
HAL Id: hal-01390384
https://hal.science/hal-01390384

Preprint submitted on 1 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparative Review on Sleep Stage Classification
Methods in Patients and healthy Individuals

Reza Boostani, Foroozan Karimzadeh, Mohammad Torabi-Nami

To cite this version:
Reza Boostani, Foroozan Karimzadeh, Mohammad Torabi-Nami. A Comparative Review on Sleep
Stage Classification Methods in Patients and healthy Individuals. 2016. �hal-01390384�

https://hal.science/hal-01390384
https://hal.archives-ouvertes.fr


A Comparative Review on Sleep Stage Classification Methods in Patients and healthy
Individuals

Reza Boostania, Foroozan Karimzadehb∗, Mohammad Torabi-Namic

a,b Department of Computer Science and Information technology, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
c Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.

boostani@shirazu.ac.ir , torabinami@sums.ac.ir
∗ Corresponding author: Tel: +987136474605, E-mail: f.karimzadeh@cse.shirazu.ac.ir

Abstract

Background and objective: Proper scoring of sleep stages can give clinical information on diagnosing patients with sleep disor-
ders. Since traditional visual scoring of the entire sleep is highly time-consuming and dependent to experts’ experience, automatic
schemes based on electroencephalogram (EEG) analysis are broadly developed to solve these problems. This review presents an
overview on the most suitable methods in terms of preprocessing, feature extraction, feature selection and classifier adopted to
precisely discriminate the sleep stages.

Methods: This study round up a wide range of research findings concerning the application of the sleep stage classification. The
fundamental qualitative methods along with the state-of-the-art quantitative techniques for sleep stage scoring are comprehensively
introduced. Moreover, according to the results of the investigated studies, five research papers are chosen and practically imple-
mented on a well-known public available sleep EEG dataset. They are applied to single-channel EEG of 20 subjects containing
equal number of healthy and patient individuals. Feature extraction and classification schemes are assessed in terms of accuracy
and robustness against noise. Furthermore, an additional implementation phase is added to this research in which all combinations
of the implemented features and classifiers are considered to find the best combination for sleep analysis.

Results: According to our achieved results on both groups, entropy of wavelet coefficients along with random forest classifier
are chosen as the best feature and classifier, respectively. The mentioned feature and classifier provide 88.66% accuracy on healthy
subjects and 66.96% on patient group. Therefore, it can be claimed that continuous wavelet features and random forest provide the
best result on this dataset.

Conclusions: In this paper, the road map of EEG-base sleep stage scoring methods is clearly sketched. Implementing the state-
of-the-art methods and even their combination on both healthy and patient datasets indicates that although the accuracy on healthy
subjects are remarkable, the results for the main community (patient group) by the quantitative methods are not promising yet.
The reasons rise from adopting non-matched sleep EEG features from other signal processing fields such as communication. As a
conclusion, developing sleep pattern-related features deem necessary to enhance the performance of this process.

Keywords: Sleep stage classification, wavelet transform, random forest classifier, entropy.

1. Introduction

Sleep covers almost one third of human lifespan. Due to the
direct relationship among sleep quality and humans’ physical
and mental performance, sufficient night sleep is crucial. As
a result of machinery and stressful life, sleep disturbance is in-
creasing in modern societies. In addition, research findings sug-
gest that several psychological and neurological disorders can
deteriorate normal sleep patterns [1]. According to the inter-
national classification of sleep disorders (ICSD-II) criteria [2],
eighty four different sleep disorders are defined. Sleep disor-
ders not only cause a reduction in physical performance during
the day, but also leave negative effects on cognitive functions
such as attention, learning and memory, in long-term [3]. For
instance, beside the significant side effects of obstructive sleep
apnea syndrome (OSAS) including the increased risk of cardio-
vascular diseases; neurocognitive declines and excessive day-

time are considered as potential consequences [3].

To achieve the right diagnosis and treatment based on the var-
ious biological records, accurate sleep scoring is deemed to be
a crucial part of the process. Up to now, the conventional visual
scoring method is still the most acceptable approach, though it
involves visual data interpretation of different signals [4]. Qual-
itative scoring, however, subject to some pitfalls including ex-
perts’ experience which might result in different scoring results
by different experts [5, 6]. In an optimistic view, the agree-
ment between the obtained results by two experts, in average,
is 83 ± 3 % [7] which is not convincing. In addition, visual
inspection is a time-consuming process for a whole night EEG
labeling. Therefore, automatic scoring is deemed to be an effi-
cient approach [8, 9].

Several research teams have recently proposed various meth-
ods to automate the process of sleep classification (sleep scor-
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ing). Several signal processing techniques along with machine
learning algorithms are adopted to obtain useful information
from biological signals [10]. Such methods are divided into
two categories, i.e. multi-channel and single-channel process-
ing. In the former approach, the combination of various biologi-
cal signals such as multi-channel EEG signals, electromyogram
(EMG) [11] and electrooculogram (EOG) are utilized to extract
informative features [12, 13, 14, 15, 16, 17, 18]. While the use
of multi-channel signals leads to the higher performance [19],
it imposes a considerable cost to patients, especially in home
sleep testing [5]. Moreover, excessive number of wire connec-
tions during the recording process might per se result in sleep
disturbance [20].

On the other hand, single-channel EEG based analysis is a
cheap way of automatic sleep scoring. EEG contains valu-
able and interpretable information resembling the brain activ-
ities which is not only used in extensive research contexts per-
taining to the brain, but also to diagnose and consequently the
treatment of neurological disorders [21]. Sleep neurology is
a progressively-evolving sub-specialty field in which the sleep
EEG signals are utilized to study the function of the brain dur-
ing sleep, also to diagnose various types of disorders based
on sleep stage analysis. There are many single-channel ap-
proaches for automatic sleep stage classification in the litera-
ture [9, 15, 22, 24, 25]. According to the available evidence
[24], EEG signals are almost sufficient for reliable scoring.

To the best of our knowledge, the reported classification ac-
curacies of the suggested methods are mostly obtained from
healthy subjects [22, 25, 52]. Only a few methods in the
literature are tasted on patients with various sleep disorders
[23]. However, it should be noted that automatic sleep scor-
ing methods should gain acceptable performance on analyz-
ing EEG signals in sleep disorders. Sleep disorders (such
as sleep-disordered breathing, REM behavioral disorder and
sleep-related movement disorders) impose disruptive effects on
the recorded signals. In these cases, sleep signals behave more
irregular containing higher movement artifacts. In addition,
drugs consumption may also change sleep patterns [6]. Such
pitfalls may also influence both manual and automatic sleep
scoring processes and the issue tends to be more profound
in automatic methods. Inaccurate sleep scoring leads to mis-
diagnosis; consequently, the treatment based on this wrong di-
agnosis cause negative consequences on patients’ disorder out-
come and well being [6]. A few reports confirm that due to
irregularity of sleep EEG among patients, the scoring accuracy
do not exceed 75% which is considered below expected stan-
dards [1].

This paper reviews most of state-of-the-art automatic sleep
scoring methods with their pros and cons being discussed. Such
insights would be expected to help implementing several single-
channel methods and apply them to normal and patient groups
in order to assess the performance of published methods in dif-
ferent circumstances. To our knowledge, thus far, no compre-
hensive review on sleep EEG scoring is performed to compare
the results of state-of-the-art single-channel methods on both
patients and healthy subjects. Moreover, the performance of
different classifiers are compared to find the best classifier for

this application. In addition, to assess the robustness of these
methods, Gaussian noise is added by different signal-to-noise-
ratio (SNR) values and their performance are measured in pres-
ence of the noise.

Later in this report Section II explains the qualitative and
quantitative sleep stage assessments. Section III describes sev-
eral single-channel based methods in details. In Section IV,
results of these methods on both normal and patient data are
demonstrated. The final Section is dedicated to the discussion
and conclusion.

2. Methodology

Sleep stages can be qualitatively/ quantitatively analyzed. In
this Section, first visual sleep stage scoring criteria (qualitative
methods) are explained. Then, several quantitative sleep scor-
ing methods are introduced in detail.

2.1. Polysomnographic Data and Qualitative Assessment
Sleep medicine uses polysomnography (PSG) as an efficient

method to record several biological signals to evaluate the sleep
quality. PSG recordings generally involve overnight monitoring
of patients sleep EEG, airflow through the nose and mouth, res-
piratory rate, blood pressure changes, electrocardiogram (ECG)
signals, blood oxygen level, EOG signals, as well as the chin
and legs surface EMGs [23, 26].

The qualitative analysis (visual inspection) of a whole night
PSG recordings is performed through one of the two avail-
able standards [27] including the traditional Rechtschaffen
and Kales (R&K) [28] and the more recently-developed stan-
dards laid down by the American academy of sleep medicine
(AASM) [29]. Based on both the R&K and AASM criteria,
EEG signal is the most informative signal compared to others.
Experts analyze the EEG signals visually within successive 30
second intervals (epochs) mainly based on its standard rhythms
(frequency bands). They assign a sleep stage as a label to each
epoch successively [27]. The standard sleep EEG rhythms are
categorized as Delta, Theta, Alpha, Beta bands (Table 1). More-
over, two important events happening through sleep EEGs are
Sleep Spindles and K-complexes, where both exclusively occur
in the second sleep stage.

Table 1: The Frequency Range of Sleep EEG Bands and Events

Freq. Band Freq. Range (Hz)
Delta 0.5 − 4
Theta 4 − 8
Alpha 8 − 13
Beta 13 − 30
Sleep Spindles 12 − 14
K-Complex 0.5 − 1.5

For almost three decades, the R&K sleep classification man-
ual was the only widely-accepted standard to describe the hu-
man sleep process [31]. According to the R&K criterion, sleep
study comprises seven stages including: wakefulness (W), non-
rapid eye movement (NREM) including stage 1, stage 2, stage
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3, and stage 4, rapid eye movement (REM) and movement time
(MT). Although the recommended setup is brief and instruction
is easy to follow, many issues in sleep study are still remained
unresolved [32].

Regarding the most recent AASM manual, at least 3 elec-
trodes should be placed on frontal, central, and occipital head
regions to record EEG signals [29]. The criteria concern-
ing sleep-wake transition, sleep stages, sleep spindles, K-
complexes, micro arousals, slow wave and REM sleep are re-
vised. Unlike the R&K recommendations, in the new manual,
stages 3 and 4 are merged into N3 and the MT stage is re-
tracted from analyses. The trend transition from R&K rules
to new AASM standards, left only a minor influence on total
sleep time (TST), sleep efficiency (SE) and REM stage mea-
sures while it affected the quantification of sleep latency, wakes
after sleep onset (WASO) and the distribution of NREM sleep
stages. These result in implications both in the clinical and re-
search fields.

According to the AASM manual, each of the the five stages
is defined below and also illustrated in Fig. 1:

• W: Awake state (stage W) is characterized by alpha or
faster frequency bands occupying more than 50% of the
epoch, frequent eye movements and high EMG tone.

• N1: Stage N1 is scored when alpha occupies more than
50 % of epoch while theta activity, slow rolling eye move-
ments and vertex waves are evident.

• N2: Stage N2 is scored when sleep spindles or K-
complexes (less than 3 minutes apart) are noted.

• N3: Stage N3 is characterized by delta activity detected in
over 20% of the epoch length.

• REM: Upon sleep scoring an epoch is marked as REM
when saw-tooth waves along with rapid eye movements
as well as lowest EMG signals are observed through each
epoch.

Figure 1: This figure illustrates Wake, N1, N2, N3, REM stages, from top to
bottom panels, respectively.

2.2. Quantitative Assessment

Several automatic sleep stage classification methods are pre-
sented in the literature [88, 89]. To demonstrate the growing
interest on sleep stage classification, the number of papers pub-
lished in 28 relevant journals from the year 2000 to 2015 are
shown in Table 2. Among such publications, “Computer Meth-
ods and Program in Biomedicine” and “Neuroscience Meth-
ods” are of the great interest.

As demonstrated in Fig. 2, the rate of publications has re-
mained steady between 2000 and 2009, while it has quickly in-
creased from 2010 to 2015. This may indicate the recent grow-
ing attention and joint cooperation of biomedical engineers
and practitioners to achieve an accurate automated (expert-
independent) method for sleep stage scoring.

Figure 2: Distribution of research papers by year of publication from 2000 to
2015.

Based on the available literature, the quantitative sleep stage
scoring schemes comprises 3 common steps include prepro-
cessing, feature extraction and classification. Furthermore, in
some papers, feature selection step is added following feature
extraction in order to find suitable subset of features [54]. What
follows is introducing more frequent techniques in each step.
The process for automatic sleep stage scoring is schematically
illustrated in Fig. 3.

2.2.1. Preprocessing
The presence of artifacts might lead to the misinterpretation,

inaccuracy and distorted quantitative results; therefore, a pre-
processing step is necessary to remove artifacts and magnify
informative components of raw EEG signals prior to any fur-
ther analysis [65]. There are biasing factors which potentially
affect the accuracy of sleep EEG scoring [23]. These factors can
be measurement noise, physiological factors (including psycho-
physiological variants and aging) and pathological conditions
(such as disordered sleep breathing and REM behavioral disor-
der) [29, 30].

Despite hardware filtering during the recording, EEG sig-
nals are still contaminated by other noise sources [37]. Dif-
fuse artifacts may mask cerebral activity and simulate sleep
phasic events (sharp vertex waves, K-complexes). Moreover,
some noises and artifacts are created by the measurement ap-
paratus. The power line interference (the 50/60 Hz compo-
nents) or movements of the wires and electrodes can impose
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Table 2: Distribution of Research Papers by Journal.

Journal Title Amount Percentage (%)
Computer Methods and Program in Biomedicine 6 10.27
Journal of Neuroscience Methods 6 10.27
Computers in Biology and Medicine 5 8.47
Journal of Medical Systems 5 8.47
Expert System with Application 4 6.78
Artificial Intelligence in Medicine 3 5.08
IEEE Transactions on Biomedical Engineering 3 5.08
Biomedical Signal Processing and Control 2 3.39
International Journal of Neural System 2 3.39
Journal of Sleep Research 2 3.39
Methods of information in medicine 2 3.39
Neurocomputing 2 3.39
Sleep Medicine Reviews 2 3.39
Advances in Adaptive Data Analysis 1 1.69
Biomedical Engineering Applications, Basis and Communications 1 1.69
Biomedical Engineering On-line 1 1.69
Brain Research Bulletin 1 1.69
Clinical Neurophysiology 1 1.69
Computers and Biomedical Research 1 1.69
Frontiers of Computer Science 1 1.69
IEEE Transactions on Neural Systems and Rehabilitation Engineering 1 1.69
IEEE Transactions on Instrumentation and Measurement 1 1.69
International Journal of Adaptive Control and Signal Processing 1 1.69
Medical and Biological Engineering and Computing 1 1.69
Neural Computing and Applications 1 1.69
Sleep 1 1.69
Sleep Medicine 1 1.69
World Academy of Science, Engineering and Technology 1 1.69
Total 59 100

changes in the baseline characteristics of signals. Moreover,
some artifacts are originated from non-cerebral sources such
as eye movement, muscle and cardiac sources. Rolling eye
movements happen upon the consciousness while in REM sleep
the eye movements acquire a saccatic patterns. In addition,
give the comparatively high amplitude level of ECG signals,
the QRS complex regularly interfere in the EEG signals caus-
ing spiky pattern [33]. Muscle activities generate EMG signals
which can corrupt and distort EEG signals, especially during
the arousal periods [23, 34]. Further to the instrumental and
biological artifacts, inter-individual variability of background
activity and phasic events as well as age-related changes may
influence the sleep stage scoring. On the other hand, focal cere-
bral lesions might decrease phasic event’s amplitude, density
and therefore mimic the REM pattern. In patients with wake
or nocturnal epilepsy, the interictal EEG epileptic activity may
similarly mask sleep activity or bias sleep EEG phasic events
[6]. Consequently, the above biasing factors may hinder accu-
rate scoring and emphasize the role of preprocessing in order
to avoid deceiving clinical results both in visual and automatic
scoring.

Several methods are proposed in order to attenuate or elimi-
nate the effects of artifacts in EEG signals. These methods are

described below:

• Digital Filtering: It covers a vast class of different fil-
ters which can be linear or non-linear. To pre-process raw
EEGs, it is common to apply a band-pass filter (e.g. butter-
worth) to eliminate the undesired parts. In order to elimi-
nate the power line noise from the signals, a digital Notch
filter is utilized [37]. Band-pass filters [39] such as But-
terworth [37] are used to reduce the muscle artifacts and
eliminate linear trends [36]. Further to the linear filtering,
adaptive filters are used to remove the effects of the EOG
and ECG artifacts in which the frequency contents over-
laps with EEG spectrum [41].

• Regression: Regression methods are able to learn a signal
behavior. If an additive color noise distorts the EEGs, a
regression method is used to learn this trend and therefore
by modeling the color noise, it can be subtracted from the
recorded signal. [42].

• Wavelet Transform (WT): WT decomposes a signal into
its sub-bands. By calculating the energy in each sub-band
and applying a threshold, the noisy and undesired bands
are eliminated [47]. Since there are many mother wavelet
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Figure 3: Automatic Sleep Stage Classification Process.

functions, the one with highest similarity to the nature of
EEG (in terms of frequency bands) should be selected. Re-
viewing the existing papers, we can observe that Symm-
let and Daubechies mother wavelets are the most common
used wavelets for EEG processing [87].

• Blind Source Separation (BSS): An alternative artifact
removal approach is BSS algorithms. Independent Com-
ponent Analysis (ICA) [33, 34]is one of the well-known
BSS methods to produce de-correlated brain source sig-
nals after fading the artifacts. By calculating the energy of
source signals and using a threshold, the independent sig-
nals with lower energy level will be eliminated. Finally,
with an inverse transform, the denoised signals will project
back into the spatio-temporal domain.

After the preprocessing step, based on the mentioned criteria,
EEG records are segmented into the successive 30 sec epochs
with no overlap, after which, further analysis are carried out at
each epoch.

2.2.2. Feature Extraction
Features are descriptive values that project the content of a

signal from a special aspect. Usually, different types of features
are extracted from a windowed signal; therefore, to avoid col-
lecting redundant information, the elicited features should be
as independent as possible. Extracting informative, discrimina-
tive and independent features is a crucial step to prepare a suit-
able set of values for a classifier [48]. A wide variety of signal

processing techniques are utilized to extract discriminative in-
formation from the EEG signals in order to automatically clas-
sify the sleep stages [10, 65]. Features can be totally divided
into four categories (Time domain, Frequency domain, Time-
Frequency domain, Nonlinear ) which are briefly discussed be-
low:

Time Domain Features. Time domain features can represent
the morphological characteristics of a signal. They are simply
interpretable and suitable for real-time applications. Some of
the widespread time-base features are described below:

• Statistical Parameters: 1st to 4th-order moments of time
series i.e., mean, standard deviation, skewness and kurto-
sis, respectively [39, 52], median and 25th, 75th percentile
of the signal distribution [54] are known as the most ef-
fective time domain features for EEG signals. Their math-
ematic formulas are presented in Table 3. They are not
only applied to EEG signals but also used to extract fea-
tures from the other biological signals including EOG and
EMG [13, 37].

• Hjorth Parameters: Hjorth parameters are introduced by
Bo Hjorth in 1970 [38]. These parameters include Activ-
ity (Ha), Mobility (Hm) and Complexity (Hc) as the mea-
sure of variance of a time series (x), proportion of stan-
dard deviation of the power spectrum and change in the
frequency, respectively. They are widely applied features
for EEG analysis [39, 40] and described below.

Ha = var(x(t)) (1)

Hm =

√√√√
var(x(t)

dx
dt

)

var(x(t))
(2)

Hc =

Hm(x(t)
dx
dt

)

Hm(x(t))
(3)

• Zero Crossing Rate (ZCR): ZCR represents number of
times that a signal crosses the baseline (Eq. 4). The
baseline can be obtained by taking a mean value from a
windowed signal [39]. It measures the number of sign-
changes through a windowed signal. Given the differences
in quality and the appearance of the each sleep stage in the
time domain, ZCR may vary from one stage to another; as
such, it can be used as a suitable feature for sleep stage
classification [52, 54, 55]. Nevertheless ZCR is highly
sensitive to additive noises.

ZCR = count{n|(xnxn−1) < 0} (4)

Frequency Domain Features. Frequency domain features are
versatile features which are repeatedly utilized for describing
changes in EEG signals [7, 14, 35, 37, 58]. There are several
approaches to extract frequency features, herewith summarized.
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Table 3: Time Domain Features.

Feature Name Formula Elucidation
Mean µ = 1

N ΣN
n=1xn xn (n = 1, 2, ...,N) is a time-series.

Variance var = 1
N−1 ΣN

n=1(xn − µ)2 A measure of how far a set of numbers is spread out from mean.

Standard Deviation std = (Var)1/2 A measure of dispersion of a dataset.

Skewness skew =
E[(x − µ)3]

(E[(x − µ)2])3/2 A measure of symmetry of a dataset about its mean.

Kurtosis kurt =
E(x − µ)4

(E(x − µ)2)4 A measure of tailedness of a dataset.

yth Percentile ythper =
yN
100

A sample number below which a given percentage of a dataset fall.

Median M=


x N

2
+ x N

2 +1

2
for even N

x N+1
2

for odd N
A sample number separating higher from lower half of a dataset.

Spectral Estimation To obtain spectral characteristics of
EEG signals, first, time series should be transfered to the fre-
quency domain. Due to the stochastic nature of EEG signals,
signal autocorrelation needs to be estimated first. Then, by tak-
ing Fourier transform (FT) from the autocorrelation function,
Power Spectral Density (PSD) is achieved. The two approaches
to estimate PSD of a windowed signal include parametric and
non-parametric methods.

• Parametric methods: parametric methods are model-based
approaches in which the spectrum is estimated by the sig-
nal model. Autoregressive (AR), Moving average (MA)
and Autoregressive moving average (ARMA) are amongst
popular methods in EEG processing [49]. When signals
have low SNR and long length, parametric approaches
present a smoother and better estimation of power spectra.
However, model order determination of AR is a main con-
cern in such methods, since AR is able to model the two
others. To solve this problem, some criteria such as Whilst
Akaike’s information criterion (AIC) [50] are introduced
in the literature [51].

• Non-parametric methods: In non-parametric approaches,
PSD values are calculated directly from the signal samples
in a given windowed signal. They are based on Fourier
transform [81]. Among non-parametric methods, Peri-
odogram and Welch [82] schemes are general for calcu-
lating PSD and extracting features from EEGs. Easy im-
plementation based on Fast Fourier Transform (FFT) al-
gorithm is the merit of non-parametric methods; however,
they gain low frequency resolution when the signal inter-
val becomes short.

Higher Order Spectra (HOS) : HOS is another method
used to extract frequency domain features. HOS techniques are
employed in several biomedical applications [72]. HOS rep-
resents the frequency content of higher order statics of signals

(cumulants) [75, 78]. Power spectrum equals to second-order
spectra which loose the phase information. Also, the 3rd order
spectrum is known as bi-spectrum which is showed in Eq. 5.

B( f1, f2) = E[X( f1)X( f2)X∗( f1 + f2)] (5)

where E[.] is expectation operator, X( f ) is the Fourier trans-
form of the signal and f is the frequency.

The advantage of using HOS is its ability to reveal non-
Gaussian and nonlinearity characteristics of the data [78, 72].
Since EEG is a complex signal subject to some non-linear in-
teraction in its frequency components, HOS methods are useful
approaches in analyzing sleep EEG signals [75].

Time-Frequency Domain Features. Due to the non-stationary
nature of EEG signal, i.e. variation in its properties during the
time, a wide rang of time-frequency methods are utilized as an
efficient tool in this field. There are three ways to transfer a
signal into the time-frequency plane including signal decompo-
sition, energy distribution and modeling. The first two ways are
utilized in the sleep applications [80, 88] (explained below).

• Signal Decomposition: These methods decompose signals
to a series of basis functions. Short Time Fourier transform
(STFT) is a very simple time-frequency analysis. In this
method, first, signal is uniformly windowed and then FT
is applied to each window as described in Eq.6.

S T FTx(t, f ) =

∫ +∞

−∞

x(τ)h∗(τ − t) exp(− j2π f τ) dτ (6)

where h(.) is a window function.

To use this method as a mean of feature extraction, the is-
sue of time and frequency resolution need to be well noted.
There is an inverse relationship between the length of the
window and the time resolution. In addition, the time and
frequency resolutions have an trade-off together. For in-
stance, the shorter the data segment, the higher the time
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resolution will be achieved and therefore frequency reso-
lution decreased. However, a fixed specific length of the
window is considered to determine STFT leading to a lim-
ited frequency resolution.

Wavelet Transform (WT) is a popular time-frequency
transformation that applies different filters to decompose a
signal into dyadic frequency scales. These filters are gen-
erated from a function which called mother wavelet. Both
discrete and continues forms of WT are utilized for sleep
classification [79, 88]. Continuous Wavelet Transform for-
mula of a given signal of x(t) is shown in Eq. 7.

Wa,s =

∫
x(t)φa,s(t)dt (7)

where a and s are scale and time shifting parameters, re-
spectively. φa,s is mother wavelet transformation which is
defined as:

φa,s(t) =
1
√
|a|
φ(

t − s
a

) (8)

WT is a powerful method since it describes the signal into
different frequency resolutions where the decomposed sig-
nals are orthogonal in most mother wavelets. In addition,
a colored noise cannot invade all of the wavelet features in
different scales [87].

• Energy Distribution (ED): ED represents the distribution
of energy simultaneously through both time and frequency
domains. Several methods are placed in this category.
Choi-Williams distribution (CWD), is energy conservative
which maintains time shifts as well as the frequency shifts.
These characteristics make it a favorable method for the
time-frequency analysis [88, 90].

Wigner-Ville distribution (WVD) is another non-linear
time-frequency method which is widely used to analyze
non-stationary signals. However, the presence of cross-
terms in the time-frequency domain for multi-component
non-stationary signals hinder its efficiency. Therefore, the
smoothed pseudo WignerVille distribution (SPWVD) (the
modified version of WVD) is proposed to avoid the effects
of cross-terms [80], as described in Eq. 9.

S (t, f ) =

∫
h(τ)[
∫

f (u−t)x(u+
τ

2
)x∗(u−

τ

2
)du]exp(− jwτ)dτ

(9)
where f(.) and h(.) are the time and frequency smoothing
functions, respectively.

In addition, Hilbert-Huang Transform (HHT) is a new
method in analyzing nonlinear and non-stationary signals
such as EEGs. It is recently employed in many appli-
cations in biomedical fields including sleep stage scoring
[88].

Non-linear features. Since EEG signals exhibit non-linear
characteristics and complex dynamics [43], non-linear mea-
sures are used as effective techniques for EEG processing
[44, 61]. They are also widespread in sleep stage scoring to

extract efficient features from sleep EEG [15, 18, 44, 56, 57].
Non-linear methods are mainly divided into two categories de-
scribed as follow:

• Entropy and Complexity-based: Entropy-based methods
calculate the irregularity and impurity of a signal in the
time domain [61]. In other words, the more the chang-
ing patterns inside a windowed signal get regular, the less
would be the entropy value of that windowed signal and
vise versa. The most famous entropy measure is intro-
duced by Shannon as described below:

Entropy(X) = −ΣN
i=1PiLn(Pi) (10)

where N is the number of samples and Pi is the probability
of ith sample.

Several entropy and complexity measures such as Renyi’s
Entropy [88], Sample Entropy [7], Tsallis Entropy [43],
Permutation Entropy [89], Lempel-Ziv [39], Multi Scale
Entropy (MSE) [20] and Approximate Entropy (ApEn)
[56] which are introduced in the literature. They have
enough potential to serve as informative features in sleep
stage classification [10].

• Fractal-based: Constructing a noisy-like shape can be
done by repeatedly applying an operator on a geometric
element. Several phenomena exist which have a noisy be-
havior while they are rule-base in nature. For instance, the
behavior of EEG signals or shape of leaves in a tree look
random while one can hardly claim that creating EEG sig-
nals or leaves in a tree are random. For the first time a
novel method is proposed by Mandelbrot [73] to measure
the fractal dimension in of irregular shapes. The concept
of fractal dimension can describe the behavior of random-
like shape by determining the amount of self-similarity on
that given shape or signal. There are many fractal-based
methods like Correlation Dimension [75], Lyapanov expo-
nent [39] and Hurst exponent [37] which first map a signal
into the phase space and then measures the self-similarity
of its trajectory shape. In other words, instead of analyz-
ing a signal in the time domain, these methods analyze its
trajectory behavior in the phase space, in terms of self-
similarity. There are some other methods determining the
roughness or irregularity of the signal in the time domain
such as Katz [53], Petrosian [54] and Higuchi fractal di-
mension (HFD) [39]. Experimental results from different
studies have suggested that measuring the behavior in the
phase space is more accurate than the same in the time
domain, though it imposes a higher computational burden
[53].

2.2.3. Feature Selection
In some sleep stage classification methods especially in

multi-channel approaches, feature selection techniques are ap-
plied after the feature extraction stage to find discriminative
subset of features. The purpose of adding feature selection part
is to obtain minimum number of features without redundancy
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while producing higher accuracy. Furthermore, it avoids the is-
sue of over-fitting and reduce the computational time. Since an
overnight PSG record is large, feature selection is useful espe-
cially once different types of features are extracted.

To this end, some statistical techniques are proposed in the
literature. These techniques try to find appropriate and discrim-
inative subset of features to distinguish different sleep stages.
Sequential forward selection (SFS) [15] and sequential back-
ward selection (SBS) [15, 45] are two simple strategies to ex-
plore through the features and find a proper subset. Neverthe-
less, SFS and SBS highly suffers from the lack of backtrack-
ing. In addition, feature extraction algorithms such as Principle
Component Analysis (PCA) and Linear Discriminant Analy-
sis (LDA) [46] are used for feature reduction. On the other
hand, meta-heuristic algorithms like Genetic Algorithm (GA)
[61] and Particle Swarm Optimization[62] are repeatedly used
for feature selection.

2.2.4. Classification
Various classifiers are utilized to classify the elicited features

and assign a sleep stage into each epoch. These classifiers
are learned to construct linear/non-linear boundaries to sepa-
rate feature vectors of different classes. Some of the popular
classifiers used in sleep stage scoring are herewith explained.

• K-Nearest Neighbor (KNN): This is a local classifier which
is suitable for multi-modal distribution data. In other
words, when the samples of a certain class are modu-
larly scattered in different locations of the feature space,
even flexible and strong classifiers cannot accurately put a
boundary around this localities. KNN assigns a label to an
input patterns based on the majority vote of its k-nearest
samples [82].

It can be statistically demonstrated that when k=1, the er-
ror probability of 1NN is bounded between that of the op-
timum classifier (Bayes) and twice of this value [83].

Perror(Bayes) ≤ Perror(1NN) ≤ 2Perror(Bayes) (11)

• Support Vector Machine (SVM): For the first time, a gener-
alized classifier trying to minimize the risk of error instead
of minimizing the classification error [60] is proposed by
Vapnic [59]. SVM considers a margin around its hyper-
plane while other conventional classifiers just attempt to
form a boundary, weather linear or nonlinear, between two
classes. In fact, SVM tries to maximizing the margin width
simultaneous to minimizing the classification error of sam-
ples, within that margin. Therefore, finding the separating
plane of SVM needs to solve the constrain optimization
problem. Since the objective function of SVM as describe
in Eq. 12 is convex, SVM will be a stable classifier in terms
of boundary learning. Since SVM optimization formula
has a constraint, Lagrange coefficient is inserted into its
objective function; whereby in each sample a Lagrange
coefficient is determined.

L(α) =

N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

αiα jyiy jφ(xi)φ(x j) (12)

where αi is the Lagrange multiplier of the ith sample, φ(.)
is the kernel function, xi is the ith input and yi is its corre-
sponding label.

The values of Lagrange coefficients belong to the samples
located within the margin space (support vectors) are pos-
itive values bounded within:

0 ≤ αi ≤ c (13)

Where c is a user-defined parameter.

In contrast, other samples (majority of instances) located
outside of the margin space do not have any role in deter-
mining the SVM hyperplane, since their Lagrange coeffi-
cients become zero. The boundary of SVM is determined
by

W = ΣN
i=1αiyixi (14)

where N is the number of samples.

• Random Forest (RF): RF is proposed by Breiman [64],
consists of an ensemble of tree-structures. Each individ-
ual tree depends on a random vector sampled values and
plays the role of an individual classifier. The main differ-
ence of RF to the other classifiers is that feeding the input
samples to the trees are performed as random as possible
through a random selection followed by different bootstrap
selections. This process are repeated several times in or-
der to blend the samples in order to desensitize the effect
of noisy and outliers samples of the training phase. Fi-
nally, the output is determined by voting of the trees’ out-
puts. The general structure of RF classifier is summarized
in Fig. 4

Figure 4: RF Structure

• Linear Discriminant Analysis (LDA) & Nearest Centers
(NC): LDA is developed by Fisher in 1936 and optimized
by a very popular criterion function, called as Fisher cri-
terion [63]. In two-class problems LDA can be consid-
ered as a classifier whereas in multi-class problems, LDA
is acted as a feature-extraction method. Since sleep EEG
contains 5 classes, LDA provides more separable features
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for the next classifier. LDA tries to maximize the ratio of
between-to-within classes’ scatter matrices. This is done
by projecting input samples onto a few number of hyper-
planes (depends on the number of classes) such that the
separability among the samples is maximized in the pro-
jected space [61]. The Fisher criterion is described as:

J(W) =
WT S BW
WT S WW

(15)

where W is potentially a hyperplane (in two-class prob-
lems) or a matrix of hyperplane (in multi-class problems).

Incidentally, S W and S B are between and within class scat-
ter matrices, defined as:

S Wi = Σx∈ci (x − mi)(x − mi)T , i = 1, 2, ..., ci (16)

S W = Σc
k=1S Wi (17)

where x is the input vector, c is the number of classes and
m is mean value.

S B = Σc
k=1(mk − m)(mk − m)T (18)

The final decision is made by applying a distance-base
classifier (NC) to the LDA outputs. In other words, LDA
acts as a feature extractor and the projected features are as-
signed to the corresponding classes according to the min-
imum distance of the project sample to the center of each
class, separately [87].

• Neural Network (ANN): ANN is an artificial information
processing system comprising a number of interconnected
processors called neurones. Scientists tried to assign func-
tions for these neurons following the real behavior of bio-
logical neural cells. The most employed functions of neu-
ron in different ANNs are sigmoid, hyperbolic and linear
functions. ANN architecture can contain several hidden
layers each includes several neurons. In most recent em-
ployed ANNs, just one hidden layer is used to avoid the
over-fitting phenomenon. According to the statistics, most
of the utilized neural networks include an input layer, a
hidden layer and an output [65]. The number of nodes
in input layer depends on the number of input features
and the number of nodes in the output layers depends
on the number of classes. The number of neurons in the
hidden layer can be determined through the cross valida-
tion phase. ANNs are widely used in sleep stage scor-
ing [7, 16, 13, 65, 66]. The schematic diagram of a feed-
forward multi-layer perceptron (MLP) is shown in Fig 5.

Outputs (y) are calculated based on a transfer function as
illustrated in Eq. 19.

y j = Σt
k=1Wk j fk (19)

Figure 5: ANN architecture, feed-forward multi-layer perceptron (MLP).

fk = f (Wik xi + bk) (20)

where W is the weight matrix and b is a certain value to
control the on/off threshold of neurons which are adjusted
during the training procedure.

In contrast to the sluggish training phase of ANNs, these
networks act very fast in the test phase. The main draw-
back of ANNs is their high tendency of being over-fitted
to the noisy samples which are mostly located along the
margin space between the classes. ANNs do not include
a margin to consider a little space for deterioration of test
samples around its boarder. However, the selection of its
parameters, such as network size and training algorithms,
is trivial since such parameters can affect the classifier per-
formance.

• Gaussian Mixture Model (GMM): This statistical model is
utilized in a wide range of applications as the density es-
timators [74] and classifiers [75]. This model consists of
several Gaussian functions integrated with different coeffi-
cients and finally the weighted summation on these proba-
bilities construct the output [75]. Therefore, it can be said
that a GMM model has 3 types of parameters which need
to be estimated separately, i.e. mean vector (µ), covari-
ance matrix (Σ) and weight (W) for each Gaussian, sep-
arately [76]. Schematic diagram of GMM along with its
corresponding formulas to determine those parameters for
a sequence of T training vectors X = {x1, ..., xT } and m
component of densities are outlined below.

λ = {µi,Σi,Wi}, i = 1, 2, ...,m (21)

Wi =
1
T

ΣT
t=1 p(i|xt, λ) (22)

µi =
ΣT

t=1 p(i|xt, λ)xt

ΣT
t=1 p(i|xt, λ)

(23)
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Figure 6: GMM Structure

σ2
i =

ΣT
t=1 p(i|xt, λ)x2

t

ΣT
t=1 p(i|xt, λ)

− µ2
i (24)

where σ2
i is variance. It should be noted that when the two

variables are identical the covariance is equal to variance.

In fact, the independent Gaussian functions with different
weights can model every arbitrary distribution functions.
In order to use GMM as a classifier, the distribution of
input features of each class is learned by a GMM where
each GMM acquires a specific label. Consequently, when
a sample is entered to the parallel GMMs, its label is as-
signed according to the label of the given GMM which
produces the highest probability.

• Hidden Markov Model (HMM): HMM is a comprehen-
sive version of Markov chain model in which the se-
quence of states is unknown. HMM is dynamic classi-
fier which can tolerate the time warping of input obser-
vations, O = {O1, ...,OT } where Oi is the ith observation
(feature vector). The semi-continuous HMM consists of a
few continuous states, each constructed by Gaussian func-
tions, which are connected by discrete transition probabil-
ities. The main structure of HMM is the semi-continuous
left-to-right model, i.e.

λ = (π, bi, A) (25)

Where A is the transition matrix, bi is the ith state proba-
bility and π demonstrates the probability of the first state.

HMM training process involves 3 stages. First the HMM
parameters should be determined by the Baum-Welch al-
gorithm. Afterwards, the sequence of states is found by
Viterbi algorithm [14]. Following the above, the prob-
lem is simplified into calculating the output of Markov
model (stage 3) [14]. The number of states and their num-
ber of Gaussian functions are determined by the Expec-
tation Maximization (EM) criterion [77]. Fig. 7 shows a
schematic diagram of HMM.

Where ai j shows the probability of moving from ith to jth
state.

Figure 7: HMM architecture.

• Clustering: Clustering is a kind of grouping or unsuper-
vised categorization where the samples lack labels. There-
fore, this grouping should be performed based on a sim-
ilarity measure such as distance metrics, information cri-
teria and statistical measures. The idea of clustering is to
create different clusters such that each cluster contain sim-
ilar samples according to one of the mentioned criteria.
Clustering methods are generally divided into four cate-
gories including flat (e.g. K-means) [67, 68], hierarchical
(e.g. single and complete-linkage) [69, 70], graph-base
(e.g. Shared Nearest Neighbor (SNN)) [71] and density-
base (e.g. DBSCAN, OPTICS and DenClue) [69].

Clustering methods, specially K-means, are repeatedly
used in sleep stage scoring [82]. In other words, after clus-
tering the whole sleep features, it is expected that feature
vectors belonging to each sleep stage are gathered in a cer-
tain cluster.

3. State-of-the-art Studies in Automatic Sleep Stage Classi-
fication

Each of the available automatic sleep classification methods
is evaluated based on a certain dataset with its own signal qual-
ity, while changing in signals quality leads to deviate in the final
results. In practice, due to the importance of accurate sleep
scoring for patients with sleep abnormalities, these methods
should have high performance in patients’ recorded signals. To
the best of our knowledge, evidence on various methods on a
specific dataset acquired from patients with sleep disorders are
thin. The present review is an attempt to discuss the most re-
cent automatic sleep stage classification methods using single-
channel EEG data.

3.1. Polysomnographic datasets
Two EEG datasets which are available on-line in the data

repository physionet [84] have been employed in this study.
The first dataset contains EEG signals belong to healthy sub-
jects whereas the second one is acquired from patients who
suffer from REM behavioral disorder (RBD). The employed
datasets in this study are described as follow.

3.1.1. Sleep–EDF Dataset [extended]
This dataset includes the collection of 61 PSG data with re-

spective sleep stages annotations [85]. It consists of 2 files in-
cluding SC and ST, where the first contains PSGs of 20 healthy
males and females aging between 25-34 years old, without any
medication related to sleep. The records consist of EEG (from
Fpz-Cz and Pz-Oz electrodes location), EOG, submental chin
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EMG and event marker. The EEG signals are acquired with
the sampling rate of 100 Hz. The ST file consists of 22 healthy
male and female records with only mild difficulty falling asleep.
In addition hardware filtering is applied to the signals. Each of
the 30 sec epochs is manually scored based on the R&K stan-
dard as W, S1, S2, S3, S4, REM, MT and Unscored with digit
codes of 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. 10 records from SC files
are selected and the bipolar records from Pz-Oz channels as a
single-channel EEG.

3.1.2. CAP Sleep Dataset
It contains PSG recordings of 108 subjects including healthy

subjects as well as patients with seven various sleep disorders
datasets [86]. They consist of at least 3 EEG channels (F3 or
F4, C3 or C4 and O1 or O2, refer to A1 or A2), ECG, sub-
mental muscle EMG, bilateral anterior tibial EMG and respi-
ration signals. EEG signals are sampled at 512 Hz. Prefilter-
ing also applied to the signals including: LP (30 Hz), HP (0.3
Hz) and Notch filter (50 Hz). In addition, sleep stages annota-
tions are available as: W=wake, S1-S4=sleep stages, R=REM,
MT=body movements. In this study, 10 single-channel EEG
records of RBD dataset are selected as the patient dataset.

3.2. Comparative Studies
1. Informative features from the higher order spectral (HOS)
space are elicited for sleep stage classification by Acharya et al.
[75]. First, bi-spectrum of EEGs were calculated in each epoch
as explained in Eq. 5. Then, following features were extracted
in the biospactrum space.

• Normalized Bispectral Entropy (BE 1):

BE1 = −ΣΩ pnlogpn (26)

where
pn =

|B( f1, f2)|
Σ|B( f1, f2)|

(27)

Ω is the non-redundant region in Fig. 8

Figure 8: Non-redundant region for biospectrum calculation.

• Sum of logarithmic amplitude of bi-spectrum:

H1 = ΣΩlog(|B( f1, f2)|) (28)

• First-order moment of amplitude of diagonal element in
bi-spectrum:

mAmp = ΣΩklog(|B( f1, f2)|) (29)

• Weighted Center of bi-spectrum (WCOB):

WCOBx =
ΣiB(i, j)
ΣB(i, j)

(30)

After extracting the above HOS features from each epoch, a
GMM classifier is trained to learn the feature vectors of each
sleep stage. At last, for the final classification of a whole sleep,
the elicited feature vector of each epoch is entered to all trained
GMMs. Since each GMM has a label, the label of the GMM
which produces the highest probability for each feature vector
is assigned to the input.

2. In another study, CWT is used to represent EEG signals into
the time-frequency domain [87]. To have a rich set of features,
they employed three different mother wavelets including the re-
verse bi-orthogonal (rbio3.3), Daubechies (db20), and Gauss
of order 1 (Gauss1) with center frequencies of 0.43, 0.67, and
0.20, respectively. After passing the EEGs through different
wavelets’ filters, entropy of each filtered signal is determined
according to Eq. 31 for each of the frequency bands shown in
Table 1. Moreover, Beta band is divided into two sub-bands
with frequencies of 13 − 22 and 22 − 35Hz; therefore, 7 fre-
quency bands are totally considered.

Ent = −Σn
i=1 pilogpi (31)

where p is the histogram distribution of wavelet coefficients in
each band with n bins.

These entropy values are arranged in a feature vector for each
epoch. Therefore, by calculating the entropy in seven frequency
bands for each CWT separately, a feature vector consists of 21
elements for each epoch is formed and continued for the entire
EEG signals. The sleep stage classification process is ended by
feeding LDA+NC classifier with the extracted features.

3. The Welch method is employed to extract 129 features from
each epoch by Günes et al. [82]. Due to the high number of in-
put features, four new features including minimum, maximum,
mean value and standard deviation are extracted from each fea-
ture vector. Then, the feature weighting process is pursued us-
ing the K-means clustering based feature weighting (KMCFW)
as described in Algorithm 1.

Algorithm 1 K-means clustering based feature weighting (KM-
CFW)
Require: the dataset including classes

1: Find centers of features using K-means Clustering (KMC)
2: Calculate the ratios of means of features to their centers
3: Multiply these ratios with each feature

Afterwards, these weighted features are applied to KNN clas-
sifier, where K is set to 30 through the cross validation phase.
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4. In another attempt, MSE feature containing 1 to 13 scales
along with AR coefficients (order 8) are extracted to describe
the EEG behavior by Liang et al. [20]. MSE algorithm is ex-
plained below. It should be noted that AR coefficients are ex-
tracted from the delta band of EEG signals.

Algorithm 2 MSE algorithm
Require: A time series x = {x1, x2, ..., xN}

1: divide x into non-overlapping windows of length τ (scale).
2: Determine the average of each window as an one dimen-

sional sample.
3: Identify the Entropy of these successive samples as a sam-

ple entropy feature.

Therefore, the combination of 8 AR coefficients and 13 MSE
features build the feature vector with 21 elements in each epoch.
The process is developed by classifying the extracted features
using the LDA+NC classifier.

5. In the last investigated method, three different time-
frequency techniques including CWT, CWD and HHT, are sep-
arately adopted to represent EEG content in the time-frequency
domain [88]. Each of the time-frequency transforms divides
the EEG into dyadic sub-band (as described in Table 1). To
elicit informative features, Renyi’s entropy is applied to each
sub-band within each epoch. The formula of Renyi’s entropy is
described in Eq. 32.

REnt =
1

1 − α
log2(Σn

i=1Pα
i ) (32)

where Pi is the histogram distribution belonged to the coef-
ficients of each mentioned time-frequency algorithms in each
band with n bins. α is the order of Renyi’s entropy. When α
equals to 1, the Renyi’s Entropy converge to Shannon Entropy.

These entropy values are extracted from the sub-bands of
each time-frequency transforms, separately. In their proposed
method an assessment is carried out by applying the entropy
values, belong to each transform, to a random forest (contains
10 trees) classifier. According to the obtained results, the CWT
feature provides the highest accuracy, compared to the others.

4. Results

After investigating the results from five elegant studies, their
applied methods are applied to the present datasets (contain-
ing healthy subjects and patients) as described in Section 3.
The employed datasets are annotated by experts according to
R&K rules [85, 86]. Since AASM is an improved and more
recent standard for sleep stage scoring, to match the results
with this standard, S3 and S4 are merged into one stage (N3).
These five methods are evaluated in terms of classification accu-
racy and their robustness against additive noise (with different
SNRs). To find the best combination of features and classifier
for achieving accurate and reliable results, here, additional im-
plementations are suggested and executed by applying the de-
ployed features by the mentioned papers to different classifiers
including: RF, KNN, LDA+NC, GMM and multi-class SVM.

To proceed to the preprocessing phase, the raw signals are
fairly cleaned by applying a bandpass Butterworth filter (or-
der 5 with frequency cutoff between 0.5 − 35Hz) to remove the
base-line drift and linear trends. Next, EEGs are segmented into
successive 30 second epochs and then the features and classifier
of each paper are separately executed to those epochs in order
to produce the results on both groups. The accuracies of each
sleep stage classification method are demonstrated in Table 4.
Results have emerged from a cross validation phase in which
features vector of one subject is considered as the test set and
the rest of subjects are considered as the train sets. This sub-
stitution for constructing new train and test sets is continued in
parallel up to the number of subjects. This cross validation is
called leave-one(subject)-out in which the train and test sets of
subjects are selected totally blinded to each other.

Since the main concern of automatic methods is the accu-
rate detection of the sleep stages for abnormalities in patients
records, to make a real evaluation among these papers on real
patients, here the methodologies of the papers are applied to
both normal and patient groups. Not surprisingly, lower perfor-
mance on patients is expected compared to the normal groups.
Fig. 9 illustrates the classification accuracy of sleep stages on
both groups. The results in Fig. 9 are presented as an average
for all sleep stages, while Table 4, illustrates the classification
accuracy of those methods on just normal subjects upon the en-
tire sleep, and each sleep stage separately. Moreover, a short
description of each method is presented in Table 4.

The best performance in terms of accuracy belongs to the 5th

approach in which entropy of CWT and RF are chosen as the
features and classifier, respectively. Apparently, this approach
provide over 80% classification accuracy in average over the
whole sleep stages. Focusing on the classification accuracy of
each stage, one can note that the best and worst results belong
to the awake and N1 stages, respectively.

Moreover, as demonstrated in Fig. 9, the accuracy of five
methods on the RBD dataset is reduced more than 25% in av-
erage. Although the accuracy of all methods has decreased for
the patients’ dataset, the 5th method again presented the best
classification performance.

Figure 9: Average classification accuracy over all sleep stages for both normal
and RBD (patients) datasets for the five papers.
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Table 4: Brief description of each method along with their obtained accuracy on normal dataset.

No Authors Extracted Features Feature
Selection Classifier Result: mean(%) (±std)

Total W N1 N2 N3 REM

1
Acharya et al.

2010 [75]
4 features; HOS based
features - GMM

Classifier 75.83±0.43 85.67 7.44 75.07 20.69 18.32

2
Fraiwan et al.

2010 [87]

21 features; Continuous
Wavelet Transform (CWT)
using 3 mother wavelets:
reverse bioorthogonal
(rbio3.3), Daubechies (db20),
and Gauss of order 1
(gauss1), Shannon Entropy.

- LDA+NC
Classifier 79.19±0.06 99.12 14.41 89.65 71.42 68.75

3
Gunes et al.
2010 [82]

129 features; Welch spectral
analysis; k-means clustering
based feature weighting
(KMCFW).

4 features:
Max, Min,
Mean, Std
of previous
features

KNN
Classifier 71.79±0.18 89.28 9.54 63.98 38.54 20.90

4
Liang et al.
2012 [20]

21 features; Multiscale
Entropy (MSE) and
Autoregressive (AR)
coefficients.

- LDA+NC
Classifier 76.87±0.09 83.90 38.14 51.63 80.77 54.33

5
Fraiwan et al.

2012 [88]

7 feature; Continuous
wavelet transform (CWT),
Choi-Williams distribution
(CWD), Hilbert-Huang
Transform (HHT) and
Renyi’s Entropy measures.

-
Random
Forest

Classifier
86.66±0.09 98.90 18.07 91.11 69.81 71.87

On the other hand, when comparing these five approaches
from the robustness point of view, white Gaussian noise is
added to the raw signals with different levels of SNR and then
the whole process is executed. The SNR levels are 1, 10, 20
dB. Since the results of patients are not comparable to nor-
mals, additive noises are just added to the raw normal signals.
According to the results which are shown in Fig. 10, The 5th

method shows of the lowest sensitivity to noise compared to
others, even at different SNR levels.

Figure 10: Comparing the accuracy by adding noises with different SNR.

As mentioned earlier, the present study add an additional
phase to find the best combination among features and clas-

sifiers. As such, the feature sets of each approach is applied
to the five classifiers (RF, KNN, LDA+NC, GMM, multi-class
SVM). According to the results (Fig 11), random forest produce
the best classifier for all different sets of features.

5. Discussion and Conclusion

The aim of this study is to carry out a comprehensive review
on automatic sleep stage classification methods. This investiga-
tion is performed to give an insight to enlighten the horizon of
this field. Sleep scoring is widely used for clinical purposes as
well as investigating the brain functions. Although visual sleep
scoring is a traditional time consuming method and the accu-
racy of sleep report highly depends on the expert experience,
this method is still a widely-accepted approach. Nevertheless,
visual scoring report varies from an expert to another one such
that the similarity of two experts on a certain sleep signal do
not exceed 83% [7]. Moreover, the limitation of human eyes
and brain fatigue make the visual scoring more unstable.

There is a tendency to automatize the sleep scoring process
using signal processing methods (Fig. 2). If a simple predic-
tion method is applied to the elicited statistics in Fig. 2, one
can expect that this trend will significantly grow in the future.
Since the results of quantitative schemes do not suffer from the
subjective issues, they can be considered as an efficient aux-
iliary diagnostic tool which can give valuable information to
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Figure 11: Accuracy of combining different feature sets and classifiers.

sleep specialists. Although several automatic sleep stage clas-
sification methods have been suggested [11, 71], a large body
of them are applied to EEG signals of healthy subjects while
the main concern of automatic methods should be focused on
detecting abnormalities in patients’ sleep signals.

After reviewing the existing evidences, we conclude that the
earlier research has exclusively helped developing feature ex-
traction/selection or modification of a classification method.
Among the state-of-the-art studies, five papers are selected and
discussed with regard to their performance. The pros and cons
of their methods are discussed below.

5.1. Evaluation of Features

The suggested EEG features in those papers (illustrated in
Table 4) can be totally divided into four categories: spectrum-
base features, time-frequency features, time features, fractal &
entropy features.

5.1.1. Spectrum-Base Features
Spectrum estimation methods are repeatedly used in sleep

stage classification studies based on which sleep stages are
marked with specific frequency ranges and are classified ac-
cordingly. To estimate the frequency content of each epoch,
parametric (e.g. AR, ARMA), non-parametric (e.g. peri-
odogram, Welch) and HOS methods are vastly utilized. Based
on the existing evidences, the elicited features by Welch method
could better distinguish the sleep stages than other paramet-
ric methods. This supremacy roots in the lower sensitivity
of non-parametric methods to te stilled remained motion arti-
facts and noises as compared to the parametric and cumulant-
base methods. This is because non-parametric methods (e.g.
Welch method) need to estimate just one auto-correlation func-
tion while parametric ones have to construct a matrix of auto-
correlation functions. Each auto-correlation function has a bias
and variance; therefore, the calculation of auto-correlation ma-
trix while taking an inverse from it, subject to great bias and

variance to this estimation. In addition, impact of bias and vari-
ance of a cumulant function is much worse than that of an auto-
correlation function leading to the deterioration of HOS results.

On the other hand, HOS is capable of revealing the phase-
coupling inside of a signal as well as frequency behavior of
their corresponding cumulant. Since HOS of a signal presents
in the form of a surface in bi-frequency space, it contains unique
information and several features can be elicited from this space
as compare to other spectrum-base methods. Furthermore, bis-
pectral analysis of EEG signals during the surgical operation
can finely estimate the depth of anesthesia [72]. Given the sim-
ilarity of anesthesia to sleep in some extent, HOS features are
expected to provide discriminant values for different stages of
sleep. Moreover, higher-order cumulants easily remove the ad-
ditive Gaussian noise. In the case of sleep signals, if the move-
ment artifact and other additive noises have Gaussian distribu-
tion, HOS can eliminate them perfectly. However, cumulant
estimation impose a high computational burden, due to sev-
eral multiplication of the signal with its shifted versions. The
main flaw of HOS application raise from te narrow band con-
tent of EEGs and also creating a lot of cross-terms in this thin
frequency band.

5.1.2. Time Features
Based on the discussed publications, time domain features

are frequently used for sleep EEG analysis. The main reason
of using such features is that the amplitude of EEG signals
significantly varies from one sleep stage to another one. So
far, AR coefficients, Hjorth parameters, statistical parameters of
the time domain signals (e.g. variance, skewness, kurtosis and
MSE), are suggested as discriminative features for sleep anal-
ysis. Among the methods discussed, AR model is frequently
used for EEG analysis, and also provides good results for dis-
criminating depth of hypnosis [91], identifying the depth of
anesthesia [92] as well as sleep stage analysis [20]. As such,
AR coefficients can be considered as a versatile feature for dif-
ferent EEG applications. The main advantage of AR model
is to encode the time behavior of EEG into few coefficients.
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In other word, AR coefficients elicit under-layer dynamics of
EEGs through the time domain while other related features may
fail to detect such information. Nevertheless, the main flaw of
AR model is its high sensitivity to additive noises since these
coefficients are determined by auto-correlation functions.

5.1.3. Time-frequency features
Since Fourier transform fails to reveal the frequency and time

resolution simultaneously, time-frequency domain transforms
are developed. These transforms can be divided in two cate-
gories, i.e. linear and nonlinear. Famous linear transforms are
the continuous and discrete Wavelet transform and STFT. Non-
linear transforms such as spectrogram and Choi-Williams can
demonstrate the energy distribution of a signal, while similar
to HOS, they suffer from the effect of cross-terms in a very
low frequency band signals like EEGs. Wavelet transform de-
composes frequency content of a signal in a dyadic manner
matched to the standard EEG frequency bands. In other words,
Wavelet acts as a bank of filters to decompose signals into their
sub-bands. Since sleep stage transition depends on both the
EEG frequency band changes and amplitude variations wavelet
features may efficiently detect the stage transition (similar to
frequency features). The main advantage of Wavelet features
compare to the spectrum-base features is that such features
do not involve in calculating inaccurate auto-correlation func-
tions. Moreover, Wavelet transform can be applied to a whole
epoch since it is not sensitive to the non-stationary property of
EEG signals. In addition, unlike Welch method, no averag-
ing is taken to determine the wavelet coefficients throughout
an epoch. In conclusion, Wavelet transform retain comparative
advantages to the other time-frequency domain transforms in
EEG analysis. It should be noted that for this specific applica-
tion, CWT provides more separable features than that of DWT
in terms of frequency resolution within the same time frame.
In addition, wavelet coefficients calculated by CWT are more
redundant than DWT. This redundancy provides more stable
elicited features for sleep stage classification problem leading
to a higher accuracy [11].

5.1.4. Fractal and Entropy Features
Since EEG signals behave irregularly, fractal and entropy

methods are suitable to measure the amount of the roughness
captured inside the signal. As the entropy of a signal is in-
creased, its information contents is inclined, accordingly. In
other words, as a signal behaves more irregular, fractal dimen-
sion and entropy of the signal are increased. When a sleep stage
is changed, the efficient frequency bandwidth along with the
signal amplitude varies accordingly. Therefore, it is expected
that fractal and entropy measures can finely describe each sleep
stage. Although these measures are somehow correlated to each
other, the way of determination of entropy is less sensitive to
noise rather than that of the fractal dimension. Accurate com-
putation of fractal dimension and entropy needs a large num-
ber of samples making their application limited for analyzing
short time signals (e.g. an EEG epoch). Nevertheless, ApEn
is a fast entropy measure at the cost of loosing the accuracy.
Standard EEG bands are defined by their frequency bandwidth

and amplitude variations, while entropy and fractal measures
are not designed to capture the signal bandwidth. Therefore,
these features might appear effective in detecting just the stage
transitions.

5.2. Classifiers

The final phase of automatic sleep stage scoring is classi-
fication. Some of the most used classifiers in this field are
compared in this study (outlined in Fig. 11). Among the com-
pared classifiers, RF produces the highest sleep stage classifi-
cation for different types of feature sets introduced in the five
selected publications (Fig. 11). The main reason for high effi-
ciency of RF roots into the nature of EEG signals. Since such
signals behave irregularly, their elicited features are scattered
through the feature space. To distinguish such scattered sam-
ples, classic methods including LDA+NC, multi-class SVM,
KNN and GMM cannot perform well. As the name implied,
RF is designed to classify scattered samples belonging to dif-
ferent classes with a high overlap. For instance, SVM classifier
acts upon its support vectors and in a noisy environment, a con-
siderable portion of support vectors become noisy leading to the
deterioration of the correct boundary between the two classes.

On the other hand, KNN takes its decision according to the
K nearest samples of an input pattern. When the samples of
a class are not dense, there is no guaranty whether the neigh-
bors of the given pattern belonging to a certain class. In other
words, when the number of samples belong to different classes
becomes equal in the vicinity of an input pattern, KNN cannot
take any decision.

As far as GMM is a density estimator, each sleep stage is
modeled by a certain GMM. When the overlap of the classes
is fairly high, their GMM distributions will be similar in terms
of mean vectors and covariance matrices. Since the recognition
of a sleep stage is performed by finding the maximum value
among the GMM outputs, in the case of fairly equal probabil-
ities of different GNMMs (due to the high overlap among the
classes), this classifier cannot distinguish the sleep stages pre-
cisely.

Further to the above, LDA is a versatile method in EEG sig-
nal processing applications [61]. When LDA faces a multi-class
dataset, some hyperplanes are constructed to project the input
samples into a more separable lower dimension. Since the fi-
nal decision is made based on NC, the results are not necessary
satisfactory. The results from the fact that NC measures the dis-
tance of the projected input samples with the center of classes
without considering the covariance information of each class.
In other words, in real applications, especially when the distri-
bution of a class is multi-modal or skewed, the class-mean is not
a good representer of all samples of a given class. Therefore,
the decision is failed in practice when the class distribution is
not symmetric.

5.3. Natural bottleneck of patients’ sleep analysis

Although entropy of CWT features along with RF classifier
provide an acceptable performance for healthy subjects, the re-
sult of this combination is still unfavorable in patients (Fig. 9).
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Since patients with RBD subject to position change and move-
ment, their EEG signals contain high amplitude movement ar-
tifacts compared to healthy subjects. Especially in the case of
RBD patients, their dream is accompanying with muscle con-
tractions leading to changes in the amplitude of REM behaviors
and makes it very similar to the wake stage [93]. Thus, regular
EEG rhythms become irregular for patients [1] and therefore
conventional features brought from other fields (e.g. communi-
cations) cannot handle this variation. When analyzing the clas-
sification accuracy for each sleep stage separately (shown in
Table 4), we see that N1 was repeatedly misclassified due to its
high similarity with REM in terms of amplitude and spectrum
variations. Moreover, among the sleep stages, N1 has the low-
est number of samples causing the employed classifiers fail to
learn this class similar to other classes. The classifiers boundary
is thus biased toward the classes with higher population. Con-
sequently, a high number of samples in REM stage compared
to the N1 one makes the classifier votes in favor of REM. In
contrast, due to its difference from other stages (except REM)
in terms of frequency content, wake pattern is easily detected.
Therefore it ia obvious that this stage is better detected.

6. Future Work

In this research, available studies on sleep stage classifica-
tion are investigated. As far as the main goal of automatic sleep
stage classification methods is detecting abnormal behaviors of
EEG signals for the patients, none of the proposed methods
achieved a convincing result for patient group. Therefore, de-
veloping a customized EEG based features to detect EEG ar-
rhythmia is deemed necessary. Although theses signal process-
ing methods seem to be robust for analyzing artificial and quasi-
rhythmic signals (e.g. ECG, radar signal), they are not designed
to analyze a chaotic-shape signal like the EEGs of patients with
sleep disorders. It should be mentioned that the role of prepro-
cessing and feature extraction parts for this application is more
important than the classification part. The most similar sleep
stages are N1 and REM which could not be well-separated by
the traditional communication based signal processing features.
The combinatorial features capturing the roughness, frequency
bands and amplitude variations of an EEG epoch can signifi-
cantly enhance the sleep stage performance.
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