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Deep fusion of visual sighatures
for client-server facial analysis
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Binod Bhattarai
Normandie Univ, UNICAEN,
ENSICAEN, CNRS, GREYC
binod.bhattarai@unicaen.fr

Facial analysis is a key technology for enabling human-
machine interaction. In this context, we present a client-
server framework, where a client transmits the signature of
a face to be analyzed to the server, and, in return, the server
sends back various information describing the face e.g. is the
person male or female, is she/he bald, does he have a mus-
tache, etc. We assume that a client can compute one (or a
combination) of visual features; from very simple and effi-
cient features, like Local Binary Patterns, to more complex
and computationally heavy, like Fisher Vectors and CNN
based, depending on the computing resources available. The
challenge addressed in this paper is to design a common uni-
versal representation such that a single merged signature is
transmitted to the server, whatever be the type and num-
ber of features computed by the client, ensuring nonetheless
an optimal performance. Our solution is based on learn-
ing of a common optimal subspace for aligning the different
face features and merging them into a universal signature.
We have validated the proposed method on the challenging
CelebA dataset, on which our method outperforms existing
state-of-art methods when rich representation is available at
test time, while giving competitive performance when only
simple signatures (like LBP) are available at test time due
to resource constraints on the client.

1. INTRODUCTION

We propose a novel method in a heterogeneous server-
client framework for the challenging and important task of
analyzing images of faces. Facial analysis is a key ingredient
for assistive computer vision and human-machine interaction
methods, and systems and incorporating high-performing
methods in daily life devices is a challenging task. The ob-
jective of the present paper is to develop state-of-the-art
technologies for recognizing facial expressions and facial at-
tributes on mobile and low cost devices. Depending on their
computing resources, the clients (i.e. the devices on which
the face image is taken) are capable of computing different
types of face signatures, from the simplest ones (e.g. LPB)
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to the most complex ones (e.g. very deep CNN features), and
should be able to eventually combine them into a single rich
signature. Moreover, it is convenient if the face analyzer,
which might require significant computing resources, is im-
plemented on a server receiving face signatures and comput-
ing facial expressions and attributes from these signatures.
Keeping the computation of the signatures on the client is
safer in terms of privacy, as the original images are not trans-
mitted, and keeping the analysis part on the server is also
beneficial for easy model upgrades in the future. To limit
the transmission costs, the signatures have to be made as
compact as possible. In summary, the technology needed
for this scenario has to be able to merge the different avail-
able features — the number of features available at test time
is not known in advance but is dependent on the computing
resources available on the client — producing a unique rich
and compact signature of the face, which can be transmitted
and analyzed by a server. Ideally, we would like the univer-
sal signature to have the following properties: when all the
features are available, we would like the performance of the
signature to be better than the one of a system specifically
optimized for any single type of feature. In addition, we
would like to have reasonable performance when only one
type of feature is available at test time.

For developing such a system, we propose a hybrid deep
neural network and give a method to carefully fine-tune the
network parameters while learning with all or a subset of
features available. Thus, the proposed network can process a
number of wide ranges of feature types such as hand-crafted
LBP and FV, or even CNN features which are learned end-
to-end.

While CNNs have been quite successful in computer vi-
sion [1], representing images with CNN features is relatively
time consuming, much more than some simple hand-crafted
features such as LBP. Thus, the use of CNN in real-time ap-
plications is still not feasible. In addition, the use of robust
hand-crafted features such as FV in hybrid architectures can
give performance comparable to Deep CNN features [2]. The
main advantage of learning hybrid architectures is to avoid
having large numbers of convolutional and pooling layers.
Again from [2], we can also observe that hybrid architec-
tures improve the performance of hand-crafted features e.g.
FVs. Therefore, hybrid architectures are useful for the cases
where only hand-crafted features, and not the original im-
ages, are available during training and testing time. This
scenario is useful when it is not possible to share training
images due to copyright or privacy issues.

Hybrid networks are particularly adapted to our client-



server setting. The client may send image descriptors either
in the form of some hand-crafted features or CNN features
or all of them, depending on the available computing power.
The server has to make correct predictions with any num-
ber and combination of features from the client. The naive
solution would be to train classification model for the type
of features as well as for any of their combinations and place
them in the server. This will increase the number of model
parameters exponentially with the number of different fea-
ture types. The proposed hybrid network aligns the different
feature before fusing them in a unique signature.

The main contribution of the paper is a novel multi-features
fusion hybrid deep network, which can accept a number of
wide ranges of feature types and fuse them in an optimal
way. The proposed network first processes the different fea-
tures with feature specific layers which are then followed
by layers shared by all feature types. The former layer(s)
generate(s) compact and discriminative signatures while the
later ones process the signatures to make predictions for the
faces. We learn both feature specific parameters and shared
parameters to minimize the loss function using back prop-
agation in such a way that all the component features are
aligned in a shared discriminative subspace. During test
time, even if all the features are not available, e.g. due to
computation limitations, the network can make good predic-
tions with graceful degradation depending on the number of
features missing.

The thorough experimental validation provided, demon-
strates that the proposed architecture gives state-of-the art
result on attributes prediction on the CelabA dataset when
all the features are available. The method also performs
competitively when the number of features available is less
i.e. in a resource-constrained situation.

The rest of the paper is organized as follows: Sec. 2
presents the related works, Sec. 3 gives the details of our
approach while Sec. 4 presents the experimental validation.

2. RELATED WORKS

In this section we review some of the works which are,
on one side, related to hybrid architectures or, on the other
side, related to multimodal fusion and face attribute classifi-
cation. Apart from face attributes classification, other crit-
ical applications on faces are: large scale face retrieval [3,
4], face verification [5, 6, 7, 8], age estimation [9, 10], etc.
For more details on the application of faces and comprehen-
sive comparison of recent works, we suggest the readers refer
[11].

Hybrid Architectures. One of the closest works to our
work is from Perronnin et al. [2]. The main idea behind
their work is to use Fisher Vectors as input to Neural Net-
works (NN) having few fully connected (supervised) layers
(up to 3) and to learn the parameters of these layers to
minimize the loss function. The parameters are optimized
using back propagation. Unlike their architecture, our net-
work takes a number of wide range of hand-crafted features
including FVs, but not only. In addition, our architecture
is also equipped with both feature specific parameters and
common parameters. We have designed our network in such
a way that the input features are aligned to each other in
their sub-spaces. The advantage of such alignments is that
our system can give good performance even when a single
type of feature is present at test time. Moreover, such ability

makes our system feature independent i.e. it can properly
handle any types of features it encounters.

There are some works, such as [12], which, instead of tak-
ing hand-crafted features as input, takes CNN features and
compute FVs in the context of efficient image retrieval and
image tagging. This approach improves the performance of
CNNs and attains state-of-art performance, showing that
not only FVs but also CNNs benefit from hybrid architec-
ture.

Face Attribute Classification. Some of the earliest and
seminal work on facial attribute classification is the works
from Kumar et al. [13, 14]. Both of their papers use hand-
crafted low-level features to represent faces, sampled with
AdaBoost in order to discover the most discriminative ones
for a given attribute, and train binary SVM classifiers on
this subset of features to perform attribute classification.
The current state-of-art method of Liu et al. [15] uses two
deep networks, one for face localization and another for iden-
tity based face classification. The penultimate layer of the
identity classification network is taken as the face represen-
tation, and a binary SVM classifier is trained to perform
an attribute classification. Some other recent state-of-the-
art methods such as PANDA [16], Gated ConvNet [17], etc.
also use deep learning to learn the image representation and
do attribute classifications on it. From these works, we can
observe that either hand-crafted features or CNN features
are used for attribute classification. From our knowledge,
the proposed method is the first to learn a hybrid struc-
ture combining multiple hand-crafted and CNN features for
facial attribute classification. Moreover, most of the men-
tioned works here are performing binary attribute classifica-
tion while we are predicting multiple attributes of faces.

Multi-modal fusion. Recently Neverova et al. [18] pro-
posed a method called Mod-Drop to fuse information from
multiple sources. Their main idea is to take a batch of ex-
amples from one source at a time and feed into the network
to learn the parameters, instead of taking examples from all
the sources. The main drawbacks of their approach is, when
a new source is encountered and is to be fused, it requires
to re-trainthe whole network. Some other recent works such
as [19, 20, 21, 22] fuse multiple sources of information to
improve the performance of the final result. None of these
works evaluated the performance of component sources or
their possible combinations after fusion.

3. APPROACH

As mentioned before, a key challenge addressed in this pa-
per is to learn an optimal way to fuse several image features
into a common signature, through the use of a hybrid fully
connected deep network. This section presents the proposed
method in detail, explains how to learn the parameters and
gives technical details regarding the architecture.

3.1 Network architecture

Fig. 2 shows a schematic diagram of the proposed net-
work. A, B and C denote the different feature types to be
aligned and fused, which are the input to the network. We
recall that all or only a subset of the features can be available
depending on the computing resources of the client. While
we show a network with 3 features types, more can be used
with similar layers for the new features. The key idea here
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Figure 1: Randomly sampled images of CelebA and a subset of attributes. Green color attributes are relevant
for the image whereas red color attributes are irrelevant (better viewed in color).

is to train a single network which consists of feature spe-
cific layers (shown in blue), to be implanted on the clients,
and common layers (shown in black), to be implanted on
the server. The activation of the middle layer, obtained af-
ter merging the feature specific layers, gives the universal
signature which will be transmitted from the client to the
server. Each layer is fully connected with its parents in the
network. In our application the output of the network is
the facial expressions/attributes to be recognized, one neu-
ron per expression/attribute, with the final values indicating
the score for the presence of these attributes.

3.2 Learning the parameters of the network

Carefully setting up the learning of such hybrid network is
the main issue for competitive performance. We propose to
learn the parameters of this network with a multistage ap-
proach. We start by learning an initialization of the common
parameters. To do this we work with the most discriminate
feature type (e.g. A, B or C). For example, suppose we ob-
served that A is the most discriminate for our application (as
discussed in the experiment section, we will see that for our
application FVs are the most discriminant features). Thus
we start learning the parameters of the network correspond-
ing to both (i) the feature specific parameters of network A
(blue layers) and (ii) the part of the network common to all
features (black layers). Then we fix the common parame-
ters and learn the feature specific parameters of the feature
B taking training examples encoded with B. In our case, the
task is same but the features are different during each train-
ing round. By repeating the same procedure, we learn the
feature specific parameters of the network for each of the
remaining type of features. In the end, all the features are
aligned into a common signature which can then be trans-
mitted to the server for the computation.

The major advantage of this strategy is that although we
are mapping all the features into same feature space, we
do not require feature to feature correspondence e.g. we are
not using a certain feature type to estimate or mimic any
other feature type. Moreover, when we encounter a new
feature type, we can easily branch out the existing network
and learn its parameter without hindering the performance
of other feature types. Thus the proposed learning strat-
egy, while performing very well, also avoids the retraining
of the whole network upon addition of a new features type.

This is a major advantage of this our approach over existing
Mod-drop [18] algorithm. Finally, since there are fewer pa-
rameters to optimize than training one distinct network per
feature, the computations required are less and the training
is faster.

Another alternative, that we explored, is to learn the pa-
rameters of the whole network first with all the available
feature types, and then fix the common parameters and fine-
tune the feature specific parameters. The reason behind this
approach is to make shared subspace more discriminative
than with the one learned with the single most discrimi-
native feature so that we can align all the component fea-
tures in this subspace and improve the overall performance.
We found the performance obtained with this approach is
slightly better than the one we discussed before. However,
this alternative requires feature to feature correspondence
mapping. Moreover, training with all the features at a time
requires more computing resource and also leads to slow con-
vergence and longer training time. We compare the perfor-
mances of these methods in more details in the experiment
section.

3.3 Details of the architecture

The proposed network is composed of only fully connected
(FC) layers. Once the features are fed into the network,
they undergo feature specific linear projections followed by
processing with Rectified Linear Units (ReLU). Eq. 1 gives
the feature-specific transformations, where o is the non-
linear transformation function i.e. ReLU, Wa, Wg, W and
ba,bp,bc are projection matrices and biases for the input
features of the networks A, B, and C respectively. These
representations further go into linear projections followed
by ReLU depending upon the depth of the network.

h* = o(xaWa +ba)
h? = o(xgWgs + bp)
he = o(xcWe + be) (1)

When the network takes more than one type of features
at a time, it first transforms them with the FC and ReLU
layers and then sums them and feeds into the common part
of the network. We call this step as merging, as shown in the
diagram. We further call the vector obtained at this point,
after merging, as the signature of the face.
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Figure 2: Illustration of proposed method.

Parameters Layer Type A B C
Type

Input XA XB Xc

Feature FC(ReLU) | 4096 | 4096 | 4096

Specific FC(ReLU) | 1024 | 1024 | 1024
Merge Add 1024
FC(ReLU) 1024
Common FC(ReLU) 1024

Sigmoid 40

Table 1: Details of parameters of proposed network

In the common part of the network, intermediate hidden
layers are projected into linear space followed by ReLLU. The
final layer of the network is a sigmoid layer. Since we are do-
ing multilabel predictions, sigmoid will assign higher proba-
bilities to the ground truth classes. We learn the parameters
to minimize the sum of binary cross-entropy of all the predic-
tions of the sigmoid layer. We minimize the loss function us-
ing Stochastic Gradient Descent (SGD) with standard back
propagation method for network training.

In the heterogeneous client-server setting, the client is ex-
pected to compute the signature and send it to the server
for processing. Since different clients can have very differ-
ent computing capabilities they can compute their signature
with different types and number of features — in the worst
case with just one feature. The method allows for such di-
versity among clients and as the server side works with the
provided signature while being agnostic about what and how
many features were used to make it.

4. EXPERIMENTS

We now present the experimental validation of the pro-
posed method on the task of facial attribute classification.

All the quantitative evaluation is done on the CelebA dataset [15],

the largest publicly available dataset annotated with facial
attributes. There are more than 200,000 face images an-
notated with 40 facial attributes. This dataset is split into
train, val, and test sets. We use train and val set for train-
ing and parameter selection respectively, and we report the
results obtained on the test set.

In the rest of the section, we first give the implementation

details and then discuss the results we obtained.

4.1 Implementation details

We have performed all our experiments with the publicly
available aligned and cropped version of the CelebA'! [15]
dataset (without any further pre-processing). We assume
that up to 3 different types of features can be computed,
namely, Local Binary Patterns, Fisher Vectors and Convo-
lutional Neural Networks features, as described below.

Local Binary Patterns (LBP). We use the publicly avail-
able vlfeat [23] library to compute the LBP descriptors.
The images are cropped to 218 x 178 pixels. We set cell size
equal to 20, which yields a descriptor of dimension 4640.

Fisher Vectors (FV). We compute Fisher Vectors follow-
ing Simoyan et al [6]. We compute dense SIFTs at multiple
scales, and compress them to a dimension of 64 using Princi-
pal Component Analysis. We use a Gaussian mixture model
with 256 Gaussian components. Thus, the dimension of the
FV feature is of 32,768 (2x256x64). The performance of
this descriptor is 77.6 + 1.2% on LFW for the task of face
verification, with unsupervised setting, which is comparable
to the one reported [6].

Convolutional Neural Networks (CNN). We use the
publicly available state-of-art CNN mode trained on mil-
lions of faces presented in [7], to compute the CNN features.
The dimension of CNN feature is of 4096. Our implementa-
tion of this feature gives 94.5+1.1% on LFW for verification
in unsupervised setting. Here, these features are computed
without flipping and/or multiples of cropping of faces.

4.2 Baseline methods.

We report two different types of baselines. In the first
one, the network is trained with a given feature type (e.g.
LBP) while the same type of feature is used at test time
(e.g. LBP again). We call this type of network as Dedicated
Networks. In the second setting, we allow the set of features
at train time and the one used at test time to differ. Such
networks are adapted to different sets of features. This is the
particular situation we are interested in. More precisely, we

"http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html



Method Avg. Precision
Random 23.1%
FVNet 69.0%
CNNNet 68.7%
LBPNet 64.3%

Table 2: Average Precision (AP) of single feature
type baselines

experimented with 3 different dedicated networks (one per
feature type) and 2 adapted networks, as detailed below, all
such are considered as baselines.

LBPNet/FVNet/CNNNet. These baseline networks use
only LBP, FV or CNN features, respectively, for both train-
ing and testing. They provide the single feature perfor-
mances, assuming that no other feature is available either
at training or testing.

All Feature Training Network (AllFeatNet). In this
setting, all the available features are used to train the net-
work. At test time, one or more than one type of features
can be used, depending on its availability. For us, the avail-
able features are as described before F'Vs, CNNs, and LBPs.

Mod-Drop. This is currently the best method for learn-
ing cross-modal architectures, inspired by [18]. It consists,
at train time, in randomly sampling a batch of examples
including only one type of features at a time, instead of tak-
ing all the available features, and learn the parameters in a
stochastic manner. We refer the reader to the original work
[18] for more details.

4.3 The proposed method.

On the basis of which we fix the parameters of the com-
mon shared subspace, we categorize the proposed methods
into two:

FVNetlInit. Tab. 2 shows the individual performance of
different features we used for our experiments. From the
table we can see that F'Vs are most discriminative for our
application. Thus, we choose to take few top layer’s pa-
rameters ( please refer Tab. 1 of for the number of layers in
shared subspace ) of FVNet as common shared parameters
of proposed network. Once we fix this, we learn the feature
specific parameters for CNNs and LBPs to minimize the loss
function. Fig. 4 shows the evolution of performances of FVs,
LBPs, and CNNs with the amount of training epochs.

AllFeatNetInit. In this case, we use the common part of
AllFeatNet as a starting point. Then we fix these parame-
ters and learn the feature specific parameters of FVs, LBPs
and CNNs to minimize the loss the function.

4.4 Quantitative results

We now present the results of the experiments we do to
evaluate the proposed method. We measure the performance
using average precision (AP) i.e. the area under the preci-
sion vs. recall curve. We do not consider attribute label
imbalances for all the cases, unless explicitly stated.

Our experiments are mainly focused on validating two as-

Method mean Avg. Precision
AllFeatNet 634+ 95 %
Mod-Drop 67.8 + 3.7 %

Ours(FVNetInit) 68.8 + 3.0%
Ours(AllFeatNetInit) 69.0 + 3.4%

Table 3: mean AP(mAP) of multi-feature baselines

Performance comparison
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Figure 3: Performance comparison between differ-
ent methods and different combinations of feature(s)
at test time. FCL represents FVs, CNNs, and LBPs
respectively. ’x’ denotes the absence of the corre-
sponding feature.

pects of the proposed method. First, we demonstrate that
the performance due to individual features are retained af-
ter merging all the features in the same common subspace.
Second, we demonstrate that the performance is improved
in the presence of more information, i.e. presence of multiple
types of features at a time.

Performance comparison with Dedicated Networks.
Tab. 2 and Tab. 4 give the performance of single features net-
works and their comparison with that of the multi-feature
trained network (when, at test time, only one type of fea-
ture is present). From these tables, we can observe that,
with both our approaches, the performance of the compo-
nent features at test time is competitive to that of dedicated
networks trained with those features only. Compared to ex-
isting methods such as Mod-Drop and AllFeatNet, the range
of performance drops in comparison to dedicated networks is
the least in our case. More precisely, the widest drop range
for us is up to —2.8% w.r.t. that of LBPNet in AllFeat-
NetInit network. While for the same feature, it is up to
—4.7% in Mod-Drop and up to —21.8% in AllFeatNet w.r.t.
that of LBPNet. These results clearly demonstrate that our
method is more robust in retaining the performances of indi-
vidual features while projecting them in common subspace.

Performance comparison with Multi-feature Networks.

Table 3 compares the mean average precision (mAP) of dif-
ferent multiple features based networks with the proposed
method. For a network with 3 different types of input fea-
tures, there are 7 different possible combinations of fea-
ture(s) at test time. The performance shown in the ta-
ble is the mean AP obtained with all these combinations.
The proposed method outperforms the other multi-feature-



Mod-Drop

Ours (FVNetlInit)

Ours
(AllFeatNetInit)

Features Dedicated AllFeatNet
Network
FV 69.0% 64.2% (-4.7%)
CNN 68.7% 63.3% (-5.5%)
LBP 64.3% 42.5% (-21.8%)

70.0% (+1%)
68.2% (-0.5%)
59.6% (-4.7%)

63.7% (-0.3%)
68.1% (-0.6%)
62.1% (-2.2%)

68.8% (-0.2%)
67.9% (-0.8%)
61.5% (-2.8%)

Table 4: Comparing the proposed methods with other methods using dedicated networks. The table shows
that the performance of the proposed methods is competitive to the one of dedicated networks, while the
performance of other compared methods is significantly low, particularly in the case of LBPs.
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Figure 4: Performance of FVs, CNNs, and

LBPsmeasured on the validation set.

based networks. This shows that the proposed network and
the multi-stage training strategy is capable of making better
predictions in the presence of more information i.e. multiple
types of features at a time and are optimal to every combi-
nation of features.

Fig. 3 shows the performance comparison between the pro-
posed methods with AllFeatNet at different levels of feature
combinations. From the bar-chart, we can observe that,
when all the features are available at test time, AllFeat-
Net performs better than ours. It is expected too, because
this approach is optimized only for this combination. But
this is the most unlikely scenario for the applications we are
addressing, due to constraints such as computing resources
and time, etc. Out of other 6 cases, our method performs
substantially better and gives similar performance in one
case. This shows that our method leverages all the features
available and when more information is present, gives bet-
ter performance. Unlike AllFeatNet, the proposed method
is optimal in every combination of features too.

4.5 Qualitative results

Fig. 5 shows the qualitative performances comparison be-
tween the baselines and the proposed method. We randomly
choose three different test images and used them for evalu-
ation. Here, we consider LBPs (the simplest feature type)
only for evaluation. Thus for both the single feature net-
work (LBPNet) and multi-feature network ( AllFeatNet and
ours), only LBPs are available at test time. In the figure
we can see the top 7 attributes predicted by the compared
methods. For each of the attributes, the corresponding score
shows the probability of an attribute being present in the
given image. On the basis of the number of correct pre-
dicted attributes, the performances of LBPNet and the pro-

posed method is comparable in two cases (first two cases).
While in the third case, our method (4 correct predictions
) is even better than LBPNet (3 correct predictions). This
further validates that the proposed method retains the prop-
erty of component features. The performance of AllFeatNet
is comparatively poorer than LBPNet and ours for all test
images. Moreover, it is important to note that the scores
corresponding to the predicted attributes by AllFeatNet are
small. This suggests that with this approach the predictive
power of LBPs is masked by other strong features e.g. FV
and CNNs.

5. CONCLUSIONS

We propose a novel hybrid deep neural network and a
multistage training strategy, for facial attribute classifica-
tion. We demonstrated, with extensive experiments, that
the proposed method retains the performance of each of the
component features while aligning and merging all the fea-
tures in the same subspace. In addition to it, when more
than one feature type is present, it improves the performance
and attains state-of-art performance. The proposed method
is also easily adaptable to new features simply learning the
feature specific parameters. This avoids retraining the ex-
isting network. Since the majority part of the network is
shared among all the feature types, the proposed method
reduces the number of parameters.
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