer Science & Business Media, 2009.455

[13] J. E. Marsden, T. Ratiu, Introduction to mechanics and symmetry: a ba-
sic exposition of classical mechanical systems, Vol. 17, Springer Science &
Business Media, 2013.
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