S. Bilbao, Sound Synthesis and Physical Modeling In Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics, 2009.

S. Bilbao, Conservative numerical methods for nonlinear strings, The Journal of the Acoustical Society of America, vol.118, issue.5, pp.3316-3327, 2005.
DOI : 10.1121/1.2046787

J. Chabassier and P. Joly, Energy preserving schemes for nonlinear Hamiltonian systems of wave equations: Application to the vibrating piano string, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.45-48, pp.2779-2795, 2010.
DOI : 10.1016/j.cma.2010.04.013

URL : https://hal.archives-ouvertes.fr/inria-00534473

V. Välimäki, J. Pakarinen, C. Erkut, and M. Karjalainen, Discrete-time modelling of musical instruments, Reports on Progress in Physics, vol.69, issue.1, pp.1-78, 2006.
DOI : 10.1088/0034-4885/69/1/R01

S. Petrausch and R. Rabenstein, Interconnection of state space structures and wave digital filters, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.52, issue.2, pp.90-93, 2005.
DOI : 10.1109/TCSII.2004.840286

D. T. Yeh and . Smith, Simulating guitar distortion circuits using wave digital and nonlinear state-space formulations, Proceedings of the 1st International Conference on Digital Audio Effects (DAFx'08), pp.1-4, 2008.

A. Fettweis, Wave digital filters: Theory and practice, Proc. IEEE 1986, pp.270-327
DOI : 10.1109/PROC.1986.13458

A. Sarti and G. De-poli, Toward nonlinear wave digital filters, IEEE Transactions on Signal Processing, vol.47, issue.6, pp.1654-1668, 1999.
DOI : 10.1109/78.765137

F. Pedersini, A. Sarti, and S. Tubaro, Block-wise physical model synthesis for musical acoustics, Electronics Letters, vol.35, issue.17, pp.1418-1419, 1999.
DOI : 10.1049/el:19990933

J. Pakarinen, M. Tikander, and M. Karjalainen, Wave digital modeling of the output chain of a vacuum-tube amplifier, Proceedings of the 12th International Conference on Digital Audio Effects (DAFx'09), pp.1-4, 2009.

D. Paiva, R. C. Pakarinen, J. Välimäki, V. Tikander, and M. , Real-time audio transformer emulation for virtual tube amplifiers, EURASIP J. Adv. Signal Process, pp.1-15, 2011.

A. Fettweis, Pseudo-passivity, sensitivity, and stability of wave digital filters, IEEE Transactions on Circuit Theory, vol.19, issue.6, pp.668-673, 1972.
DOI : 10.1109/TCT.1972.1083555

S. Bilbao, J. Bensa, and R. Kronland-martinet, The wave digital reed: A passive formulation, Proceedings of the 6th International Conference on Digital Audio Effects (DAFx-03), pp.8-11, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00088909

T. Schwerdtfeger and A. Kummert, A multidimensional approach to wave digital filters with multiple nonlinearities, Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), pp.1-5, 2014.

K. J. Werner, V. Nangia, A. Bernardini, J. O. Smith, and A. Sarti, An Improved and Generalized Diode Clipper Model for Wave Digital Filters, Proceedings of the 139th Convention of the Audio Engineering Society (AES), 2015.

H. K. Khalil, Nonlinear Systems, 2002.

I. Cohen and T. Helie, Real-time simulation of a guitar power amplifier, Proceedings of the 13th International Conference on Digital Audio Effects (DAFx-10), pp.6-10, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00631752

D. T. Yeh, J. S. Abel, and . Smith, Automated Physical Modeling of Nonlinear Audio Circuits For Real-Time Audio Effects—Part I: Theoretical Development, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.4, pp.728-737, 2010.
DOI : 10.1109/TASL.2009.2033978

G. Borin, G. De-poli, and D. Rocchesso, Elimination of delay-free loops in discrete-time models of nonlinear acoustic systems, IEEE Transactions on Speech and Audio Processing, vol.8, issue.5, pp.597-605, 2000.
DOI : 10.1109/89.861380

T. Hélie, Lyapunov stability analysis of the Moog ladder filter and dissipativity aspects in numerical solutions, Proceedings of the 14th International Conference on Digital Audio Effects DAFx-11, pp.19-23, 2011.

B. M. Maschke, A. J. Van-der-schaft, and P. C. Breedveld, An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators, Journal of the Franklin Institute, vol.329, issue.5, pp.923-966, 1992.
DOI : 10.1016/S0016-0032(92)90049-M

A. J. Van-der-schaft, Port-Hamiltonian systems: an introductory survey, Proceedings of the International Congress of Mathematicians, pp.22-30, 2006.
DOI : 10.4171/022-3/65

S. Stramigioli, V. Duindam, and A. Macchelli, Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach, 2009.

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 1999.

T. Itoh and K. Abe, Hamiltonian-conserving discrete canonical equations based on variational difference quotients, Journal of Computational Physics, vol.76, issue.1, pp.85-102, 1988.
DOI : 10.1016/0021-9991(88)90132-5

B. D. Tellegen, A general network theorem, with applications, Philips Res. Rep, vol.7, pp.259-269, 1952.

C. A. Desoer and E. S. Kuh, Basic Circuit Theory, 2009.

D. Karnopp, Power-conserving transformations: physical interpretations and applications using bond graphs, Journal of the Franklin Institute, vol.288, issue.3, pp.175-201, 1969.
DOI : 10.1016/0016-0032(69)00246-8

P. C. Breedveld, Multibond graph elements in physical systems theory, Journal of the Franklin Institute, vol.319, issue.1-2, pp.1-36, 1985.
DOI : 10.1016/0016-0032(85)90062-6

A. Falaize and T. Hélie, Guaranteed-passive simulation of an electro-mechanical piano: A port-Hamiltonian approach, Proceedings of the 18th International Conference on Digital Audio Effects (DAFx), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01245613

A. Falaize, N. Lopes, T. Hélie, D. Matignon, and B. Maschke, Energy-balanced models for acoustic and audio systems: A port-Hamiltonian approach, Proceedings of the Unfold Mechanics for Sounds and Music, pp.11-12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01156711

A. Vladimirescu, The SPICE Book, 1994.

D. Carmo and M. P. , Differential Geometry of Curves and Surfaces, p.131, 1976.

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2006.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2010.

E. Jones, E. Oliphant, P. Peterson, and . Scipy, Open Source Scientific Tools for Python, function scipy.optimize.root. Available online, 2016.

A. Falaize, A comparison of numerical methods Available online: http://recherche.ircam.fr/anasyn/ falaize, 2016.

D. T. Yeh, Automated Physical Modeling of Nonlinear Audio Circuits for Real-Time Audio Effects—Part II: BJT and Vacuum Tube Examples, IEEE Transactions on Audio, Speech, and Language Processing, vol.20, issue.4, pp.1207-1216, 2012.
DOI : 10.1109/TASL.2011.2173677

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, p.26, 2008.

M. Holters and U. Zölzer, Physical Modelling of a Wah?Wah Effect Pedal as a case study for Application of the nodal DK Method to circuits with variable parts, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx-11), pp.19-23, 2011.

A. Falaize-skrzek and T. Hélie, Simulation of an analog circuit of a wah pedal: A port-Hamiltonian approach, Proceedings of the 135th Convention of the Audio Engineering Society, pp.17-20, 2013.

T. Steinberg-media and . Gmbh, Virtual Studio Technology Available online, 2016.

R. Ltd, The JUCE framework Available online: http://www.juce.com (accessed on 22, 2016.

A. Falaize, Companion web-site to the present article entitledPassive Guaranteed Simulation of Analog Audio Circuits: A port-Hamiltonian Approach Available online: http://recherche.ircam.fr/anasyn, 2016.

S. Aoues, Schémas d'intégration dédiés à l'étude, l'analyse et la synthèse dans le formalisme Hamiltonien à ports This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http, pp.32-35, 2014.