Lagrangian methods for a general inhomogeneous incompressible Navier-Stokes-Korteweg system with variable capillarity and viscosity coefficients

Abstract : We study the inhomogeneous incompressible Navier-Stokes system endowed with a general capillary term. Thanks to recent methods based on Lagrangian change of variables, we obtain local well-posedness in critical Besov spaces (even if the integration index p is different from 2) and for variable viscosity and capillary terms. In the case of constant coefficients and for initial data that are perturbations of a constant state, we are able to prove that the lifespan goes to infinity as the capillary coefficient goes to zero, connecting our result to the global existence result obtained by Danchin and Mucha for the incompressible Navier-Stokes system with constant coefficients.
Type de document :
Article dans une revue
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2017, 49 (5), pp.3476-3495. 〈https://epubs.siam.org/doi/abs/10.1137/16M1101532〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01390184
Contributeur : Frederic Charve <>
Soumis le : lundi 31 octobre 2016 - 22:10:47
Dernière modification le : jeudi 4 octobre 2018 - 12:07:33

Fichiers

NSIK_Burtea_Charve.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01390184, version 1
  • ARXIV : 1611.00989

Citation

Cosmin Burtea, Frédéric Charve. Lagrangian methods for a general inhomogeneous incompressible Navier-Stokes-Korteweg system with variable capillarity and viscosity coefficients. SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2017, 49 (5), pp.3476-3495. 〈https://epubs.siam.org/doi/abs/10.1137/16M1101532〉. 〈hal-01390184〉

Partager

Métriques

Consultations de la notice

191

Téléchargements de fichiers

79