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STEADY STATE FORCED RESPONSE OF A
MECHANICAL OSCILLATOR WITH COMBINED
PARAMETRIC EXCITATION AND CLEARANCE

TYPE NON-LINEARITY

G. W. Blankenship and A. Kahraman

General Motors Corporation, Powertrain Division, 37350 Ecorse Road, Romulus,
Michigan 48174-1376 U.S.A.

A mechanical system exhibiting combined parametric excitation and clearance type
non-linearity is examined analytically and experimentally in an effort to explain complex
behavior that is commonly observed in the steady state forced response of rotating machines.
The specific case of a preloaded mechanical oscillator having a periodically time-varying
stiffness function and subject to a symmetric backlash condition is considered. A generalized
solution methodology is proposed based on the harmonic balance method. The resulting
non-linear algebraic equations are solved by using a direct Newton–Raphson technique,
in which a closed form Jacobian matrix is computed using frequency domain methods.
Analytical solutions are validated by comparison with numerical integration results and
experimental measurements obtained from a gear dynamics test rig.

1. INTRODUCTION

In the study of rotating machinery dynamics, of primary interest is the prediction and

measurement of the steady state forced response as excited by internal system components

such as gears, rolling element bearings, turbines, pumps, sprags, clutches and the like.

Such systems are inherently non-linear with temporally and spatially varying system

parameters which arise due to periodically changing contact regimes and separations due

to clearances or backlash. For instance, in a spur gear pair, the gear mesh stiffness varies

periodically with the angular positions of the gears as the number of tooth pairs in contact

alternates between n and n+1, where n is the integer part of the profile contact ratio.

Similarly, the radial stiffness of a ball or roller bearing is time-varying due to fluctuations

in the number of rolling elements in contact as the shafts rotate. In both examples, a clearance

is introduced into the system in the form of gear backlash or a radial gap to ease the assembly

and ensure proper operation.

In the course of the authors’ experimental investigations with mechanical power

transmission systems, several phenomena have been observed in the forced response of such

systems which are yet to be explained analytically; these include but are not limited to

multiple coexisting limit cycles, modulation sidebands in narrow band spectra, sub- and

superharmonic motions and aperiodic or apparent chaotic behavior. In an attempt to

develop a fundamental understanding of the physical mechanisms which give rise to such

complex behavior, a governing equation is introduced based on the simple mechanical
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oscillator of unit mass shown in Figure 1:

ẍ+2�ẋ+�[�(�)]g[x(�)]=f(�), (1a)

�(�)=w1+ �
K

k=1

[w2k cos (k�)+w2k+1 sin (k�)], (1b)

g[x(�)]=�x(�)−1,

0,

x(�)+1,

x(�)�1,

�x(�)��1,

x(�)�−1.

(1c)

Here, ( ·) denotes differentiation with respect to time �, � is an equivalent system damping

ratio, f(�) is an external forcing function,�[�(�)]=�[�(�)+2�] is a spatially periodic stiffness

function and g[x(�)] is a non-linear restoring function. In general, �(�) is assumed to be

positive definitewithw1=1 and can therefore be expressed in terms of theFourier series given

by equation (1b). The restoring function g[x(�)] may describe softening or hardening

characteristics as well as clearance type behavior. In this study, g[x(�)] is assumed to be a

symmetric, piecewise-linear clearance or backlash function as defined by equation (1c). The

external forcing function f(�) may take on many different forms depending upon the system

configuration, but is usually assumed to be periodic in � and can, therefore, be represented

as the Fourier series

f(�)=f1+�
L

l=1

[f2l cos (l�)+f2l+1 sin (l�)]. (1d)

The system rotation angle �(�) is given by �(�)=��+�x(�), where � is a time-invariant

mean angular velocity. The term �x(�) represents a linear variation in �(�) with x(�).

Hence, �(�) and f(�) are both exponentially modulated by x(�) and � is the so-called angle

modulation depth [1].

1.1. literature review

Previous studies in the literature have focused almost entirely on two limiting cases of

equation (1). By far the most studied form of equation (1) is the linear system obtained by

neglecting the clearance non-linearity such that g[x(�)]=x(�). This leads to a form of the

Hill or Mathieu equation [2]. In most studies, sinusoidal or piecewise linear variations of

the system parameters are assumed and, typically, only the initial value problem is solved

Figure 1. The physical system: a mechanical oscillator of unit mass.
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with an emphasis on dynamic stability and parametric behavior of the system [2]. A general

solution methodology for the steady state forced response of systems subject to combined

parametric and forcing excitations was presented by Hsu and Cheng [3] in terms of the

fundamental matrix of the homogeneous system. The harmonic balance approach has also

been employed by Blankenship and Singh [1] to explain the presence of modulation

sidebands in machinery spectra.

The other limiting case of equation (1) considers a piecewise linear oscillator with external

excitation and time-invariant stiffness such that �[�(�)]=1. Such systems have been

shown to exhibit an entire spectrum of nonlinear phenomena such as the dependence of

steady state solutions to initial conditions, multiple coexisting solutions as well as

subharmonic and chaotic motions. Due to the strong non-linearity introduced by g[x(�)],

standard perturbation solution techniques are not suitable [4]. The viable solution

techniques may be divided into four categories. Piecewise linear solution techniques, such

as those employed by Shaw and Holmes [5] and Natsiavas [6], seek closed form linear

solutions corresponding to each segment of g[x(�)]. The resulting solutions must be precisely

matched at the instants when impact occurs. This procedure may be quite difficult to

implement, especially with impacts that are not equally spaced. Single and multiple term

harmonic balance (HBM) approaches have been employed effectively to obtain the steady

state forced response by several investigators including Tomlinson and Lam [7], Kahraman

and Singh [4], Pfeiffer and Fritzer [8], Choi and Noah [9], Kim and Noah [10] and Lau and

Zhang [11]. One limitation of HBM is that the effects of initial conditions on the solution

cannot be considered. A third method introduced by Pfeiffer and Kunert [12] uses a

stochastic model applied to the well-known Fokker–Planck equation. Finally, direct

numerical integration has been widely employed to study systems with clearance type

non-linearities; examples include the investigations by Mahfouz and Badrakhan [13] and

Kahraman [14]. Although very valuable as a tool to validate other analytical methods,

numerical integration is not practical due to the computational expense required to obtain

steady state solutions, especially for lightly damped systems.

The main focus of this study is the steady state forced response of preloaded systems

exhibiting combined parametric excitation and clearance type nonlinearities. Although one

limiting version of equation (1) having an external alternating forcing term was solved

numerically by Kahraman and Singh [15] and Sato et al. [16], a generalized analytical

treatment of equation (1) is yet to be developed. Since steady state solutions are of interest

in this study, a multiple term HBM approach is employed. The resulting nonlinear algebraic

equations are solved by using a direct Newton–Raphson technique where a closed form

Jacobian matrix is computed using a frequency domain method similar to that of Kim and

Noah [10]. Stability issues are examined using standard perturbation techniques along with

well known results from Floquet theory [2].

Experimental studies having as their aim the demonstration of subharmonic and chaotic

motions in mechanical systems with clearances have concentrated mostly on small

laboratory bench-top set-ups which employ relatively simple non-linear elements. Examples

include a beam subjected to a rigid support with clearance [17–19] or an impacting pendulum

[20, 21]. Typically, the apparatus and system parameters are designed such that simple

time domain data acquisition and analysis are possible. In this study, a very practical and

considerably more complicated engineering application, namely, a precision spur gear pair

with backlash and time-varying mesh stiffness characteristics, is used to demonstrate that

the proposed governing equation (1) is indeed pertinent to the study of rotating machinery

dynamics. Experimental measurements are used clearly to validate the proposed analytical

model with an emphasis on describing jump discontinuities in steady state forced response

curves.

3



1.2. scope

A generalized solution methodology is proposed to obtain the steady state forced response

of equation (1) for the special case �=0 such that �(�)=��. Analytical solutions are

compared with numerical integration results and experimental measurements obtained from

a gear dynamics test rig. The main emphasis is to obtain analytical solutions which

adequately describe measured forced response phenomena in the fundamental and

superharmonic resonance regimes. An approximate harmonic solution is obtained by using

describing functions in order to arrive at mathematical conditions for the occurrence of

non-linear behavior.

2. GENERAL SOLUTION BY HBM

The steady state solution x(�)=x(�+T) of equation (1) is assumed to be periodic in � with

fundamental period T=2�/�. Accordingly, g[x(�)]=g(�)=g(�+T) must also be periodic

in � with the same period. Therefore, both functions can be expressed in terms of Fourier

series [10]:

x(�)=u1+�
R

r=1

[u2r cos (r�)+u2r+1 sin (r�)],

g(�)=	1+�
R

r=1

[	2r cos (r�)+	2r+1 sin (r�)]. (2a, b)

Equation (2) is substituted into the governing equation (1) and harmonic balance is enforced

by collecting even and odd terms of like frequency to form the vector equation S=0, where

the (2R+1) elements of S are given by

S1=	1+
1
2 �

R

i=1

[	2iw2i+	2i+1w2i+1]−f1, (3a)

S2r=−(r�)2u2r+2r��u2r+1+	1w2r+	2r+
1
2 �

R

i=1

	2i [w2(i−r)+w2(i+r)+w2(r−i)]

+1
2 �

R

i=1

	2i+1[w2(i−r)+1+w2(i+r)+1−w2(r−i)+1]−f2r , r � [1, R], (3b)

S2r+1=−(r�)2u2r+1−2r��u2r+	1w2r+1+	2r+1+
1
2 �

R

i=1

	2i [−w2(i−r)+1+w2(i+r)+1

+w2(r−i)+1]+
1
2 �

R

i=1

	2i+1[w2(i−r)−w2(i+r)+w2(r−i)]−f2r+1, r � [1, R]. (3c)

In order to solve S=0, it is first necessary to express the 	i in terms of the ui . This is readily

accomplished in the frequency domain by making use of the discrete Fourier transform
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(DFT). The values of x(�) and g(�) at the discrete time �=nh are

xn=u1+�
R

r=1

[u2r cos (2�rn/N)+u2r+1 sin (2�rn/N)], n � [0, N−1], (4a)

gn=�xn−1,

0,

xn+1,

xn�1,

�xn ��1,

xn�−1,

n � [0, N−1], (4b)

respectively, where h=2�/(N�) and N�2R to avoid aliasing errors [22]. The Fourier

coefficients of g(�) are determined by taking the inverse DFT equation (4b)

	1=
1

N
�

N−1

n=0

gn , 	2r=
2

N
�

N−1

n=0

gn cos (2�rn/N),

	2r+1=
2

N
�

N−1

n=0

gn sin (2�rn/N), r � [1, R]. (5a–c)

The above 	i are then substituted into equation (3) and the solution vector u=

[u1 u2 u3 · · · u2R u2R+1]
T is determined by employing the Newton–Raphson procedure [23]:

u(m)=u(m−1)−[J−1](m−1)S(m−1). (6)

Here, u(m) is the mth iterative solution based on the previous (m−1)th guess and J−1 is

the inverse of the Jacobian matrix, the elements of which are defined in Appendix A.

The iteration procedure described by equation (6) is repeated until the vector norm of S(m)

is below a specified tolerance. The initial guess u(0) dictates the number of iterations required

for convergence as well as the particular steady state solution found in multiple solution

regimes.

2.1. stability of steady state solution

The stability of a given periodic solution x(�) is determined by examining the stability of

the perturbed solution x(�)+
x(�), using Floquet theory. The variational equation for the

perturbation 
x(�) is given by


ẍ+2�
ẋ+�(�)�(�)
x(�)=0, (7a)

where �(�) is a discontinuous separation function

�(�)=�1,

0,

�x(�)��1,

�x(�)��1,
(7b)

that is consistent with the discrete formulation of equation (A2j) given in Appendix A.

Equation (9a) can be written in the state-space form ż(�)=G(�)z(�), where z(�)=
[
x(�) 
ẋ(�)]T is the state vector and G(�)=G(�+T) is the periodic transition matrix

given by

G(�)=� 0

−�(�)�(�)

1

−2��. (8)
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The stability of the perturbed solution and consequently the stability of the corresponding

system solution x(�) are determined by examining the eigenvalues of the monodromy matrix

M=Z(T), which is obtained by solving the homogeneous matrix equation Z� (�)=G(�)Z(�)

given initial condition Z(0)=I2. Here, I2 is the 2×2 identity matrix. One method to compute

M is by direct numerical integration of the above equation by constructing �(�), x(�), and

hence �(�), from the previously known Fourier coefficients ui and 	i . A more efficient method

to compute M has been developed by Hsu and Cheng [3]. The state matrix G(�) is

approximated as a series of step functions Gn at N discrete time intervals �=nh, according

to

Gn=
1

h �
nh

(n−1)h

G(�) d�, n � [0, N−1]. (9)

An approximate value of M is obtained from the expression

M��
N−1

n=0 �I2+ �
M

m=1 	hGm
n

m ! 
�, (10)

where M is the number of terms in the approximation for the matrix exponential.

This method is easily implemented in the present approach, as M can be readily constructed

from the previously available DFT results. The complex eigenvalues �1 and �2 of

M correspond to the so-called Floquet multipliers which must satisfy the relation

�1�2=exp(−2�T). The solution x(�) is clearly unstable if the modulus of either �1 or �2 is

greater than unity. Bifurcations may also be classified by observing the behavior of the

Floquet multipliers as they leave the unit circle [24]. For instance, a saddle node bifurcation,

which corresponds to the merger of two periodic solutions, occurs when one multiplier leaves

the unit circle at +1 while the other remains inside. A flip bifurcation, which corresponds

to the transition from an unstable periodic solution to a stable periodic solution having twice

the period, occurs when one multiplier leaves the unit circle at −1 while the other remains

inside. Finally, a stable solution will become unstable and doubly periodic whenever a

complex conjugate pair leaves the unit circle.

2.2. harmonic solution

In an attempt to obtain various closed form expressions which can be used approximately

to characterize the system, a single term harmonic balance approach is employed by using

describing functions to account for any separations allowed by g[x(�)]. The stiffness and

forcing functions are both assumed to be harmonic at frequency �, which yields the

following reduced form of the governing equation

ẍ(�)+2�ẋ(�)+{1+wa sin [�(�)]}g[x(�)]=fm+fa sin [�(�)+�]. (11)

Here, subscripts m and a refer, respectively, to the mean and alternating components

of the stiffness and forcing functions with wm=w1=1, wa=�w2
2+w2

2+1�1, fm=f1,

fa=�f 2
2+f 2

2+1 and relative phase �=tan−1(f2+1/f2 )−tan−1(w2+1/w2 ). The steady state

solution is assumed to be purely harmonic:

x(�)=um+ua sin (�+�), (12)
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Figure 2. Non-linear restoring function g(�) for (a) no-impact (NI), (b) single sided impact (SSI) and (c) double
sided impact regimes (DSI).

where amplitudes um and ua and phase angle � are the unknowns. Letting �(�)=��+� and

substituting equation (12) into equation (1c) yields

g[x(�)]=�um−1+ua sin �,

0,

um+1+ua sin �,

� � [0, �−
1 ) or � � (�+

1 , 2�],

� � [�−
1 , �−

2 ] or � � [�+
2 , �+

1 ],

� � (�−
2 , �+

2 ),

(13)

where ��
1 =�+sin−1 �� and ��

2 =2�−sin−1 �� are transition angles that correspond to the

zeros of the equation x(�)=�1, respectively, with ��=(um�1)/ua . Equation (13) can be

approximated as a harmonic expression in terms of the so-called describing functions 	m and

	a :

g[x(�)]�	m+	a sin (�+�). (14a)

The describing functions 	m and 	a are given below for the three possible contact regimes

shown in Figure 2: no impact (NI) where um−ua�1; single sided impact (SSI) where

�um−ua ��1; and double sided impact (DSI) where um−ua�−1:

	m=
1

2� �
2�

0

g[x(�)] d�=�um−1,
1
2(um−1)+A−/�,

um+(A−−A+)/�,

NI,
SSI,
DSI,

(14b)
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	a=
1

� �
2�

0

g[x(�)] sin � d�=�ua ,
1
2ua+B−/�,

ua+(B−−B+)/�,

NI,
SSI,
DSI,

(14c)

A�=(um�1) sin−1 ��+ua�1−�2
�, (14d)

B�=ua sin−1 ��+(um�1)�1−�2
�. (14e)

Substituting equations (12) and (14) into equation (11) and enforcing harmonic balance

yields the following set of non-linear algebraic equations:

	a−2�2ua+	mwa cos �−fa cos (�−�)=0, (15a)

2��ua−	mwa sin �+fa sin (�−�)=0, (15b)

	m−fm+
1
2	awa cos �=0. (15c)

The above equations may be solved for um , ua and � separately for each impact regime by

substituting the appropriate describing functions from equations (14b, c). An expression for

the transition frequencies separating linear NI and non-linear SSI solution regimes is readily

obtained for the special case fa=0 by solving for the values of � and � which satisfy the

condition um−ua=1. The transition frequency at both sides of the th superharmonic

resonance is given by

�1,2=
1


�1−2�2��w2

a−4�2(1−�2). (16)

The above equation is accurate in regions of the th superharmonic resonance since the

steady state solution is very nearly harmonic with frequency � in these regimes regardless

of the harmonic content of �; this is demonstrated later in Section 3.5.

For a special case of a lightly damped system in which ��1, equation (16) reduces

to �1,2��1�wa /. Furthermore, since the discriminant w2
a−4�2(1−�2)�0 in order for the

transition frequencies to be real, all solutions must be in the NI regime so long as wa�2�.

Hence, the existence of separations is dictated entirely by wa and � for lightly damped systems

(��0·1) and is completely independent of preload fm .

2.3. general hbm solution in the NI regime

A general solution for the linear NI case is obtained by substituting 	1=1+u1 and 	i=ui ,

i � [1, 2R+1] into equation (3). The conditions S=0 is satisfied by solving the linear

equation Au=b, where the elements of square matrix A and column vector b, both of

dimension (2R+1), are given respectively by

a11=2, (17a)

a1,2i=a2i,1=w2i , i � [1, R], (17b)

a1,2i+1=a2i+1,1=w2i+1, i � [1, R], (17c)
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a2i,2i=1−(i�)2+1
2w4i , i � [1, R], (17d)

a2i,2i+1=2�(i�)+1
2w4i+1, i � [1, R], (17e)

a2i+1,2i=−2�(i�)+1
2w4i+1, i � [1, R], (17f)

a2i+1,2i+1=1−(i�)2−1
2w4i , i � [1, R], (17g)

a2i,2j=a2j,2i=
1
2[w2( j−i)+w2( j+i)], i � [1, R], j � [1, (i−1)], (17h)

a2i,2j+1=a2j+1,2i=
1
2[−w2( j−i)+1+w2( j+i)+1], i � [1, R], j � [1, (i−1)], (17i)

a2i+1,2j=a2j,2i+1=
1
2[w2( j−i)+1+w2( j+i)+1], i � [1, R], j � [1, (i−1)], (17j)

a2i+1,2j+1=a2j+1,2i+1=
1
2[w2( j−i)−w2( j+i)], i � [1, R], j � [1, (i−1)], (17k)

b={2f1+2 w2 w3 w4 w5 ... w2K w2K+1 0 0 0 ...}T. (18)

Solving the above system of equations directly requires considerably less computational

effort than the Newton–Raphson procedure defined by equation (6). This leads to an efficient

general algorithm to solve the governing equation (1). In NI regimes bounded approximately

by the transition frequencies given by equation (16), the above set of equations is solved

directly for u by using a Gaussian elimination procedure [23], whereas equation (6) is

employed to determine u in SSI and DSI regimes.

3. EXPERIMENTAL VALIDATION

In order to validate equation (1) and demonstrate several non-linear phenomena exhibited

by the mechanical oscillator of Figure 1, a unique gear dynamics test rig was designed and

constructed. Specialized instrumentation and data acquisition and signal processing

software were developed to measure in real time the vibratory displacement of a gear pair

operating under conditions typical of an industrial rotating machine. Parameters required

by equation (1) were determined experimentally and analytical solutions obtained by HBM

and numerical integration are compared with experimental steady state measurements.

3.1. application example: a gear pair

As a practical application of the proposed governing equation (1), consider a purely

torsional two-degree-of-freedom (DOF) model of a gear pair supported by rigid mounts as

shown in Figure 3. The rotational angle of each gear �i(t)=�it+�i
a (t) is written as the sum

of a nominal rotation angle �it and a vibratory component �i
a (t) which arises due to the gear

meshing action. Here t represents real time, and �i is the mean rotational velocity of gear

i. The �i and �j are related kinematically by �i�i=�j�j, where �i is the base radius of gear

i. Since the system is semi-definite, the dynamic model may be reduced to a single DOF in

terms of the so-called dynamic transmission error co-ordinate �(t)=�i�i
a (t)+�j�j

a (t), which

represents relative displacement across the gear mesh interface. Here, subscripts i and j
denote gears i and j respectively. The corresponding equation of motion is given by

meq��+ceq�'+k[�*(t)]ĝ{�(t)−�[�*(t)]}=F, (19a)

ĝ{�(t)−�[�*(t)]}=��(t)−�[�*(t)]−b,

0,

�(t)−�[�*(t)]+b,

�(t)−�[�*(t)]�b,

��(t)−�[�*(t)]��b,

�(t)−�[�*(t)]�−b.

(19b)
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Figure 3. An application example: a single-DOF torsional model of a gear pair.

Here, (') denotes differentiation with respect to t, meq=IiIj/[Ii(�i)2+Ii(�i)2] is the system

equivalent mass determined from the polar mass moment of inertia Ii of each gear, ceq is an

equivalent viscous damping coefficient which describes frictional losses of the system, F is

the mean load carried by the gear teeth and 2b is the total backlash. The instantaneous mesh

stiffness of the gear pair k[�*(t)] varies periodically according to the number of teeth in

contact for a given system rotation angle �*(t)=�*t+��(t). The term �[�*(t)] describes

manufacturing errors associated with mating gear teeth and must also be periodic in �*.

Thus, � gives rise to external forcing which may be neglected for precision gear pairs with

no intentional tooth flank modifications. The system rotational angle is written in terms of

the system velocity �*=�i/ni and modulation depth �=ni/�i, where ni=Ni/GCF(Ni, Nj) is

an integer and GCF(Ni, Nj) is the greatest common factor of gear tooth numbers Ni and Nj.

Hence the fundamental frequency �* of k and � is niNi times lower than the so-called gear

meshing or tooth engagement frequency �=niNi�i. However, if tooth-to-tooth variations

of each gear are kept small by precision manufacturing, then both k and � may be assumed

to be periodic at the meshing frequency �.

Let �=�nt be a dimensionless time parameter, where �n=�km /meq is the undamped

natural frequency of the corresponding linear time-variant system and km is the mean

value of k[�(�)]. Accordingly, the equation of motion (21) may be reduced to the

governing equation (1) for the case �[�*(t)]=0 by defining x(�)=�(�)/b, �=ceq /2�meqkm and

�[�(�)]=k[�(�)]/km . The dimensionless forcing frequency is given by �=�/�n

and f [�(�)]=f1=F/kmb in accordance with the mean and alternating convention defined

earlier.

The above single-DOF model is valid for precision gear pairs provided that the equivalent

translational stiffness of shafting, bearings and supporting structures are sufficiently large

relative to the equivalent mesh stiffness [4]. In cases in which the amplitude of �(t) is relatively

small (less than 10 �m), angle modulation effects are negligible and the assumption �=0 is

valid [1].

3.2. experimental gear dynamics test rig

The four-square gear test rig shown in Figure 4 was designed precisely to measure �(t)
for a gear pair operating under a range of speed and load conditions. The lubrication bonnet

and several guards have been removed for clarity in this photograph. Several unique features

are required in order to ensure that the behavior of the test rig is indeed described by equation
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Figure 4. The experimental test rig.

(1). These features are labelled in the schematic diagram shown in Figure 5. A precision test

gear pair (i) is straddle mounted between oversized ultra-precision spherical roller bearings

(ii) which are themselves supported by rigid bearing pedestals (iii). The span of the test gear

shafts (iv) is kept to an absolute minimum and the shafting diameter is sufficiently large to

ensure that any translational or shaft bending modes are well above the primary torsional

resonance of the test gear pair so that the SDOF model is valid. The test gear pair is

dynamically isolated from the slave gear box (v) by compliant elastomer couplings (vi)

and flywheels (vii). Precision helical slave gears (viii) are machined with a different number

of teeth from the test gears so that the meshing frequencies are not commensurate.

Furthermore, the slave gear tooth flanks have specially ground topological modifications

to ensure minimal excitation over a range of operating loads. A power recirculation

arrangement is employed to ensure precise torque regulation and efficient operation. System

torque is manually adjusted by loosening a split hub coupling (ix) and applying a static

torque using a locking pin (x) and a removable torque arm with dead weights that are not

shown. Once system torque is applied, the split hub is tightened and the torque arm removed.

Power is supplied by a DC motor (xi) equipped with electronic speed control. In order to

keep damping to a minimum, the system is lubricated with low viscosity automatic

transmission fluid under controlled elevated temperatures. Lubrication is applied to the gear

mesh exit and all four bearings at controlled flow rates to ensure consistent film thickness

and hence constant damping ratio. Experimental investigations indicated that the system

damping is dictated primarily by the bearings under the above lubrication conditions;

thus employing a linear viscous damping term in equation (19a) is valid even when tooth

separations take place.

The test gears are of a standard 50 tooth, 3·0 mm module, 20° pressure angle unity ratio

design such that �=70·477 mm and were ultra-precision ground with no intentional flank

modifications such that �=0 and fa=0. The spectral content of ka is dictated primarily by

the so-called involute contact ratio which may be varied over a suitable range by selecting

mating gears of the same nominal design but having different major diameters. The mean

stiffness km depends mostly on the gear face width and involute contact ratio. Accordingly,
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Figure 5. A schematic of the test rig: i, test gear pair (AGMA Class 14); ii, ultra-precision spherical roller bearings;
iii, rigid bearing pedestals to reduce structural dynamics; iv, test gear shafts that are very stiff in bending and torsion;
v, slave gear box necessary for power recirculation; vi, compliant elastomer couplings and vii, flywheels for torsional
isolation between test and slave gears; viii, slave gears with topological modifications for reduced excitation; ix,
split hub; x, locking pin for torque adjustment; xi, 20 hp DC motor with electronic speed control; xii, location of
torsional accelerometers; xiii, slip rings to connect accelerometer signals to conditioning amplifiers; xiv, optical
encoders (18 000 lines) to control data sampling rates; xv, drive belt; xvi, polymer granite base.

km may be adjusted for a given contact ratio by altering the gear face width. In this way,

parametric studies can be conducted with fm and � as the independent variables with �

constant.

3.3. instrumentation

The measurement of �(t) to the necessary accuracy of 0·01 �m over a typical range of

operating speeds from 200 to 4000 shaft rpm proved to be a very challenging task. This is

achieved by attaching four tangentiallymounted piezoelectric accelerometers (xii) to the gear

wheel as shown in Figure 6a. Slip rings (xiii) are used to connect the accelerometers to the

necessary signal conditioning amplifiers. Signals from all four accelerometers zi (t), i=1 to

4, are added vectorally to cancel gravitational effects as well as any transverse vibrations
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Figure 6. (a) The arrangement of linear accelerometers on a gear wheel and (b) the block diagram of the analog
circuitry used to compute �(t) from measured accelerometer signals zi (t).

which may occur. Although two diametrically opposed accelerometers are sufficient, four

are used in order to achieve higher measurement accuracy by averaging random errors. The

resulting angular acceleration of each gear is then added in the time domain to obtain ��(t)
and subsequently integrated twice to yield �'(t) and �(t), respectively, by using the analog

circuitry shown in the block diagram of Figure 6(b). This method allows direct measurement

of �(t) and its time derivatives to an extremely high accuracy of less than 0·001 �m at

1000 Hz. The measurement accuracy is highly dependent upon the excitation frequency,

since displacement is directly proportional to the measured acceleration amplitude by the

square of the excitation frequency.

3.4. data acquisition and signal processing

Analog signals representing �(t) and �'(t) are captured and analyzed in real time by using

a high speed multiple channel signal analysis workstation. Synchronous time averaging is

employed by controlling the analyzer sampling rate from a clock pulse obtained from a high

precision 18 000 line optical encoder (xiv) mounted on the test gear shaft. This not only

results in a high signal to noise ratio but, more importantly, allows all analyses to be easily

conducted with respect to dimensionless time � once �n is known from an experimental

modal analysis. Averaging also diminishes the influence of any slight differences among

individual teeth that exist due to unavoidable manufacturing errors; the effects of which were

otherwise neglected by the periodicity assumptions in Section 3.1. All Fourier transforms

13



are performed in the so-called orders domain rather than the frequency domain. The

measured �(t) and �'(t) are normalized to obtain x(�) and x'(�) respectively. The rth
harmonic amplitude Ar of x(�) is determined by

Ar=� �
Ni+BW/2

si=Ni−BW/2

X� (rsi)X� *(rsi), (22a)

where X� (si) is the complex valued discrete Fourier coefficient of x(�) corresponding to shaft

order index si, Ni is the number of teeth on gear i, BW is the analysis bandwidth in shaft

orders and (*) denotes complex conjugate. A typical value of BW=4 was chosen in order

to account for sidebands and leakage and bin errors inherent to experimental spectrum

analysis. An equivalent root-mean-square (r.m.s.) amplitude Arms of the alternating

component of x(�) is given by

Arms=��
R

r=1

A2
r , (22b)

where the maximum number of harmonic terms R available to approximate Arms depends

on the operating mesh frequency range 200���3400 Hz and the upper frequency

limitation of the angular accelerometer ��5000 Hz. Although the alternating component

of x(�) can be measured very accurately, the mean value of x(�) cannot be obtained from

accelerometer measurements.

3.5. solution validation

Experimental values of Arms are compared with equivalent r.m.s. amplitudes obtained

from a three-term harmonic balance solution in Figure 7 over the frequency range

0·2���1·1, which includes the fundamental and first two superharmonic resonances.

Stiffness values wi were determined experimentally for a normalized preload of f1=1·0, given

�n=19 500 rad/s and b=0·015 mm. The value of � was estimated to be 0·01 from

experimental data. Also shown in Figure 7 are corresponding solutions obtained by direct

Figure 7. A comparison of HBM solutions (——) with numerical integration (�) and experimental (�) results.
R=3, K=3, with w2=0·15, w4=0·075, w6=0·06 and all other wi=0, f1=1·0 with all other fi=0, and �=0·01.
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Figure 8. Measured coexisting steady state solutions �1(t) and �2(t) at �=0·9: (a) �1(t) versus �t/2�; (b) FFT
of �1(t); (c) �2(t) versus �t/2�; (d) the FFT of �2(t); and (e) phase portraits �'1 (t) versus �1(t) and �'2 (t) versus �2(t).
The system parameters are the same as in Figure 7.

time domain numerical integration of equation (1) by using a fifth–sixth order variable step

size Runge–Kutta algorithm that are in excellent agreement with the HBM solution. Overall,

the analytical solution matches quite well with the experimental data which exhibited only

NI and SSI responses for the particular physical configuration tested. The response of

the physical system was extremely well behaved and repeatable. In regions of multiple

solutions, the lower branchwas obtainedby slowly increasing the system speeduntil jump-up

occurred. Similarly, the upper branch was obtained by slowly decreasing system speed until

jump-down occurred. The frequencies at which these transitions occurred were very distinct

and could be detected audibly by a 10–40 dB change in sound level. Differences between

analytical and experimental results in the upper solution branches are attributed to

inaccuracies in the simplified mesh interface model as well as slight manufacturing variances

that caused � and fa to be other than zero under actual operating conditions.

The measured time domain response of the system within double solution regimes in the

vicinity of the fundamental (=1) and first superharmonic (=2) resonance is shown in

Figures 8 and 9, given �=0·9 and �=0·45, respectively. The measurements are presented

in dimensional form in these two figures in order to demonstrate how small the amplitude

of � is in practice. In both cases, the measured response is nearly harmonic with frequency

�. The harmonic content of the analytical solution presented in Figure 7 is examined by

plotting the forced response curves Arms , A1, A2 and A3 versus � for NI and SSI solutions

only, as shown in Figure 10. Clearly, the steady state forced response in the vicinity of the

th resonance is nearly harmonic so that Arms�A . The amplitude A is dictated almost
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Figure 9. Measured coexisting steady state solutions �1(t) and �2(t) at �=0·45: (a) �1(t) versus �t/2�; (b) the
FFT of �1(t); (c) �2(t) versus �t/2�; (d) the FFT of �2(t); (e) phase portraits �'1 (t) versus �1(t) and �'2 (t) versus �2(t).
The system parameters are the same as in Figure 7.

entirely by the th harmonic stiffness amplitudes w2 and w2+1 and is influenced only slightly

by stiffness harmonics other than those of frequency �. Hence, for practical purposes, the

system response in regions near the fundamental and superharmonic resonances may

be described by a single-term harmonic balance solution at frequency �. However,

additional harmonic terms must be included in the corresponding NI solution in

off-resonance regimes. Also shown in Figure 10 are the corresponding r.m.s. and harmonic

amplitudes obtained from an LTV analysis by neglecting backlash completely. Note that

the LTV solution becomes unstable in the vicinity of the fundamental (=1) resonance for

the lightly damped case considered here. This occurs because of an unstable parametric

resonance attributed to the second harmonic stiffness terms w4 and w5 that coincides with

the otherwise stable =1 resonance [1]. Hence, the clearance non-linearity has a stabilizing

effect on the forced response which is in exact agreement with the observed behavior of the

physical system.

4. PARAMETRIC STUDIES: HARMONIC SOLUTION

The system response has been shown to be nearly harmonic in resonance regimes where

the presence of the clearance type non-linearity dictates the system behavior. Accordingly,

the harmonic solution of Section 2.2 is employed to study the effects of wa , � and fm on the

steady state forced response of a lightly damped system, ��0·1, with an emphasis on

the fundamental and superharmonic resonance regimes.
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Figure 10. A comparison of the harmonic content of multiple term HBM solutions (�) with the corresponding
LTV system results (- - - - -); (a) Arms versus �; (b) A1 versus �; (c) A2 versus �; (d) A3 versus �. The system
parameters are the same as in Figure 7.

4.1. effect of stiffness variation

The effect of wa on the mean um and alternating ua components of x(�) is shown in Figure 11

for a given preload fm=0·5 and damping ratio �=0·05. Both stable and unstable SSI and

DSI solutions are shown along with the linear NI portion of the steady state forced response

over the frequency range 0·5���1·5. For wa�2�, the system behaves in a linear fashion

and no jumps or unstable solutions occur. As wa is increased beyond 2�, two stable solutions

coexist. The shape of the forced response curve for wa�0·25 is similar to that of a forced

Duffing’s equation of the softening type. Both jump-up and jump-down frequencies and the

amount of frequency overlap between the upper and lower stable solutions are highly

dependent upon wa . The lower jump-up frequency is nearly equal to the transition frequency

�1 given by equation (16) and this corresponds to a fold bifurcation. While the upper

transition frequency �2 predicted by equation (16) is evident from a corresponding inflection

in the forced response curve, the actual jump-down frequency occurs at a much lower

frequency. This behavior is consistent with the experimental forced response curves shown

in Figure 12, which were obtained by overlaying several measured response curves A versus

�, with each harmonic having a distinct value of wa for a given gear involute contact ratio.

As wa is increased further such that um−ua�−1, a DSI solution is revealed which folds back

to the right as shown in Figure 11 for wa�0·25. Transitions from NI to SSI are readily

detected by the deviation of um from its otherwise constant value in NI regimes, as shown

in Figure 11(b).
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Figure 11. The effect of stiffness variation wa on the (a) alternating ua and (b) mean um components of the steady
state forced response for wa � [0·1, 0·5], fm=0·5, and �=0·05. ——, Stable solutions; · · · · ·, unstable solutions.

Figure 12. The effect of stiffness variation wa on the measured alternating component ua of the steady state forced
response for wa�0·20, 0·15, 0·10, 0·05 and 0·02, ��0·01 and fm=0·5.
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Figure 13. The effect of the damping ratio � on the (a) alternating ua and (b) mean um components of the steady
state forced response for � � [0, 0·1] with an increment of 0·02, fm=0·5 and wa=0·25. ——, Stable solutions; · · · · ·,
unstable solutions.

4.2. effect of damping ratio

The effect of � on the steady state forced response is illustrated in Figure 13, given fm=0·5

and wa=0·25 over the same frequency range. For 2��wa , the system behaves in a linear

fashion. The effect of decreasing � is similar to increasing wa with the exception that the

jump-up frequency is only slightly affected by �, which is in agreement with equation (16).

As � is decreased further the solution bifurcates to a DSI solution.

4.3. effect of preload

The effect of fm on the steady state forced response is illustrated in Figure 14, given

�=0·05 and wa=0·25 over the same frequency range. Since wa�2�, the system will exhibit

jump phenomenon regardless of fm . Such behavior is quite different from that of a

clearance-type oscillator with time-invariant stiffness, where increasing the preload was

shown to prevent any separations fromoccurring [4]. The jump-up frequency associatedwith

the lowest solution branch is independent of preload and is governed entirely by wa and �.

However, the jump-down frequency is highly dependent on preload becoming lower as
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Figure 14. The effect of the preload fm on the (a) alternating ua and (b) mean um components of the steady state
forced response for fm � [0·25, 1·25] with an increment of 0·25, �=0·05 and wa=0·25. ——, Stable solutions; · · · · ·,
unstable solutions.

fm is decreased. This behavior is consistent with the experimental forced response curves

shown in Figure 15, although some variation in the jump-up frequency does occur as

fm is varied. This may be attributed to the fact that � and fa are not exactly zero under

actual operating conditions. The frequency overlap between the upper and lower SSI
solutions tends to zero as fm��. DSI solutions exist only for higher values of fm and were

not observed in the physical test system because of loading limitations.

5. CONCLUSIONS

A new differential equation is introduced having periodic stiffness variation and clearance

type non-linearity which has been shown experimentally to describe accurately non-linear

behavior observed in the steady state forced response of a class of rotating machinery in the

fundamental and superharmonic resonance regimes. An efficient HBM solution

methodology is presented that employs a direct Newton–Raphson procedure to solve the

resulting system of equations in the non-linear solution regimes and a Gaussian elimination

procedure in linear solution regimes. This procedure may be extended to multiple-DOF

systems. Analytical solutions are validated by comparison with numerical integration results

and experimental measurements obtained from a gear dynamics test rig. An approximate
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Figure 15. The effect of the preload fm on the measured alternating component ua of the steady state forced
response for fm�1·0, 0·5 and 0·25, wa�0·20 and ��0·01.

harmonic solution is obtained which yields mathematical conditions for the occurrence of

non-linear behavior in the system response.

Well behaved coexisting stable response solutions have been clearly demonstrated using

a relatively common mechanical system that has significant relevance to automotive,

aerospace, marine and industrial power transmission and gearing applications. The gear pair

system used as the engineering application is inherently non-linear and exhibits a range of

complex behavior beyond that reported in this publication. For instance, subharmonic

resonances, as well as aperiodic motions and chaotic behavior, have been observed and

reported in another recent paper [25].
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APPENDIX A: ELEMENTS OF THE JACOBIAN MATRIX

The elements of the Jacobian matrix Jij=�Si /�uj are given by

�S1

�uj
=

�	1

�uj
+1

2 �
R

r=1 �w2r 	�	2r

�uj
+w2r+1 	�	2r+1

�uj 
�, (A1a)

�S2i

�uj
=−(i�)2�2i+2i���2i+1+w2i 	�	1

�uj
+	�	2i

�uj
+1
2 �

R

r=1 	�	2r

�uj
[w2(r−i)+w2(r+i)+w2(i−r)]

+1
2 �

R

r=1 	�	2r+1

�uj 
[w2(r−i)+1+w2(r+i)+1−w2(i−r)+1], i � [1, R], j � [1, 2R+1], (A1b)
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�S2i+1

�uj
=−(i�)2�2i+1−2i���2i+w2i+1 	�	1

�uj
+	�	2i+1

�uj 

+1

2 �
R

r=1 	�	2r

�uj
[−w2(r−i)+1+w2(r+i)+1+w2(i−r)+1]

+1
2 �

R

r=1 	�	2r+1

�uj 
[w2(r−i)−w2(r+i)+w2(i−r)], i � [1, R], j � [1, 2R+1], (A1c)

where

�i=�1,

0,

i=j,

i	j,

is the Krohnecker delta. Meanwhile, the partial derivatives �	i /�uj in equations (A1) are

determined directly from equations (4) and (5) as [10]

�	1

�u1

=
1

N
�

N−1

n=0

�n , (A2a)

�	1

�u2j
=

1

N
�

N−1

n=0

�n cos(2�nj/N),
�	1

�u2j+1

=
1

N
�

N−1

n=0

�n sin(2�nj/N), j � [1, R], (A2b, c)

�	2i

�u1

=
2

N
�

N−1

n=0

�n cos (2�ni/N), i � [1, R], (A2d)

�	2i

�u2j
=

2

N
�

N−1

n=0

�n cos (2�ni/N) cos (2�nj/N), (A2e)

�	2i

�u2j+1

=
2

N
�

N−1

n=0

�n cos (2�ni/N) sin (2�nj/N), i, j � [1, R], (A2f)

�	2i+1

�u1

=
2

N
�

N−1

n=0

�n sin(2�ni/N), i � [1, R], (A2g)

�	2i+1

�u2j
=

2

N
�

N−1

n=0

�n sin (2�ni/N) cos (2�nj/N), (A2h)

�	2i+1

�u2j+1

=
2

N
�

N−1

n=0

�n sin (2�ni/N) sin (2�nj/N), i, j � [1, R], (A2i)

where �n is a discrete separation function given by

�n=�1,

0,

�xn ��1,

�xn ��1.
(A2j)
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