V. V. Danilenko, On the history of the discovery of nanodiamond synthesis, Physics of the Solid State, vol.46, issue.4, pp.595-599, 2004.
DOI : 10.1134/1.1711431

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol.306, issue.5696, pp.666-669, 2004.
DOI : 10.1126/science.1102896

URL : http://arxiv.org/pdf/cond-mat/0410550

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

D. S. Bethune, C. H. Klang, M. S. De-vries, G. Gorman, R. Savoy et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, issue.6430, pp.605-607, 1993.
DOI : 10.1038/363605a0

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, issue.6430, pp.603-605, 1993.
DOI : 10.1038/363603a0

M. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load, Science, vol.287, issue.5453, pp.637-640, 2000.
DOI : 10.1126/science.287.5453.637

E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, Chemical Detection with a Single-Walled Carbon Nanotube Capacitor, Science, vol.307, issue.5717, pp.1942-1945, 2005.
DOI : 10.1126/science.1109128

N. M. Iverson, P. W. Barone, M. Shandell, L. J. Trudel, S. Sen et al., In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes, Nature Nanotechnology, vol.454, issue.11, pp.873-880, 2013.
DOI : 10.1038/nature07205

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066962/pdf

Z. Liu, S. Tabakman, K. Welsher, and H. Dai, Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery, Nano Research, vol.86, issue.2, pp.85-120, 2009.
DOI : 10.1177/27.1.220325

C. Wang, L. Xu, C. Liang, J. Xiang, R. Peng et al., Immunological Responses Triggered by Photothermal Therapy with Carbon Nanotubes in Combination with Anti-CTLA-4 Therapy to Inhibit Cancer Metastasis, Advanced Materials, vol.161, issue.48, pp.8154-8162, 2014.
DOI : 10.1038/nature11126

H. Hong, T. Gao, and W. Cai, Molecular imaging with single-walled carbon nanotubes, Nano Today, vol.4, issue.3, pp.252-261, 2009.
DOI : 10.1016/j.nantod.2009.04.002

A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, vol.39, issue.4, pp.507-514, 2001.
DOI : 10.1016/S0008-6223(00)00155-X

URL : https://hal.archives-ouvertes.fr/hal-01003709

S. S. Karajanagi, H. Yang, P. Asuri, E. Sellitto, J. S. Dordick et al., Protein-Assisted Solubilization of Single-Walled Carbon Nanotubes, Langmuir, vol.22, issue.4, pp.1392-1395, 2006.
DOI : 10.1021/la0528201

C. Richard, F. Balavoine, P. Schultz, T. W. Ebbesen, and C. Mioskowski, Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes, Science, vol.300, issue.5620, pp.775-778, 2003.
DOI : 10.1126/science.1080848

A. Battigelli, C. Menard-moyon, T. Da-ros, M. Prato, and A. Bianco, Endowing carbon nanotubes with biological and biomedical properties by chemical modifications, Advanced Drug Delivery Reviews, vol.65, issue.15, pp.1899-1920, 2013.
DOI : 10.1016/j.addr.2013.07.006

H. Ali-boucetta and K. Kostarelos, Carbon nanotubes in medicine & biology ??? Therapy and diagnostics, Advanced Drug Delivery Reviews, vol.65, issue.15, pp.1897-1898, 2013.
DOI : 10.1016/j.addr.2013.11.002

C. Bussy and K. Kostarelos, Carbon nanotubes in medicine and biology ??? Safety and toxicology, Advanced Drug Delivery Reviews, vol.65, issue.15, pp.2061-2062, 2013.
DOI : 10.1016/j.addr.2013.11.001

M. Auffan, J. Rose, J. Y. Bottero, G. V. Lowry, J. P. Jolivet et al., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature Nanotechnology, vol.245, issue.10, pp.634-641, 2009.
DOI : 10.1038/nnano.2009.242

URL : https://hal.archives-ouvertes.fr/hal-00446833

Y. Liu, Y. Zhao, B. Sun, and C. Chen, Understanding the Toxicity of Carbon Nanotubes, Accounts of Chemical Research, vol.46, issue.3, pp.702-713, 2013.
DOI : 10.1021/ar300028m

C. W. Lam, J. T. James, R. Mccluskey, S. Arepalli, and R. L. Hunter, A Review of Carbon Nanotube Toxicity and Assessment of Potential Occupational and Environmental Health Risks, Critical Reviews in Toxicology, vol.287, issue.22, pp.189-217, 2006.
DOI : 10.1039/B207066A

S. Ju, J. Doll, I. Sharma, and F. Papadimitrakopoulos, Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide, Nature Nanotechnology, vol.44, issue.6, pp.356-362, 2008.
DOI : 10.1038/nmat1367

S. Wang, E. S. Humphreys, S. Chung, D. F. Delduco, S. R. Lustig et al., Peptides with selective affinity for carbon nanotubes, Nature Materials, vol.2, issue.3, pp.196-200, 2003.
DOI : 10.1038/nmat833

X. Tu, S. Manohar, A. Jagota, and M. Zheng, DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes, Nature, vol.126, issue.7252, pp.250-253, 2009.
DOI : 10.1038/nature08116

M. G. Nilos, J. Gan, and D. Schlenk, Applied and Systems Toxicology, Langmuir, vol.28, pp.2012-7872, 2009.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnology, vol.82, issue.1, pp.60-65, 2006.
DOI : 10.1557/mrs2004.76

G. Ao, C. Y. Khripin, and M. Zheng, DNA-Controlled Partition of Carbon Nanotubes in Polymer Aqueous Two-Phase Systems, Journal of the American Chemical Society, vol.136, issue.29, pp.10383-10392, 2014.
DOI : 10.1021/ja504078b

R. S. Ruoff, J. Tersoff, D. C. Lorents, S. Subramoney, and B. Chan, Radial deformation of carbon nanotubes by van der Waals forces, Nature, vol.364, issue.6437, pp.514-516, 1993.
DOI : 10.1038/364514a0

L. A. Girifalco, M. Hodak, and R. S. Lee, Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential, Physical Review B, vol.321, issue.19, pp.13104-13110, 2000.
DOI : 10.1016/S0009-2614(00)00307-9

C. A. Dyke and J. M. Tour, Overcoming the Insolubility of Carbon Nanotubes Through High Degrees of Sidewall Functionalization, Chemistry - A European Journal, vol.10, issue.4, pp.812-817, 2004.
DOI : 10.1002/chem.200305534

E. Del-canto, K. Flavin, D. Movia, C. Navio, C. Bittencourt et al., Critical Investigation of Defect Site Functionalization on Single-Walled Carbon Nanotubes, Chemistry of Materials, vol.23, issue.1, pp.67-74, 2011.
DOI : 10.1021/cm101978m

C. P. Firme and P. R. Bandaru, Toxicity issues in the application of carbon nanotubes to biological systems, Nanomedicine: Nanotechnology, Biology and Medicine, vol.6, issue.2, pp.245-256, 2010.
DOI : 10.1016/j.nano.2009.07.003

A. M. Cassell, J. A. Raymakers, J. Kong, and H. Dai, Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes, The Journal of Physical Chemistry B, vol.103, issue.31, pp.6484-6492, 1999.
DOI : 10.1021/jp990957s

M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal, Chemical Physics Letters, vol.278, issue.1-3, pp.102-106, 1997.
DOI : 10.1016/S0009-2614(97)00952-4

C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. L. De-la-chapelle et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique, Nature, vol.275, issue.6644, pp.756-758, 1997.
DOI : 10.1126/science.275.5297.187

URL : https://hal.archives-ouvertes.fr/hal-01613170

T. Yamada, T. Namai, K. Hata, D. N. Futaba, K. Mizuno et al., Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts, Nature Nanotechnology, vol.3, issue.2, pp.131-136, 2006.
DOI : 10.1038/nnano.2006.95

K. J. Mackenzie, O. M. Dunens, and A. T. Harris, An Updated Review of Synthesis Parameters and Growth Mechanisms for Carbon Nanotubes in Fluidized Beds, Industrial & Engineering Chemistry Research, vol.49, issue.11, pp.5323-5338, 2010.
DOI : 10.1021/ie9019787

T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Purification of nanotubes, Nature, vol.367, issue.6463, pp.519-519, 1994.
DOI : 10.1038/367519a0

P. T. Lieu, M. Heiskala, P. A. Peterson, and Y. Yang, The roles of iron in health and disease, Molecular Aspects of Medicine, vol.22, issue.1-2, pp.1-87, 2001.
DOI : 10.1016/S0098-2997(00)00006-6

W. W. Cheng, Z. Q. Lin, Q. Ceng, B. F. Wei, X. J. Fan et al., Single-wall carbon nanotubes induce oxidative stress in rat aortic endothelial cells, Toxicology Mechanisms and Methods, vol.6, issue.22, pp.268-276, 2012.
DOI : 10.1016/j.toxlet.2008.04.015

A. Huczko, H. Lange, E. Ca?ko, H. Grubek-jaworska, and P. Droszcz, PHYSIOLOGICAL TESTING OF CARBON NANOTUBES: ARE THEY ASBESTOS-LIKE?, Fullerene Science and Technology, vol.150, issue.2, pp.251-254, 2001.
DOI : 10.1038/363603a0

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.91-97, 1999.
DOI : 10.1016/S0009-2614(99)01029-5

J. M. Gernand and E. A. Casman, A Meta-Analysis of Carbon Nanotube Pulmonary Toxicity Studies-How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes, Risk Analysis, vol.58, issue.10, pp.583-597, 2014.
DOI : 10.1136/oem.58.10.619

E. Herzog, H. J. Byrne, M. Davoren, A. Casey, A. Duschl et al., Dispersion medium modulates oxidative stress response of human lung epithelial cells upon exposure to carbon nanomaterial samples, Toxicology and Applied Pharmacology, vol.236, issue.3, pp.276-281, 2009.
DOI : 10.1016/j.taap.2009.02.007

H. Ren, X. Chen, J. Liu, N. Gu, and X. Huang, Toxicity of single-walled carbon nanotube: How we were wrong?, Materials Today, vol.13, issue.1-2, pp.6-8, 2010.
DOI : 10.1016/S1369-7021(10)70002-X

URL : https://doi.org/10.1016/s1369-7021(10)70002-x

A. R. Murray, E. Kisin, S. S. Leonard, S. H. Young, C. Kommineni et al., Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes, Toxicology, vol.257, issue.3, pp.161-171, 2009.
DOI : 10.1016/j.tox.2008.12.023

J. Hess, P. Angel, and M. Schorpp-kistner, AP-1 subunits: quarrel and harmony among siblings, Journal of Cell Science, vol.117, issue.25, pp.5965-5973, 2004.
DOI : 10.1242/jcs.01589

URL : http://jcs.biologists.org/content/joces/117/25/5965.full.pdf

T. W. Ebbesen and P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature, vol.358, issue.6383, pp.220-222, 1992.
DOI : 10.1038/358220a0

K. Pulskamp, S. Diabate, and H. F. Krug, Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicology Letters, vol.168, issue.1, pp.58-74, 2007.
DOI : 10.1016/j.toxlet.2006.11.001

A. A. Shvedova, A. Pietroiusti, B. Fadeel, and V. E. Kagan, Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress, Toxicology and Applied Pharmacology, vol.261, issue.2, pp.121-133, 2012.
DOI : 10.1016/j.taap.2012.03.023

H. Jin, D. A. Heller, R. Sharma, and M. S. Strano, Size-Dependent Cellular Uptake and Expulsion of Single-Walled Carbon Nanotubes: Single Particle Tracking and a Generic Uptake Model for Nanoparticles, ACS Nano, vol.3, issue.1, pp.149-158, 2009.
DOI : 10.1021/nn800532m

D. A. Donkor and X. S. Tang, Tube length and cell type-dependent cellular responses to ultra-short single-walled carbon nanotube, Biomaterials, vol.35, issue.9, pp.3121-3131, 2014.
DOI : 10.1016/j.biomaterials.2013.12.075

P. Wick, P. Manser, L. K. Limbach, U. Dettlaff-weglikowska, F. Krumeich et al., The degree and kind of agglomeration affect carbon nanotube cytotoxicity, Toxicology Letters, vol.168, issue.2, pp.121-131, 2007.
DOI : 10.1016/j.toxlet.2006.08.019

P. M. Raja, J. Connolley, G. P. Ganesan, L. Ci, P. M. Ajayan et al., Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells, Toxicology Letters, vol.169, issue.1, pp.51-63, 2007.
DOI : 10.1016/j.toxlet.2006.12.003

E. Y. Umemoto, M. Speck, L. M. Shimoda, K. Kahue, C. Sung et al., Single-walled carbon nanotube exposure induces membrane rearrangement and suppression of receptor-mediated signalling pathways in model mast cells, Toxicology Letters, vol.229, issue.1, pp.198-209, 2014.
DOI : 10.1016/j.toxlet.2014.06.009

L. Belyanskaya, S. Weigel, C. Hirsch, U. Tobler, H. F. Krug et al., Effects of carbon nanotubes on primary neurons and glial cells, NeuroToxicology, vol.30, issue.4, pp.702-711, 2009.
DOI : 10.1016/j.neuro.2009.05.005

B. R. Smith, E. E. Ghosn, H. Rallapalli, J. A. Prescher, T. Larson et al., Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery, Nature Nanotechnology, vol.107, issue.6, pp.481-487, 2014.
DOI : 10.1073/pnas.0915000107

J. W. Shen, T. Wu, Q. Wang, and Y. Kang, Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces, Biomaterials, vol.29, issue.28, pp.3847-3855, 2008.
DOI : 10.1016/j.biomaterials.2008.06.013

J. C. Charlier, Defects in Carbon Nanotubes, Accounts of Chemical Research, vol.35, issue.12, pp.1063-1069, 2002.
DOI : 10.1021/ar010166k

Y. Piao, B. Meany, L. R. Powell, N. Valley, H. Kwon et al., Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects, Nature Chemistry, vol.413, issue.10, pp.840-845, 2013.
DOI : 10.1016/j.chemphys.2012.10.010

H. Kwon, M. Kim, B. Meany, Y. Piao, L. R. Powell et al., Optical Probing of Local pH and Temperature in Complex Fluids with Covalently Functionalized, Semiconducting Carbon Nanotubes, The Journal of Physical Chemistry C, vol.119, issue.7, pp.3733-3739, 2015.
DOI : 10.1021/jp509546d

D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemistry of Carbon Nanotubes, Chemical Reviews, vol.106, issue.3, pp.1105-1136, 2006.
DOI : 10.1021/cr050569o

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhir, Nanoparticle PEGylation for imaging and therapy, Nanomedicine, vol.19, issue.4, pp.715-728, 2011.
DOI : 10.1021/mp0500420

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3217316/pdf

N. Karousis, N. Tagmatarchis, and D. Tasis, Current Progress on the Chemical Modification of Carbon Nanotubes, Chemical Reviews, vol.110, issue.9, pp.5366-5397, 2010.
DOI : 10.1021/cr100018g

S. Banerjee, T. Hemraj-benny, and S. S. Wong, Covalent Surface Chemistry of Single-Walled Carbon Nanotubes, Advanced Materials, vol.15, issue.1, pp.17-29, 2005.
DOI : 10.1080/15363839708013323

A. V. Singh, K. K. Mehta, K. Worley, J. S. Dordick, R. S. Kane et al., Carbon Nanotube-Induced Loss of Multicellular Chirality on Micropatterned Substrate Is Mediated by Oxidative Stress, ACS Nano, vol.8, issue.3, pp.2196-2205, 2014.
DOI : 10.1021/nn405253d

M. Bottini, N. Rosato, and N. Bottini, PEG-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead, Biomacromolecules, vol.12, issue.10, pp.3381-3393, 2011.
DOI : 10.1021/bm201020h

E. Heister, V. Neves, C. Lamprecht, S. R. Silva, H. M. Coley et al., Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes, Carbon, vol.50, issue.2, pp.622-632, 2012.
DOI : 10.1016/j.carbon.2011.08.074

M. J. Rybak-smith and R. B. Sim, Complement activation by carbon nanotubes, Advanced Drug Delivery Reviews, vol.63, issue.12, pp.1031-1041, 2011.
DOI : 10.1016/j.addr.2011.05.012

G. Y. Tonga, K. Saha, and V. M. Rotello, 25th Anniversary Article: Interfacing Nanoparticles and Biology: New Strategies for Biomedicine, Advanced Materials, vol.108, issue.3, pp.359-370, 2014.
DOI : 10.1073/pnas.1018382108

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067239/pdf

A. Gupta, D. Mandal, Y. Ahmadibeni, K. Parang, and G. Bothun, Hydrophobicity drives the cellular uptake of short cationic peptide ligands, European Biophysics Journal, vol.60, issue.4???5, pp.727-736, 2011.
DOI : 10.1016/j.addr.2007.10.005

D. F. Moyano, M. Goldsmith, D. J. Solfiell, D. Landesman-milo, O. R. Miranda et al., Nanoparticle Hydrophobicity Dictates Immune Response, Journal of the American Chemical Society, vol.134, issue.9, pp.3965-3967, 2012.
DOI : 10.1021/ja2108905

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3296893/pdf

V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley et al., Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants, Nano Letters, vol.3, issue.10, pp.1379-1382, 2003.
DOI : 10.1021/nl034524j

J. G. Duque, L. Cognet, A. N. Parra-vasquez, N. Nicholas, H. K. Schmidt et al., Stable Luminescence from Individual Carbon Nanotubes in Acidic, Basic, and Biological Environments, Journal of the American Chemical Society, vol.130, issue.8, pp.2626-2633, 2008.
DOI : 10.1021/ja0777234

URL : https://hal.archives-ouvertes.fr/hal-00746999

X. Wang, T. Xia, M. C. Duch, Z. Ji, H. Zhang et al., Pluronic F108 Coating Decreases the Lung Fibrosis Potential of Multiwall Carbon Nanotubes by Reducing Lysosomal Injury, Nano Letters, vol.12, issue.6, pp.3050-3061, 2012.
DOI : 10.1021/nl300895y

H. Mao, N. Kawazoe, and G. Chen, Uptake and intracellular distribution of collagen-functionalized single-walled carbon nanotubes, Biomaterials, vol.34, issue.10, pp.2472-2479, 2013.
DOI : 10.1016/j.biomaterials.2013.01.002

Z. Liu, S. Tabakman, S. Sherlock, X. Li, Z. Chen et al., Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared, Nano Research, vol.102, issue.3, pp.222-233, 2010.
DOI : 10.1007/BF01518520

R. Zeineldin, M. Haik, and L. G. Hudson, Role of Polyethylene Glycol Integrity in Specific Receptor Targeting of Carbon Nanotubes to Cancer Cells, Nano Letters, vol.9, issue.2, pp.751-757, 2009.
DOI : 10.1021/nl8033174

S. M. Moghimi, A. J. Andersen, S. H. Hashemi, B. Lettiero, D. Ahmadvand et al., Complement activation cascade triggered by PEG???PL engineered nanomedicines and carbon nanotubes: The challenges ahead, Journal of Controlled Release, vol.146, issue.2, pp.175-181, 2010.
DOI : 10.1016/j.jconrel.2010.04.003

URL : http://orbit.dtu.dk/en/publications/complement-activation-cascade-triggered-by-pegpl-engineered-nanomedicines-and-carbon-nanotubes-the-challenges-ahead(cc13a996-f5df-4a47-9e28-8b3250612161).html

I. Hamad, A. C. Hunter, K. J. Rutt, Z. Liu, H. Dai et al., Complement activation by PEGylated single-walled carbon nanotubes is independent of C1q and alternative pathway turnover, Molecular Immunology, vol.45, issue.14, pp.3797-3803, 2008.
DOI : 10.1016/j.molimm.2008.05.020

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824540/pdf

A. Shankar, J. Mittal, and A. Jagota, Binding between DNA and Carbon Nanotubes Strongly Depends upon Sequence and Chirality, Langmuir, vol.30, issue.11, pp.3176-3183, 2014.
DOI : 10.1021/la500013c

X. Liu, H. Tao, K. Yang, S. Zhang, S. T. Lee et al., Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors, Biomaterials, vol.32, issue.1, pp.144-151, 2011.
DOI : 10.1016/j.biomaterials.2010.08.096

H. Lee, Molecular Dynamics Studies of PEGylated Single-Walled Carbon Nanotubes: The Effect of PEG Size and Grafting Density, The Journal of Physical Chemistry C, vol.117, issue.49, pp.26334-26341, 2013.
DOI : 10.1021/jp4093749

T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin et al., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proceedings of the National Academy of Sciences, vol.5, issue.3, pp.2050-2055, 2007.
DOI : 10.1021/pr050421l

A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. Hoek et al., Understanding biophysicochemical interactions at the nano???bio interface, Nature Materials, vol.20, issue.7, pp.543-557, 2009.
DOI : 10.1289/ehp.6000

M. P. Monopoli, C. Aberg, A. Salvati, and K. A. Dawson, Biomolecular coronas provide the biological identity of nanosized materials, Nature Nanotechnology, vol.7, issue.12, pp.779-786, 2012.
DOI : 10.1016/j.chemosphere.2010.07.062

D. F. Moyano, K. Saha, G. Prakash, B. Yan, H. Kong et al., Fabrication of Corona-Free Nanoparticles with Tunable Hydrophobicity, ACS Nano, vol.8, issue.7, pp.6748-6755, 2014.
DOI : 10.1021/nn5006478

S. Tenzer, D. Docter, S. Rosfa, A. Wlodarski, J. Kuharev et al., Nanoparticle Size Is a Critical Physicochemical Determinant of the Human Blood Plasma Corona: A Comprehensive Quantitative Proteomic Analysis, ACS Nano, vol.5, issue.9, pp.7155-7167, 2011.
DOI : 10.1021/nn201950e

E. Herzog, A. Casey, F. M. Lyng, G. Chambers, H. J. Byrne et al., A new approach to the toxicity testing of carbon-based nanomaterials???The clonogenic assay, Toxicology Letters, vol.174, issue.1-3, pp.49-60, 2007.
DOI : 10.1016/j.toxlet.2007.08.009

S. Ghosh, S. M. Bachilo, and R. B. Weisman, Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation, Nature Nanotechnology, vol.2, issue.6, pp.443-450, 2010.
DOI : 10.1038/nnano.2010.68

Z. Cao, Q. Yu, H. Xue, G. Cheng, and S. Jiang, Nanoparticles for Drug Delivery Prepared from Amphiphilic PLGA Zwitterionic Block Copolymers with Sharp Contrast in Polarity between Two Blocks, Angewandte Chemie International Edition, vol.43, issue.22, pp.3771-3776, 2010.
DOI : 10.1002/adma.200901407

S. Jiang and Z. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications, Advanced Materials, vol.45, issue.9, pp.920-932, 2010.
DOI : 10.1560/7C67-5X19-PEJ8-PXUN

G. P. Kotchey, S. A. Hasan, A. A. Kapralov, S. H. Ha, K. Kim et al., A Natural Vanishing Act: The Enzyme-Catalyzed Degradation of Carbon Nanomaterials, Accounts of Chemical Research, vol.45, issue.10, pp.1770-1781, 2012.
DOI : 10.1021/ar300106h

F. Canfarotta and S. A. Piletsky, Engineered Magnetic Nanoparticles for Biomedical Applications, Advanced Healthcare Materials, vol.24, issue.2, pp.160-175, 2014.
DOI : 10.1523/JNEUROSCI.3126-04.2004

K. Donaldson, A. Schinwald, F. Murphy, W. S. Cho, R. Duffin et al., The Biologically Effective Dose in Inhalation Nanotoxicology, Accounts of Chemical Research, vol.46, issue.3, pp.723-732, 2013.
DOI : 10.1021/ar300092y

A. D. Bobadilla, E. L. Samuel, J. M. Tour, and J. M. Seminario, Calculating the Hydrodynamic Volume of Poly(ethylene oxylated) Single-Walled Carbon Nanotubes and Hydrophilic Carbon Clusters, The Journal of Physical Chemistry B, vol.117, issue.1, pp.343-354, 2013.
DOI : 10.1021/jp305302y

A. Casey, E. Herzog, M. Davoren, F. M. Lyng, H. J. Byrne et al., Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity, Carbon, vol.45, issue.7, pp.1425-1432, 2007.
DOI : 10.1016/j.carbon.2007.03.033

J. M. Worle-knirsch, K. Pulskamp, and H. F. Krug, Oops They Did It Again! Carbon Nanotubes Hoax Scientists in Viability Assays, Nano Letters, vol.6, issue.6, pp.1261-1268, 2006.
DOI : 10.1021/nl060177c

P. H. Chen, K. M. Hsiao, and C. C. Chou, Molecular characterization of toxicity mechanism of single-walled carbon nanotubes, Biomaterials, vol.34, issue.22, pp.5661-5669, 2013.
DOI : 10.1016/j.biomaterials.2013.03.093

N. Saito, H. Haniu, Y. Usui, K. Aoki, K. Hara et al., Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials, Chemical Reviews, vol.114, issue.11, pp.6040-6079, 2014.
DOI : 10.1021/cr400341h

URL : https://doi.org/10.1021/cr400341h