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An Application To Trade Crowding

Pierre Cardaliaguet∗ and Charles-Albert Lehalle†

September 19, 2017

Abstract

In this paper we formulate the now classical problem of optimal liquidation (or optimal
trading) inside a Mean Field Game (MFG). This is a noticeable change since usually
mathematical frameworks focus on one large trader facing a “background noise” (or “mean
field”). In standard frameworks, the interactions between the large trader and the price
are a temporary and a permanent market impact terms, the latter influencing the public
price.

In this paper the trader faces the uncertainty of fair price changes too but not only.
He also has to deal with price changes generated by other similar market participants,
impacting the prices permanently too, and acting strategically.

Our MFG formulation of this problem belongs to the class of “extended MFG”, we
hence provide generic results to address these “MFG of controls”, before solving the one
generated by the cost function of optimal trading. We provide a closed form formula of its
solution, and address the case of “heterogenous preferences” (when each participant has
a different risk aversion). Last but not least we give conditions under which participants
do not need to instantaneously know the state of the whole system, but can “learn” it
day after day, observing others’ behaviors.

1 Introduction

Optimal trading (or optimal liquidation) deals with the optimization of a trading path from a
given position to zero in a given time interval. Once a large asset manager takes the decision
to buy or to sell a large number of shares or contracts, he needs to implement his decision on
trading platforms. He has to be fast enough so that the traded price is as close as possible to
his decision price, while he needs to take care of his market impact (market impact is the way
his trading pressure moves the market prices, including his own prices, a detrimental way; see
[Lehalle et al., 2013, Chapter 3] for details).

The academic answers to this need goes from mean-variance frameworks (initiated by
[Almgren and Chriss, 2000]) to more stochastic and liquidity driven ones (see for instance
[Guéant and Lehalle, 2015]). Fine modeling of the interactions between the price dynamics
and the asset manager trading process is difficult. The reality is probably a superposition of a
continuous time evolving process on the price formation side and of an impulse control-driven
strategy on the asset manager or trader side (see [Bouchard et al., 2011]).

The modeling of market dynamics for an optimal trading framework is sophisticated ([Guilbaud and Pham, 2013]
proposes a fine model of the orderbook bid and ask, [Obizhaeva and Wang, 2005] suggests a
martingale relaxation of the consumed liquidity, and [Alfonsi and Blanc, 2014] uses an Hawkes
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process, among others). Part of the sophistication comes from the fact “market dynamics” are
in reality the aggregation of the behaviour of other asset managers, buying or selling thanks to
similar optimal schemes, behind the scene. The usual framework for optimal trading is never-
theless the one of one large privileged asset manager, facing a “mean field” (or a “background
noise”) made of the sum of the behaviour of other market participants.

An answer to the uncertainty on the components of an appropriate model of market dy-
namics (and especially of the “market impact”, see empirical studies like [Bacry et al., 2015] or
[Almgren et al., 2005] for details) could be to implement a robust control framework. Usually
robust control consists in introducing an adversarial player in front of the optimal strategy,
implementing systematically the worst decision (inside a well-defined domain) for the optimal
player (see [Bernhard, 2003] for an extreme framework). Because of the adversarial player, one
can hope that the uncertainty around the modeling cannot be used at his advantage by the
optimal player. To authors’ knowledge, it has not been proposed for optimal trading by now.

Since we know the structure of market dynamics at our time scale of interest (i.e. a mix
of players implementing similar strategies), another way to obtain robust results is to model
directly this game, instead of the superposition of an approximate mean field and a synthetic
sequences of adversarial decisions.

Our work takes place within the framework of Mean Field Games (MFG). Mean Field
Game theory studies optimal control problems with infinitely many interacting agents. The
solution of the problem is an equilibrium configuration in which no agent has interest to de-
viate (a Nash equilibrium). The terminology and many substantial ideas were introduced
in the seminal papers by Lasry and Lions [Lasry and Lions, 2006a, Lasry and Lions, 2006b,
Lasry and Lions, 2007]. Similar models were discussed at the same time by Caines, Huang
and Malhamé (see, e.g., [Huang et al., 2006]), who computed explicit solutions for the linear-
quadratic (LQ) case (see also [Bensoussan et al., 2016]): we use these techniques in our specific
framework. Applications to economics and finance were first developed in [Guéant et al., 2011].
Since these pioneering works the literature on MFG has grown very fast: see for instance the
monographs or the survey papers [Bensoussan et al., 2013, Caines, 2015, Gomes and Others, 2014].

The MFG system considered here for the optimal trading differs in a substantial way from
the standard ones by the fact that the mean field is not, as usual, on the position of the
agents, but on their controls: this specificity is dictated by the model. Similar—more general—
MFG systems were introduced in [Gomes et al., 2014] under the terminology of extended MFG
models. In [Gomes et al., 2014, Gomes and Voskanyan, 2016], existence of solutions is proved
for deterministic MFG under suitable structure assumptions. A chapter in the monograph
[Carmona and Delarue, 2017] is also devoted to this class of MFG, with a probabilistic point of
view. Since our problem naturally involves a degenerate diffusion, we provide a new and general
existence result of a solution in this framework. Our approach is related with techniques for
standard MFG of first order with smoothing coupling functions (see [Lasry and Lions, 2007] or
[Cardaliaguet and Hadikhanloo, 2017]).

As the MFG system is an equilibrium configuration—in which theoretically each agent has
to know how the other agents are going to play in order to act optimally—it is important
to explain how such a configuration can pop up in practice. This issue is called “learning”
in game theory and has been the aim of a huge literature (see, for instance, the monograph
[Fudenberg and Levine, 1998]). The key idea is that an equilibrium configuration appears—
without coordination of the agents—because the game has been played sufficiently many times.
In MFG theory, the closely related concept of adaptative control was implemented, for infi-
nite horizon problems, in [Kizilkale and Caines, 2013, Nourian et al., 2012]. The first explicit
reference to learning in MFG theory can be found in [Cardaliaguet and Hadikhanloo, 2017].
This idea seems very meaningful for our optimal trading problem where the asset managers
are lead to buy or sell daily a large number of shares or contracts. We implement the learning
procedure within the simple LQ-framework: we show that, when the game has been repeated
a sufficiently large number of times, the agents—without coordination and subject to measure-
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ment errors—actually implement trading strategies which are close to the one suggested by the
MFG theory.

The starting point of this paper is an optimal liquidation problem: a trader has to buy or sell
(we formulate the problem for a sell) a large amount of shares or contracts in a given interval
of time (from t = 0 to t = T ). The reader can think about T as typically being a day or a
week. Like in most optimal liquidation (or optimal trading) problems, the utility function of the
trader has three components: the state of the cash account at terminal time T (i.e. the more
money the trader obtained from the large sell, the better), a liquidation value for the remaining
inventory (with a penalization corresponding to a large market impact for this large “block”),
and a risk aversion term (corresponding to not trading instantaneously at his decision price).
As usual again, the price dynamics will be influenced by the sells of the trader (via a permanent
market impact term: the faster the trader trades, the more he impacts the price in a detrimental
way); on the top of this cost, the trader will suffer from temporary market impact : this will not
change the public price but his own price (the reader can think about the “cost of liquidity”, like
a bid-ask spread cost). In their seminal paper [Almgren and Chriss, 2000], Almgren and Chriss
noticed such a framework gives birth to an interesting optimization problem for the trader: on
the one hand if he trades too fast he will suffer from market impact and liquidity costs on his
price, but on the other hand if he trades too slow, he will suffer from a large risk penalization
(the “fair price” will have time to change a detrimental way). Once expressed in a dynamic
(i.e. time dependent) way, this optimization turns into a stochastic control problem. For details
about this standard framework, see [Cartea et al., 2015], [Guéant, 2016] or [Lehalle et al., 2013,
Chapter 3].

In the standard framework, the trader faces a mean field : a Brownian motion he is the only
one to influence via his permanent market impact. This will no longer be the case in this paper:
on the top of a Brownian motion (corresponding to the unexpected variations of the fair price
while market participants are trading), we add the consequences of the actions of a continuum
of market participants. Each participant has to buy or sell a number of shares or contracts q
(positive for sellers and negative for buyers). This continuum is characterized by the density
of the remaining inventory of participants dm(t, q). A variable of paramount importance is the
net inventory of all participants: E(t) :=

∫
q
q m(t, q) dq.

To Authors’ knowledge, only two papers are related to our approach: one by Carmona
et al., using MFG for fire sales [Carmona et al., 2013], and one by Jaimungal and Nourian
[Jaimungal and Nourian, 2015] for optimal liquidation of one large trader in front of smaller
ones. They are nevertheless different from ours: the first one (fire sales) has not the same cost
function as in optimal liquidation problems, and the second one investigates the behavior of a
large trader (having to sell substantially more shares or contracts than the others, with a risk
aversion) facing a crowd of small traders (with a lot of small inventories and no risk aversion).
The topic of this second paper is more the one of a large asset manager trading in front of high
frequency traders.

In this paper we assume that the public price is influenced by the permanent market impact
of all market participants. Note that, conversely, all market participants face the public price
thus affected. It corresponds to the day-to-day reality of traders: it is not a good news to buy
while other participants are buying, but it is good to have to buy while others are selling. In
such a configuration, the participants act strategically, taking into account all the information
they have. As explained in Section 2, this leads to a Nash equilibrium of MFG type, in which the
mean field depends on the agents’ actions. This Nash MFG equilibrium can be summarized by
a system of forward-backward PDEs (see (9)), coupling a (backward) Hamilton-Jacobi equation
with a (forward) Kolmogorov equation. When the preferences of the agents are homogeneous,
this system can be solved explicitly and displays interesting—and not completely intuitive—
features (Section 3). For instance, one can notice that the coefficient affecting the permanent
market impact has a strong influence on the whole system: the highest the coefficient, the
fastest the market players have to drive their inventory to zero. Another interesting situation
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is when a participant is close to a zero inventory (or for low terminal constraints and low risk
aversion). It can then be rewarding to “follow the crowd”: a seller may have interest to buy
for a while. These qualitative conclusions are summarized as “Stylized Facts” at the end of
Section 3.

The reader might object that an equilibrium configuration as described in Section 2 or 3
is unlikely to be observed because, in practice, the market participants compute their optimal
strategy for an optimal control problem, and not for a game. We address this issue in Section
4, in the case where each participant has his own risk aversion (i.e. a case of heterogenous
preferences, in game theory terminology). We first discuss the existence and the uniqueness
of a MFG Nash equilibrium in this more general framework. Then we model—in a slightly
more realistic way—the day-after-day behavior of the market participants: we explain that,
as market participants observe a (possibly) noisy measurement of the daily net trading speed
of all investors, they can try to derive from their past observations an approximation of the
permanent market impact for the next day and compute their optimal strategy accordingly. We
show that, doing so, they end up playing a Nash MFG equilibrium. Let us underline that, in our
model, the market participants do not have access to the distribution of the trading positions
of the other participants; they do not necessarily have the same estimate of the permanent
market impact; they are not even aware that they are “playing a game”. Nevertheless, the
configuration after stabilization is an MFG equilibrium.

Since we had to develop our own MFG tools to address this case (the mean field involving
the controls of the agents, not in their state), the last part of this paper (Section 5) addresses
this kind of MFG systems in a very generic way. The reader will hence find in this Section tools
to handle such problems, with generic cost functions and not only with the ones of the usual
optimal liquidation problem. Note that we only address here the question of well-posedness of
the game with infinitely many agents: the application to games with a finite number of players,
as well as the learning procedures will be developed in future works.

Acknowledgement: Authors thank Marc Abeille for his careful reading of Section 3.2.1.
The first author was partially supported by the ANR (Agence Nationale de la Recherche)
projects ANR-14-ACHN-0030-01 and ANR-16-CE40-0015-01.

2 Trading Optimally Within The Crowd

2.1 Modeling a Mean Field of Optimal Liquidations

A continuum of investors indexed by a decide to buy or sell a given tradable instrument. The
decision is a signed quantity Qa

0 to buy (in such a case Qa
0 is negative: the investor has a

negative inventory at the initial time t = 0) or to sell (when Qa
0 is positive). All investors have

to buy or sell before a given terminal time T , each of them will nevertheless potentially trade
faster or slower since each of them will be submitted to different risk aversion parameters φa

and Aa. The distribution of the risk aversion parameters is independent to anything else.
Each investor will control its trading speed νat through time, in order to fullfil its goal.

The price St of the tradable instrument is submitted to two kinds of moves: an exogenous
innovation supported by a standard Wiener process Wt (with its natural probability space and
the associated filtration Ft), and the permanent market impact generated linearly from the
buying or selling pressure αµt where µt is the net sum of the trading speed of all investors (like
in [Cartea and Jaimungal, 2015], but in our case µt is endogenous where it is exogenous in their
case) and α > 0 is a fixed parameter.

(1) dSt = αµt dt+ σ dWt.

The state of each investor is described by two variables: its inventory Qa
t and its wealth Xa

t
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(starting with Xa
0 = 0 for all investors). The evolution of Qa reads

(2) dQa
t = νat dt,

since for a seller, Qa
0 > 0 (the associated control νa will be mostly negative) and the wealth

suffers from linear trading costs (or temporary, or immediate market impact , parametrized by
κ):

(3) dXa
t = −νat (St + κ · νat ) dt.

Meaning the wealth of a seller will be positive (and the faster you sell –i.e. νa is largely
negative–, the smaller the sell price).

The cost function of investor a is similar to the ones used in [Cartea et al., 2015]: it is made
of the wealth at T , plus the value of the inventory penalized by a terminal market impact, and
minus a running cost quadratic in the inventory:

(4) V a
t := sup

ν
E
(
Xa
T +Qa

T (ST − Aa ·Qa
T )− φa

∫ T

t

(Qa
s)

2 ds

)
.

We use this cost function by purpose: a lot of efforts have been made around this utility
function by Cartea, Jaimungal and their different co-authors to show it can emulate (provided
some changes) most of costs functions provided by brokers to dealing desks of asset managers.
This specific one emulates an Implementation Shortfall algorithms, while it can be changed to
emulate a Percentage of Volume or a Volume Weighted Average Price (see [Lehalle et al., 2013,
Capter 3] for a list of common trading algorithms). Such changes in the cost function would
nevertheless impact the paper and demand some complementary work.

2.2 The Mean Field Game system of Controls

The Hamilton-Jacobi-Bellman associated to (4) is

(5) 0 = ∂tV
a − φa q2 +

1

2
σ2∂2SV

a + αµ∂SV
a + sup

ν
{ν∂qV a − ν(s+ κ ν)∂XV

a}

with terminal condition
V a(T, x, s, q;µ) = x+ q(s− Aaq).

Following the Cartea and Jaimungal’s approach, we will use the following ersatz:

(6) V a = x+ qs+ va(t, q;µ).

Thus the HJB on v is

−αµ q = ∂tv
a − φa q2 + sup

ν

{
ν∂qv

a − κ ν2
}

with terminal condition
va(T, q;µ) = −Aaq2

and the associated optimal feedback is

(7) νa(t, q) =
∂qv

a(t, q)

2κ
.
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Defining the mean field. The expression of the optimal control (i.e. trading speed) of
each investor shows that the important parameter for each investor is its current inventory Qa

t .
The mean field of this framework is hence the distribution m(t, dq, da) of the inventories of
investors and of their preferences. Its initial distribution is fully specified by the initial targets
of investors and the distribution of the (φa, Aa).

It is then straightforward to write the net trading flow µ at any time t

(8) µt =

∫
(q,a)

νat (q)m(t, dq, da) =

∫
q,a

∂qv
a(t, q)

2κ
m(t, dq, da).

Note that implicitly va is a function of µ, meaning we will have a fixed point problem to solve
in µ.

We now write the evolution of the density m(t, dq, da) of (Qa
t ). By the dynamics (2) of Qa

t ,
we have

∂tm+ ∂q

(
m
∂qv

a

2κ

)
= 0

with initial condition m0 = m0(dq, da) (recall that the preference (φa, Aa) of an agent a is fixed
during the period).

The full system. Collecting the above equations we find our twofolds mean field game system
made of the backward PDE on v coupled with the forward transport equation of m:

(9)


−αq µt = ∂tv

a − φa q2 +
(∂qv

a)2

4κ
0 = ∂tm+ ∂q

(
m∂qva

2κ

)
µt =

∫
(q,a)

∂qv
a(t, q)

2κ
m(t, dq, da)

The system is complemented with the initial condition (for m) and terminal condition (for v):

m(0, dq, da) = m0(dq, da), va(T, q;µ) = −Aaq2.

The above system is interpreted as a Nash equilibrium configuration in a game with infinitely
many market participants: a (small) market participant, anticipating the net trading flow (µt),
computes his optimal strategy by solving an optimal control problem which, after simplification,
leads to the equation for va coupled with the terminal condition. When all market participants
trade optimally, the distribution m of the inventories and preferences evolves according to the
second equation, complemented with the initial for m. Then one derives the net trading flow
(µt) as a function of m and va through the third equation.

3 Trade crowding with identical preferences

In this section, we suppose that all agents have identical preferences: φa = φ and Aa = A for
all a. The main advantage of this assumption is that it leads to explicit solutions.

3.1 The system in the case of identical preferences

To simplify notation, we omit the parameter a in all expressions. We aim at solving (9) (in

which a is omitted). It is convenient to set E(t) = E [Qt] =

∫
q

qm(t, dq). Note that

E ′(t) =

∫
q

q∂tm(t, dq),
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so that, using the equation for m and an integration by parts:

(10) E ′(t) = −
∫
q

q∂q

(
m(t, q)

∂qv(t, q)

2κ

)
dq =

∫
q

∂qv(t, q)

2κ
m(t, dq).

3.2 Quadratic Value Functions

When v(t, q) can be expressed as a quadratic function of q:

v(t, q) = h0(t) + q h1(t)− q2
h2(t)

2
,

then the backward part of the master equation can be split in three parts

(11)
0 = −2κh′2(t)− 4κφ+ (h2(t))

2,
2καµ(t) = −2κh′1(t) + h1(t)h2(t),
−(h1(t))

2 = 4κh′0(t),

One also has to add the terminal condition: as VT = x + q(s − Aq), v(T, q) = −Aq2. This
implies that

(12) h0(T ) = h1(T ) = 0, h2(T ) = 2A.

Dynamics of the mean field. Recalling (8), we have

(13) µ(t) =

∫
q

∂qv(t, q)

2κ
dm(q) =

∫
q

h1(t)− qh2(t)
2κ

dm(q) =
h1(t)

2κ
− h2(t)

2κ
E(t).

Moreover, by (10), we also have

E ′(t) =

∫
q

m(t, q)

(
h1(t)

2κ
− h2(t)

2κ
q

)
dq =

h1(t)

2κ
− h2(t)

2κ
E(t).

So we can supplement (11) with

(14) 2κE ′(t) = h1(t)− E(t) · h2(t).

Summary of the system. We now collect all the equations. Recalling (13), we find:

(15a)

(15b)

(15c)

(15d)


4κφ = −2κh′2(t) + (h2(t))

2,

αh2(t)E(t) = 2κh′1(t) + h1(t) (α− h2(t)) ,
−(h1(t))

2 = 4κh′0(t),

2κE ′(t) = h1(t)− h2(t)E(t).

with the boundary conditions

h0(T ) = h1(T ) = 0, h2(T ) = 2A, E(0) = E0,

where E0 =
∫
q
qm0(q)dq is the net initial inventory of market participants (i.e. the expectation

of the initial density m).
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3.2.1 Reduction to a single equation

From now on we consider h2 as given and derive an equation satisfied by E. By (15d), we have

h1 = 2κE ′ + h2E,

so that

(16) h′1 = 2κE ′′ + Eh′2 + h2E
′.

Plugging these expressions into (15b), we obtain

0 = h′1 + h1
α− h2

2κ
− αh2

2κ
E,

= 2κE ′′ + Eh′2 + h2E
′ + (2κE ′ + h2E)

α− h2
2κ

− αh2
2κ
E

= 2κE ′′ + αE ′ + 2E

(
1

2
h′2 −

(h2)
2

4κ

)
.

Recalling (15a) we find
0 = 2κE ′′ + αE ′ − 2φE.

The boundary conditions are E(0) = E0, h2(T ) = 2A, h1(T ) = 0, where the last expression
can be rewritten by taking (15d) into account. To summarize, the equation satisfied by E is:

(17)

{
0 = 2κE ′′(t) + αE ′(t)− 2φE(t) for t ∈ (0, T ),
E(0) = E0, κE ′(T ) + AE(T ) = 0.

3.2.2 Solving (17)

After some easy but tedious computation explained in Appendix A, one finds:

Proposition 3.1 (Closed form for the net inventory dynamics E(t)). For any α ∈ R, the
problem (17) has a unique solution E, given by

E(t) = E0a (exp{r+t} − exp{r−t}) + E0 exp{r−t}
where a is given by

a =
(α/4 + κθ − A) exp{−θT}

−α
2
sh{θT}+ 2κθch{θT}+ 2Ash{θT} ,

the denominator being positive and the constants r±α and θ being given by

r± := − α

4κ
± θ, θ :=

1

κ

√
κφ+

α2

16
.

Moreover,

(18) h2(t) = 2
√
κφ

1 + c2e
rt

1− c2ert
,

where r = 2
√
φ/κ and

c2 = −1− A/√κφ
1 + A/

√
κφ
· e−rT .

Remark 3.2. The last needed component to obtain the optimal control using (7) is h1(t).
Thanks to (16), it can be easily written from E, E ′ and h2 (note h2 is mostly negative for our
sell order):

h1(t) = 2κ · E ′(t) + h2(t) · E(t).

This gives an explicit formula for the optimal control for any value of the parameters: κ
(the instantaneous market impact), φ (the risk aversion), α (the permanent market impact), A
(the terminal penalization), E0 (the initial net position of all participants), and T (the duration
of the “game”).
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Figure 1: Dynamics of E (left) and −h1 and h2 (right) for a standard set of parameters: α = 0.4,
κ = 0.2, φ = 0.1, A = 2.5, T = 5, E0 = 10.

Typical Dynamics. Figure 1 shows the joint dynamics of E (left panel), −h1 and h2 (right
panel) for typical values of the parameters: α = 0.4, κ = 0.2, φ = 0.1, A = 2.5, T = 5,
E0 = 10. As expected, E(t) goes very close to 0 at t = T ; in our reference case E(T ) = 0.02.
Looking carefully at Proposition 3.1, it can be seen the main component driving E(T ) to zero
is exp rα−T , where rα− = −α/4− (

√
κφ+ α2/16)/κ, hence:

• The best way to obtain a terminal net inventory of zero is to have a large α, or a large
φ, or a small κ. Surprisingly, having a large A does not help that much. It mainly urges
the trading very close to t = T when the other parameters decrease E earlier.

• h2 increases slowly to 2A, while h1 goes from a negative value to a slightly positive one.

To understand the respective roles of h2 and h1, one should keep in mind the optimal control
is (h1(t) − qh2(t))/(2κ). Having a negative h1 increases the trading speed of a seller. That’s
why we draw −h1 instead of h1 on all the figures.

Since participants influences themselves via αµt the permanent market impact coefficient
times the sum of their controls (that are functions of the mean field), one can consider the
lower α, the more “disconnected” players from the influence of the mean field.

Stylized Fact 1 (Influence of the mean field varies with α). Figure 2 compares the components
of the optimal strategies for two values of α (the strength of the influence of the players one
on each others): when players are less connected: h2(t) does not change and h1(t) is smaller,
except at the end of the trading.

Keep in mind the optimal control νt(q) is proportional to h1(t)− q h2(t). This means when
t is close to zero (i.e. start of the trading), q is close to Q0, and hence q h2(t) is large compared
to h1(t).

Stylized Fact 2 (Driving E to zero). A large permanent impact α, a large risk aversion φ and
a small temporary impact κ are the main components driving the net inventory of participants
E to zero.

Another way to understand the optimal control ν is to look at its formulation not only as
a function of h1 and h2, but at a function of E, E ′ and h2:

(19) ν(t, q) =
∂qv

2κ
=

1

2κ
(h1(t)− q · h2(t)) = E ′(t) +

E(t)− q
2κ

h2(t).

9
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Figure 2: Comparison of the dynamics of E (left) and −h1 and h2 (right) between the “refer-
ence” parameters of Figure 1 and smaller α (i.e. α = 0.1 instead of 0.4) such that |h1(0)| is
smaller.

Keeping in mind we formulated the problem from the viewpoint of a seller: Q0 > 0 is the
number of shares to be sold from 0 to T , and E0 > 0 means the net initial position of all
participants is dominated by sellers. Since E(t) decreases with time, E ′ is rather negative.

The upper expression of the optimal control of our seller means the larger the remaining
shares to sell q(t), the faster to trade, proportionally to h2(t). The influence of A is clear:
h2(T ) = 2A says the larger the terminal penalization, the faster to trade when T is close, for a
given remaining number of shares to sell.

Expression (19) for the optimal control reads:

Stylized Fact 3 (Influence of E(t) and E ′(t) on the optimal control). The optimal control is
made of two parts: one (−qh2/(2κ)) is proportional to the remaining quantity and independent
of others’ behavior; the other (h1 = E ′ + E/(2κ)) increases with the net inventory of other
market participants and follows their trading flow. Hence, in this framework:

(i) it is optimal to “follow the crowd” (because of the E ′ term)

(ii) but not too fast (since E and E ′ often have an opposite sign); especially when t is close
to T (because of the h2 term in factor of E).

This pattern can be seen as a fire sales pattern: the trader should follow participants while
they trade in the same direction. This also means when the trader’s inventory is opposite to
market participants’ net inventory, he can afford to slow down (because the price will be better
for him soon).

Stylized Fact 4 (Optimal trading speed with a very low inventory). When a participant is
close to a zero inventory (i.e. q is close to zero) or for participant with low terminal constraints
and low risk aversion, it can be rewarding to “follow the crowd”. The dominant term is then h1:
a sign change of h1 implies a change of trading direction for a participant with a low inventory.
Nevertheless once a participant followed h1, his (no more neglectable) inventory multiplied by
h2 drives his trading speed.

Readers can have a look at the right panel Figure 2 to (solid grey line) observe a sign change
of h1 (around t = 4).

10
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Figure 3: Comparison of the dynamics of E (left) and −h1 and h2 (right) between the “refer-
ence” parameters of Figure 1 and when

√
κφ ' A: in such a case h2 is almost constant but E

and h1 are almost unchanged.

A specific case where h2 is almost constant. When A is very close to
√
κφ, expression

(18) for h2 shows c2 will be very close to zero, and hence h2(t) ' 2
√
κφ ' 2A for any t.

Figure 3 is an illustration of such a case: A =
√
κφ = 0.141. Since E is not affected too

much by this change in A and remains close to zero when t is large enough, the change of h2
slope close to T cannot affect significantly h1.

Stylized Fact 5 (Constant h2). When A =
√
κφ, h2 is constant (no more a function of t)

equals to 2A. Hence the multiplier of q (the remaining quantity) is a constant:

ν(t, q) = E ′(t) +
E(t)− q

κ
A.

Specific configurations of E. When the considered trader has to sell while the net initial
position of all the participants is to buy (i.e. Q0 > 0 and E0 < 0), the multiplier h2 of the
remaining quantity q stays the same, but the constant term h1 is turned into −h1:

Stylized Fact 6 (Alone against the crowd ). When the trader position does not have the same
direction than the net inventory of all participants E: he has to trade slower, independently
from his remaining inventory q.

Moreover, the formulation of Stylized Fact 5 shows it is possible to change the monotony of
E(t) so that after a given t is no more decreases:

E(t)′ = E0a (r+ exp{r+t} − r− exp{r−t})︸ ︷︷ ︸
positive

+E0r− exp{r−t}︸ ︷︷ ︸
negative

.

For well chosen configuration of parameters the first term can be larger than the second term,
for any t greater than a critical tm such that E ′(tm) = 0. For the configuration of Figure 4,
with α = 0.01, κ = 1.5, φ = 0.03, A = 2.5, T = 5 and E0 = 10, we have tm ' 3.82.

Going back to the meaning of this mean field game framework: it models dealing desks of
asset managers receiving instructions from their portfolio managers to buy or sell large amounts
of shares at the start of the day (or of the week). When tm < T , it means that while the sum of
initial instructions where to buy (respectively sell) this day, the “mean field” of dealing desks
changed its mind: they did not strictly followed instructions. They bought (resp. sold) more

11
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Figure 4: A specific case for which E is not monotonous: α = 0.01, κ = 1.5, φ = 0.03, A = 2.5,
T = 5 and E0 = 10.

than asked, and are now starting to sell back (resp. buy back) this temporary inventory to
make profits by their own. Regulators could be interested by market parameters (α, κ, φ)
allowing such configurations to appear.

Figure 5 shows configurations for which tm exists: small values of φ and α and large value
of κ are in favor of a small tm. This means when the risk aversion and the permanent market
impact coefficient are small while the temporary market impact is large, the slope of the net
inventory of participants can have sign change.
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4 Trade crowding with heterogeneous preferences

We now come back to our original model (9) in which each agent may be adverse to the risk
a different way. In other words, the constants Aa and φa may depend on a but are fixed for 0
to T (i.e. for the day or for the week). For simplicity, we will mostly work under the condition
that Aa =

√
φaκ, which allows to simplify the formulae.

4.1 Existence and uniqueness for the equilibrium model

As in the case of identical agents, we look for a solution to system (9) in which the map va is
quadratic:

va(t, q) = ha0(t) + q ha1(t)− q2
ha2(t)

2
,

and we find the relations:

(20)
0 = −2κ(ha2)

′ − 4κφa + (ha2)
2,

2καµ(t) = −2κ(ha1)
′ + ha1h

a
2,

−(ha1)
2 = 4κ(ha0)

′,

with terminal conditions

(21) ha0(T ) = ha1(T ) = 0, ha2(T ) = 2Aa.

Let m = m(t, dq, da) be the repartition at time t of the wealth q and of the parameter a. As
before, the net trading flow µ at any time t can be expressed as

µ(t) =

∫
a,q

∂qv
a(t, q)

2κ
m(t, da, dq) =

∫
a,q

1

2κ
(ha1(t)− ha2(t)q) m(t, da, dq).

The measure m solves the continuity equation

∂tm+ divq

(
m
∂qv

a(t, q)

2κ

)
= 0

with initial condition m0 = m0(da, dq). For later use, we set

m̄0(da) =

∫
q

m0(da, dq).

As the agents do not change their parameter a over the time, we always have∫
q

m(t, da, dq) = m̄0(da),

so that we can disintegrate m into

m(t, da, dq) = ma(t, dq)m̄0(da),

where ma(t, dq) is a probability measure in q for m̄0− almost any a. Let us set

Ea(t) =

∫
q

qma(t, dq).

Then by similar argument as in the case of identical agents one has

(22) (Ea)′(t) =
ha1(t)

2κ
− ha2(t)

2κ
Ea(t).
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With the notation Ea, we can rewrite µ as

(23) µ(t) =
1

2κ

(∫
a

ha1(t)m̄0(da)−
∫
a

ha2(t)E
a(t)m̄0(da)

)
.

From now on we assume for simplicity of notation that

(24) Aa =
√
φaκ ∀a

so that ha2 is constant in time with ha2(t) = 2Aa. We set

θa =
ha2
2κ
.

We solve the equation satisfied by ha1: as ha1(T ) = 0, we get

ha1(t) = α

∫ T

t

ds exp{θa(t− s)}µ(s).

In the same way, we solve the equation for Ea in (22) by taking into account the fact that
Ea(0) = Ea

0 :=
∫
q
qm̄0(a, q)dq and the computation for ha1: we find

Ea(t) = exp{−θat}Ea
0 +

α

2κ

∫ t

0

dτ

∫ T

τ

ds exp{θa(2τ − t− s)}µ(s).

This can be read as the “mean field” associated to players with risk aversion parameters (φa, Aa).
Putting these relations together and summing over all risk aversions (i.e. integrating over

m̄0(da)) we obtain by (23) that µ satisfies:

(25)
µ(t) = −

∫
a

θa exp{−θat}Ea
0m̄0(da) +

α

2κ

∫ T

t

dsµ(s)

∫
a

exp{θa(t− s)}m̄0(da)

− α

2κ

∫ t

0

dτ

∫ T

τ

dsµ(s)

∫
a

θa exp{θa(2τ − t− s)}m̄0(da).

Proposition 4.1. Assume that (24) holds and that the (Aa) are bounded. Then there exists
α0 > 0 such that, for |α| ≤ α0, there exists a unique solution to the fixed point relation (25).

As a consequence, the MFG system has at least one solution obtained by plugging the fixed
point µ into the relations (20).

Proof. One just uses Banach fixed point Theorem on Φα : C([0, T ])→ C([0, T ]) which associates
to any µ ∈ C([0, T ]) the map

Φα(µ)(t) := −
∫
a

θa exp{θat}Ea
0m̄0(da) +

α

2κ

∫ T

t

dsµ(s)

∫
a

exp{θa(t− s)}m̄0(da)

− α

2κ

∫ t

0

dτ

∫ T

τ

dsµ(s)

∫
a

θa exp{θa(2τ − t− s)}m̄0(da).

It is clear that Φα is a contraction for |α| small enough: indeed, given µ, µ′ ∈ C([0, T ]), we have

|Φα(µ)(t)− Φα(µ′)(t)| ≤ |α|
2κ

∫ T

t

ds |µ(s)− µ′(s)|
∫
a

exp{θa(t− s)}m̄0(da)

+
|α|
2κ

∫ t

0

dτ

∫ T

τ

ds |µ(s)− µ′(s)|
∫
a

θa exp{θa(2τ − t− s)}m̄0(da)

≤ C|α|‖µ− µ′‖∞,

for some constant C independent of α, because the (θa) are bounded.
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4.2 Learning other participants’ net flows to (potentially) converge
towards the MFG equilibrium

The solution of the MFG system describing an equilibrium configuration, one may wonder how
this configuration can be reached without the coordination of the agents. We present here
a simple model to explain this phenomenon. For this we assume the game repeats the same
[0, T ] intervals an infinite number of rounds. The reader can think about 0 to T being a day
(or a week), and hence each round will last a day (or a week). Round after round, market
participants try to “learn” (i.e. to build an estimate of) the trading speed µt of equation (1).

It is close to what dealing desks of asset managers1 are doing on financial markets: they
try to estimate the buying or selling pressure exerted by other market participants to adjust
their own behaviour. That for, investment banks provide to their clients (asset managers)
information about the recent state of the flows on exchanges, to help them to adjust their
trading behaviours. For instance, JP Morgan’s corporate and investment bank has a twenty
pages recurrent publication titled “Flows and Liquidity”, with charts and tables describing
different metrics like money flows, turnovers, and other similar metrics by asset class (equity,
bonds, options) and countries. Almost each investment bank has such a publication for its
clients; Barclay’s one is titled “TIC Monthly Flows”. As an example its August 2016 issue (9
pages) subtitle was “Private foreign investors remain buyers”.

Combining these expected flows with market impact models identified on their own flows (see
[Bacry et al., 2015], [Brokmann et al., 2014] or [Waelbroeck and Gomes, 2013] for academics
papers on the topic), traders of dealing desks tune their optimal liquidation (or trading) schemes
for the coming days. It is hence interesting to note this practice is very close to the framework
we propose in this Subsection.

We also assume that, at the beginning of round n, each agent (generically indexed by a)
has an estimate on µa,n on the crowd impact. Then he solves his corresponding optimal control
problem:

(26)
0 = −2κ

(ha,n2 )′

2
− 4κφa + (ha,n2 )2,

2καµa,n(t) = −2κ(ha,n1 )′ + ha,n1 ha,n2 ,
−(ha,n1 )2 = 4κ(ha,n0 )′,

with terminal conditions

ha,n0 (T ) = ha,n1 (T ) = 0, ha,n2 (T ) = 2Aa.

For simplicity we assume once more that

Aa =
√
φaκ ∀a

so that ha,n2 is constant in time and independent of n: ha = 2Aa. We set as before

θa =
ha2
2κ
.

We find as previously

ha,n1 (t) = α

∫ T

t

ds exp{θa(t− s)}µa,n(s).

and

Ea,n(t) = exp{−θat}Ea
0 +

α

2κ

∫ t

0

dτ

∫ T

τ

ds exp{θa(2τ − t− s)}µa,n(s).

1Large asset managers, like Blackrock, Amundi, Fidelity or Allianz, delegate the implementation of their
investment decisions to a dedicated (internal) team: their dealing desk. This team is in charge of trading to
drive the real portfolios to their targets. They are implementing on a day to day basis what this paper is
modelling.
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Then the net sum mn+1 of the trading speed of all investors at stage n is given by (23) where
Ea and ha1 are replaced by Ea,n and ha,n1 :

(27)

mn+1(t) :=
1

2κ

(∫
a

ha,n1 (t)m̄0(da)−
∫
a

ha2E
a,n(t)m̄0(da)

)
= −

∫
a

θa exp{−θat}Ea
0m̄0(da) +

α

2κ

∫ T

t

ds

∫
a

µa,n(s) exp{θa(t− s)}m̄0(da)

− α

2κ

∫ t

0

dτ

∫ T

τ

ds

∫
a

µa,n(s)θa exp{θa(2τ − t− s)}m̄0(da).

We now model how the agents evaluate the crowd impact. We assume that each agent has
his own way of evaluating the value of mn+1(t) and of incorporating this new value into his
estimate of the crowd impact. Namely, we suppose a relation of the form

µa,n+1(t) := (1− πa,n+1)µa,n(t) + πa,n+1(mn+1(t) + εa,n+1(t)),

where πa,n+1 ∈ (0, 1) is the weight chosen by an agent a at round n + 1 to adjust his new
estimate of µ with respect to his previous belief µa,n(t) and his new estimate mn+1(t)+εa,n+1(t)
and εa,n+1 is a small error term on the measured crowd impact: ‖εa,n+1‖∞ ≤ ε.

Proposition 4.2. Under the assumption of Proposition 4.1, let µ be the solution of the MFG
crowd trading model. Assume that

1

Cn
≤ πa,n ≤ C

n
,

for some constants C. Suppose also that α is small enough: |α| ≤ α1 for some small α1 > 0
depending on C. Then

lim sup sup
a
‖µa,n − µ‖∞ ≤ Cε

for some constant C.

Let us note that, as the solution to the system (26) depends in a continuous way of µa,n, the
optimal trading strategies of the agents are close to the one corresponding to the equilibrium
configuration for n sufficiently large.

Proof. In the proof the constant C might differ from line to line, but does not depend on n nor
on ε. We have

sup
a
‖µa,n+1 − µ‖∞ ≤ sup

a
‖(1− πa,n+1)µa,n + πa,n+1(mn+1 + εa,n+1)− µ‖∞

≤ sup
a

(
(1− πa,n+1)‖µa,n − µ‖∞ + πa,n+1‖mn+1 − µ‖∞ + πa,n+1‖εa,n+1‖∞

)
where, by (27):

‖mn+1 − µ‖∞ ≤ C
α

2κ
sup
a
‖µa,n − µ‖∞ .

So

sup
a
‖µa,n+1 − µ‖∞ ≤ sup

a

(
(1− πa,n+1) + C

α

2κ
πa,n+1

)
sup
a
‖µa,n − µ‖∞ + sup

a
πa,n+1ε.

Thus, setting βn = supa
(
(1− πa,n) + C α

2κ
πa,n

)
and δn := supa π

a,n, we have

sup
a
‖µa,n − µ‖∞ ≤ sup

a

∥∥µa,0 − µ∥∥∞ n∏
k=1

βk + ε
n∑
k=1

δk

n∏
l=k+1

βl.
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By our assumption on πa,n, we can choose α small enough so that

βn ≤ 1− 1

Cn
and δn ≤

C

n
.

Then, for 1 ≤ k < n, we have

ln

(
n∏
l=k

βl

)
≤

n∑
l=k

ln(1− 1/(Cl)) ≤ −(1/C)
n∑
l=k

1

l
≤ −(1/C) ln((n+ 1)/k).

Hence
n∏
l=k

βl ≤ C
(n
k

)−1/C
, which easily implies that

lim
n

n∏
k=1

βk = 0 and
n∑
k=1

δk

n∏
l=k+1

βl ≤ C.

The desired result follows.

5 A General Model for Mean Field Games of Controls

In this section we discuss a general existence result for a Mean Field Game of Control (or,
in the terminology of [Gomes et al., 2014], an Extended Mean Field Game). As in our main
application above, we aim at describing a system in which the infinitely many small agents
control their own state and interact through a “mean field of control”. By “small”, we mean
that the individual behavior of each agent has a negligible influence on the whole system. The
requirement that they are “infinitely many” corresponds to the fact that their initial config-
uration is distributed according to an absolutely continuous density on the state space. The
“mean field of control” consists in the joint distribution of the agents and their instantaneous
control: this is in contrats with the standard MFGs, in which the mean field is the distribution
of the positions of the agents only.

We denote by Xt ∈ Rd the individual state of a generic agent at time t and by αt his control.
The state space is the finite dimensional space Rd, while the controls take their value in a metric
space (A, δA). In this Section the distribution density of the pair (Xt, αt) is denoted by µt. It is
a probability measure on Rd ×A. The first marginal mt of µt is the distribution of the players
at time t (hence a probability measure on Rd). In the MFG of control, dynamics and payoffs
depend on (µt) (and not only on (mt) as in standard MFGs).

We assume that the dynamics of a small agent is a controlled SDE of the form{
dXt = b(t,Xt, αt;µt)dt+ σ(t,Xt)dWt

Xt0 = x0

where α is the control and W is a standard D−dimensional Brownian Motion (the Brownian
Motions of the agents are independent). Note that, for simplicity of notation, the heterogeneity
of the agents (i.e., the parameter a in the previous section) is encoded here in the state variable:
it is a variable which is not affected by the dynamics. For this reason it is important to handle
a degenerate diffusion term σ. The cost function is given by

J(t0, x0, α;µ) = E
[∫ T

t0

L(t,Xt, αt;µt) dt+ g(XT ,mT )

]
.

It is known that, given µ, the value function u = u(t0, x0;µ) of the agent, defined by

u(t0, x0) = inf
α
J(t0, x0, α;µ),
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is a viscosity solution of the HJB equation

(28)

{
−∂tu(t, x)− tr(a(t, x)D2u(t, x)) +H(t, x,Du(t, x);µt) = 0 in (0, T )× Rd

u(T, x) = g(x) in Rd

where a = (aij) = σσT and

(29) H(t, x, p; ν) = sup
α
{−p · b(t, x, α; ν)− L(t, x, α; ν)} .

Moreover b(t, x, α∗(t, x);µt) := −DpH(t, x,Du(t, x);µt) is (formally) the optimal drift for the
agent at position x and at time t. Thus, the population density m = mt(x) is expected to
evolve according to the Kolmogorov equation

(30)


∂tmt(x)−∑i,j ∂ij(aij(t, x)mt(x))− div (mt(x)DpH(t, x,Du(t, x);µt)) = 0

in (0, T )× Rd

m0(x) = m̄0(x) in Rd

Throughout this part we assume that the map α → b(t, x, α; ν) is one-to-one with a smooth
inverse and we denote by α∗ = α∗(t, x, p; ν) the map which associates to any p the unique
control α∗ ∈ A such that

(31) b(t, x, α∗; ν) = −DpH(t, x, p; ν).

This means that, at each time t and position x, the optimal control of a typically small player
is α∗(t, x,Du(t, x);µt). So, in an equilibrium configuration, the measure µt has to be the image
of the measure mt by the map x → (x, α∗(t, x,Du(t, x);µt)). This leads to the fixed-point
relation:

(32) µt = (id, α∗(t, ·, Du(t, ·);µt)) ]mt,

where the right-hand side is the image of the measuremt by the map x→ (x, α∗(t, x,Du(t, x);µt)).
To summarize, the MFG of control takes the form:

(33)



(i) −∂tu(t, x)− tr(a(t, x)D2u(t, x)) +H(t, x,Du(t, x);µt) = 0 in (0, T )× Rd,

(ii) ∂tmt(x)−∑i,j ∂ij(aij(t, x)mt(x))− div (mt(x)DpH(t, x,Du(t, x);µt)) = 0

in (0, T )× Rd,
(iii) m0(x) = m̄0(x), u(T, x) = g(x,mT ) in Rd,

(iv) µt = (id, α∗(t, ·, Du(t, ·);µt)) ]mt in [0, T ].

The typical framework in which we expect to have a solution is the following: u is continu-
ous in (t, x), Lipschitz continuous in x (uniformly with respect to t) and satisfies equation (28)
in the viscosity sense; m is in L∞ and satisfies (30) in the sense of distribution.

In order to state the assumptions on the data, we need a few notations. Given a metric
space (E, δE) we denote by P1(E) the set of Borel probability measures ν on E with a finite
first order moment M1(ν):

M1(ν) =

∫
E

δE(x0, x)dν(x) < +∞

for some (and thus all) x0 ∈ E. The set P1(E) is endowed with the Monge-Kantorovitch
distance:

d1(ν1, ν2) = sup
φ

∫
E

φ(x)d(ν1 − ν2)(x) ∀ν1, ν2 ∈ P1(E),

where the supremum is taken over all 1-Lipschitz continuous maps φ : E → R.
We will prove the existence of a solution for (33) under the following assumptions:
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1. The terminal cost g : Rd × P1(Rd)→ R and the diffusion matrix σ : [0, T ]× Rd → Rd×D

are continuous and bounded, uniformly bounded in C2 in the space variable,

2. The drift has a separate form: b(t, x, α, µt) = b0(t, x, µt) + b1(t, x, α),

3. The map L : [0, T ] × Rd × A × P1(Rd × A) → R satisfies the Lasry-Lions monotonicity
condition: for any ν1, ν2 ∈ P1(Rd × A) with the same first marginal,∫

Rd×A
(L(t, x, α; ν1)− L(t, x, α; ν2))d(ν1 − ν2)(x, α) ≥ 0,

4. For each (t, x, p, ν) ∈ [0, T ]×Rd×Rd×P1(Rd×A), there exists a unique maximum point
α∗(t, x, p; ν) in (31) and α∗ : [0, T ] × Rd × Rd × P1(Rd × A) → R is continuous, with a
linear growth: for any L > 0, there exists CL > 0 such that

δA(α0, α
∗(t, x, p; ν)) ≤ CL(|x|+1) ∀(t, x, p, ν) ∈ [0, T ]×Rd×Rd×P1(Rd×A) with |p| ≤ L,

(where α0 is a fixed element of A).

5. The Hamiltonian H : [0, T ]×Rd ×Rd ×P1(Rd ×A)→ R is continuous; H is bounded in
C2 in (x, p) uniformly with respect to (t, ν), and convex in p.

6. The initial measure m̄0 is a continuous probability density on Rd with a finite second
order moment.

The uniform bounds and uniform continuity assumptions are very strong requirements: for
instance they are not satisfied in the linear-quadratic example studied before. These conditions
can be relaxed in a more or less standard way; we choose not do so in order to keep the argument
relatively simple.

Following [Carmona and Delarue, 2017], assumptions (2) and (3) ensure the uniqueness of
the fixed-point in (32). For the sake of completeness, details are given in Lemma 5.2 below.

Theorem 5.1. Under the above assumptions, there exists at least one solution to the MFG
system of controls (33) for which (µt) is continuous from [0, T ] to P1(Rd × A).

As almost always the case for this kind of results, the argument of proof consists in applying
a fixed point argument of Schauder type and requires therefore compactness properties. The
main difficulty is the control of the time regularity of the evolving measure µ. This regularity
is related with the time regularity of the optimal controls. In the first order case, it is not an
issue because the optimal trajectories satisfy a Pontryagin maximum principle and thus are
(at least) uniformly C1 (see [Gomes et al., 2014, Gomes and Voskanyan, 2016]). In the second
order setting, the Pontryagin maximum principle is not so simple to manipulate and a similar
regularity for the controls would be much more heavy to express. We use instead the full power
of semi-concavity of the value function combined with compactness arguments (see Lemma 5.4
below). The main advantage of our approach is its robustness: for instance stability property
of the solution is almost straightforward.

The proof of Theorem 5.1 requires several preliminary remarks. Let us start with the
fixed-point relation (32).

Lemma 5.2. Let m ∈ P2(Rd) with a bounded density and p ∈ L∞(Rd,Rd).

• (Existence and uniqueness.) There exists a unique fixed point µ = F (p,m) ∈ P1(Rd ×A)
to the relation

(34) µ = (id, α∗(t, ·, p(·);µ))]m.

Moreover, there exists a constant C0, depending only on ‖p‖∞ and on the second order
moment of m, such that∫

Rd×A

{
|x|2 + δA(α0, α)

}
dµ(x, α) ≤ C0.
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• (Stability.) Let (mn) be a family of P1(Rd), with a uniformly bounded density in L∞ and
uniformly bounded second order moment, which converges in P1(Rd) to some m, (pn)
be a uniformly bounded family in L∞ which converges a.e. to some p. Then F (pn,mn)
converges to F (p,m) in P1(Rd × A).

The uniqueness part is borrowed from [Carmona and Delarue, 2017].

Proof. Let L := ‖p‖∞. For µ ∈ P1(Rd × A), let us set Ψ(µ) := (id, α∗(t, ·, p(·);µ))]m. Using
the growth assumption on α∗, we have∫

Rd×A
|x|2 + δ2A(α0, α) dΨ(µ)(x, α) =

∫
Rd

|x|2 + δ2A(α0, α
∗(t, x, p(x);µ)) m(x)dx

≤
∫
Rd×A

|x|2 + C2
L(|x|+ 1)2 m(x)dx =: C0.

This leads us to define K as the convex and compact subset of measures µ ∈ P1(Rd × A) with
second order moment bounded by C0. Let us check that the map Ψ is continuous on K. If (µn)
converges to µ in K, we have, for any map φ, continuous and bounded on Rd × A:∫

Rd×A
φ(x, α)dΨ(µn)(x, α) =

∫
Rd

φ(x, α∗(t, x, p(x);µn)m(x)dx.

By continuity of α∗, the term φ(x, α∗(t, x, p(x);µn)) converges a.e. to φ(x, α∗(t, x, p(x);µ) and
is bounded. The mesure m having a bounded second order moment and being absolutely
continuous, this implies the convergence of the integral:

lim
n

∫
Rd×A

φ(x, α)dΨ(µn)(x, α) =

∫
Rd

φ(x, α∗(t, x, p(x);µ))m(x)dx =

∫
Rd×A

φ(x, α)dΨ(µ)(x, α).

Thus the sequence (Ψ(µn)) converges weakly to Ψ(µ) and, having a uniformly bounded second
order moment, also converges for the d1 distance. The map Ψ is continuous on the compact
set K and therefore has a fixed point by Schauder fixed point Theorem.

Let us now check the uniqueness. If there exists two fixed points µ1 and µ2 of (34), then,
by the monotonicity condition in Assumption (3), we have

0 ≤
∫
Rd×A

{L(t, x, α;µ1)− L(t, x, α;µ2)} d(µ1 − µ2)(x, α)

=

∫
Rd

{L(x, α1(x);µ1)− L(x, α1(x);µ2)− L(x, α2(x);µ1) + L(x, α2(x);µ2)}m(x)dx

where we have set αi(x) := α∗(t, x, p(x);µi) (i = 1, 2) and L(x, . . . ) := L(t, x, p(x), . . . ) to
simplify the expressions. So

0 ≤
∫
Rd

{b1(t, x, α1(x)) · p(x) + L(x, α1(x);µ1)− b1(t, x, α2(x)) · p(x)− L(x, α2(x);µ1)

−b1(t, x, α1(x)) · p(x)− L(x, α1(x);µ2) + b1(t, x, α2(x)) · p(x) + L(x, α2(x);µ2)}m(x)dx,

where, by assumption (4), α1(x) is the unique maximum point in the expression

−b1(t, x, α) · p(x)− L(t, x, p(x), α;µ1)

and α2(x) the unique maximum point in the symmetric expression with µ2. This implies that
α1 = α2 m−a.e., and therefore, by the fixed point relation (34), that µ1 = µ2.

Finally we show the stability. In view of the previous discussion, we know that (µn :=
F (pn,mn)) has a uniformly bounded second order moment and thus converges, up to a sub-
sequence, to some µ̃. We just have to check that µ̃ = F (p,m), i.e., µ̃ satisfies the fixed-point
relation. Let φ be a continuous and bounded map on Rd × A. Then∫

Rd×A
φ(x, α)dµn(x, α) =

∫
Rd

φ(x, α∗(t, x, pn(x);µn))mn(x)dx.
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As (mn) is bounded in L∞ and converges to m in P1(Rd), it converges in L∞−weak-∗ to m.
The map φ being bounded and the (mn) having a uniformly bounded second order moment,
we have therefore

lim
n

∫
Rd

φ(x, α∗(t, x, p(x);µ))mn(x)dx =

∫
Rd

φ(x, α∗(t, x, p(x);µ))m(x)dx.

On the other hand, by continuity of α∗ and a.e. convergence of (pn), φ(x, α∗(t, x, pn(x);µn))
converges to φ(x, α∗(t, x, p(x);µ)) a.e. and thus in L1

loc. As the (mn) are uniformly bounded in
L∞ and have a uniformly bounded second order moment and as φ is bounded, this implies that

lim
n

∫
Rd

φ(x, α∗(t, x, pn(x);µn))mn(x)dx−
∫
Rd

φ(x, α∗(t, x, p(x);µ))mn(x)dx = 0.

So we have proved that

lim
n

∫
Rd×A

φ(x, α)dµn(x, α) =

∫
Rd×A

φ(x, α)dµ(x, α),

which implies that (µn) converges to µ in P1(Rd × A) because of the second order moment
estimates on (µn).

Next we address the existence of a solution to the Kolmogorov equation when the map u is
Lipschitz continuous and has some semi-concavity property in space. We will see in the proof
of Theorem 5.1 that this is typically the regularity for the solution of the Hamilton-Jacobi
equation.

Lemma 5.3. Assume that u = u(t, x) is uniformly Lipschitz continuous in space with constant
M > 0 and semi-concave with respect to the space variable with constant M and that (µt) is a
time-measurable family in P1(Rd×A). Then there exists at least one solution to the Kolmogorov
equation (30) which satisfies the bound

(35) ‖mt(·)‖∞ ≤ ‖m̄0‖∞ exp{C0t},

where C0 is given by

C0 := C0(M) = sup
(t,x)

|D2a(t, x)|+ sup
(t,x,p,ν)

∣∣D2
xpH(t, x, p; ν)

∣∣+ sup
(t,x,p,X,ν)

Tr
(
D2
ppH(t, x, p; ν)X

)
where the suprema are taken over the (t, x, p,X, ν) ∈ [0, T ]×Rd ×Rd × Sd ×P1(Rd ×A) such
that |p| ≤M and X ≤M Id. Moreover, we have the second order moment estimate

(36)

∫
Rd

|x|2mt(x)dx ≤M0

and the continuity in time estimate

(37) sup
s,t

d1 (mn,s),mn,t) ≤M0|t− s|
1
2 ∀s, t ∈ [0, T ],

where M0 depends only on ‖a‖∞, the second order moment of m̄0 and on supt,x,p,ν |DpH(t, x, p; ν)|,
the supremum being taken over the (t, x, p, ν) ∈ [0, T ]×Rd×Rd×P1(Rd×A) such that |p| ≤M .

Assume now that (un = un(t, x)) is a family of continuous maps which are Lipschitz con-
tinuous and semi-concave in space with uniformly constant M and converge locally uniformly
to a map u; that (µn = µn,t) converges in C0([0, T ],P1(Rd × A)) to µ. Let mn be a solution to
the Kolmogorov equation associated with un, µn which satisfies the L∞ bound (35). Then (mn)
converges, up to a subsequence, in L∞−weak*, to a solution m of the Kolmogorov equation
associated with u and µ.
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Proof. We first prove the existence of a solution. Let (un) be smooth approximations of un.
Then equation{
∂tmt(x)−∑i,j ∂ij(an,ij(t, x)mt(x))− div (mt(x)DpH(t, x,Dun(t, x);µt)) = 0 in (0, T )× Rd

m0(x) = m̄0(x) in Rd

has a unique classical solution mn, which is the law of the process{
dXt = −DpH(Xt, Dun(t,Xt);µt)dt+ σ(t,Xt)dWt

X0 = x0

where x0 is a random variable with law m̄0 independent of W . By standard argument, we have
therefore that

sup
t∈[0,T ]

∫
Rd

|x|2mn,t(dx) ≤ E

[
sup
t∈[0,T ]

|Xt|2
]
≤M0,

whereM0 depends only on ‖a‖∞, the second order moment of m̄0 and on supt,x,p,ν |DpH(t, x, p; ν)|,
the supremum being taken over the (t, x, p, ν) ∈ [0, T ]×Rd×Rd×P1(Rd×A) such that |p| ≤M .
Moreover,

d1 (mn(s),mn(t)) ≤ sup
s,t

E [|Xt −Xs|] ≤M0|t− s|
1
2 ∀s, t ∈ [0, T ],

changing M0 if necessary. The key step is that (mn) is bounded in L∞. For this we rewrite the
equation for mn as a linear equation in non-divergence form

∂tmn − Tr
(
aD2mn

)
+ bn ·Dmn − cnmn = 0

where bn is a some bounded vector field and cn is given by

cn(t, x) =
∑
i,j

∂2ijan,ij(t, x)+Tr
(
D2
xpH(t, x,Dun(t, x);µt)

)
+Tr

(
D2
ppH(t, x,Dun(t, x);µt)D

2un(t, x)
)
.

As u is uniformly Lipschitz continuous and semi-concave with respect to the x−variable, we
can assume that (un) enjoys the same property, so that

‖Dun‖∞ ≤M, D2un ≤M Id.

Then

|D2an(t, x)|+
∣∣D2

xpH(t, x,Dun(t, x);µt)
∣∣+ Tr

(
D2
ppH(t, x,Dun(t, x);µt)D

2un(t, x)
)
≤ C0

because D2
ppH ≥ 0 by convexity of H. This proves that

cn(t, x) ≤ C0 a.e.

By standard maximum principle, we have therefore that

sup
x
mn(t, x) ≤ sup

x
m̄0(x) exp(C0t) ∀t ≥ 0,

which proves the uniform bound of mn in L∞. Thus (mn) converges weakly-* in L∞ to some
map m satisfying (in the sense of distribution){

∂tm−
∑

i,j ∂ij(aijm)− div (mDpH(t, x,Du;µt)) = 0 in (0, T )× Rd

m0(x) = m̄0(x) in Rd

This shows the existence of a solution. The proof of the stability goes along the same line,
except that there is no need of regularization.
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Next we need to show some uniform regularity in time of Du where u is a solution of the
Hamilton-Jacobi equation. For this, let us note that the set

(38) D := {p ∈ L∞(Rd), ∃v ∈ W 1,∞(Rd), p = Dv, ‖v‖∞ ≤M, ‖Dv‖∞ ≤M, D2v ≤M Id}

is sequentially compact for the a.e. convergence and therefore for the distance

(39) dD(p1, p2) =

∫
Rd

|p1(x)− p2(x)|
(1 + |x|)d+1

dx ∀p1, p2 ∈ D.

Lemma 5.4. There is a modulus ω such that, for any (µt) ∈ C0([0, T ],P1(Rd×A)), the viscosity
solution u to (28) satisfies

dD(Du(t1, ·), Du(t2, ·)) ≤ ω(|t1 − t2|) ∀t1, t2 ∈ [0, T ].

Proof. Suppose that the result does not hold. Then there exists ε > 0 such that, for any
n ∈ N\{0}, there is µn ∈ C0([0, T ],P1(Rd × A)) and times tn ∈ [0, T − hn], hn ∈ [0, 1/n] with

dD(Dun(tn, ·), Dun(tn + hn, ·)) ≥ ε,

where un is the solution to (28) associated with µn. In view of our regularity assumption on
H, the map (x, p)→ H(t, x, p;µn,t) is locally uniformly bounded in C2 independently of t and
n. So, there exists a time-measurable Hamiltonian h = h(t, x, p), obtained as a weak limit of
H(·, ·, ·;µn,·), such that, up to a subsequence,

∫ t
0
H(s, x, p;µn,s)ds converges locally uniformly

in x, p to
∫ t
0
h(s, x, p)ds. Note that h inherits the regularity property of H in (x, p). Using

the notion of L1−viscosity solution and Barles’ stability result of L1−viscosity solutions for
the weak (in time) convergence of the Hamiltonian [Barles, 2006], we can deduce that the un
converge locally uniformly to the L1−viscosity solution u of the Hamilton-Jacobi equation (28)
associated with the Hamiltonian h. Without loss of generality, we can also assume that (tn)
converges to some t ∈ [0, T ]. Then, by semi-concavity, Dun(tn, ·) and Dun(tn + hn, ·) both
converge a.e. to Du(t, ·) because un(tn, ·) and un(tn + hn, ·) both converge to u(t, ·) locally
uniformly. As the Dun are uniformly bounded in L∞, we conclude that

dD(Dun(tn, ·), Dun(tn + hn, ·))→ 0,

and there is a contradiction.

Proof of Theorem 5.1. We proceed as usual by a fixed point argument. We first solve an ap-
proximate problem, in which we smoothen the Komogorov equation, and then we pass to the
limit. Let ε > 0 small, ξε = ε−(d+1)ξ((t, x)/ε) be a standard smooth mollifier.

To any µ = (µt) belonging to C0([0, T ],P1(Rd × A)) we associate the unique viscosity
solution u to (28). Note that, with our assumption on H and G, u is uniformly bounded,
uniformly continuous in (t, x) (uniformly with respect to (µt)), uniformly Lipschitz continuous
and semi-concave in x (uniformly with respect to t and (µt)). We denote by M the uniform
bound on the L∞−norm, the Lipschitz constant and semi-concavity constant:

(40) ‖u‖∞ ≤M, ‖Du‖∞ ≤M, D2u ≤M Id.

Then we consider (mt) to be the unique solution to the (smoothened) Kolmogorov equation

(41)


∂tmt(x)−∑i,j ∂ij(aij(t, x)mt(x))− div (mt(x)DpH(t, x,Duε(t, x);µt)) = 0

in (0, T )× Rd

m0(x) = m̄0(x) in Rd

where uε = u ? ξε. Following Lemma 5.3, the solution m—which is unique thanks to the space
regularity of the drift—satisfies the bounds (35), (36) and (37) (which are independent of µ
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and ε). Finally, we set µ̃t = F (mt, Du(t, ·)), where F is defined in Lemma 5.2. From Lemma
5.2, we know that there exists C0 > 0 (still independent of µ and ε) such that

sup
t∈[0,T ]

∫
Rd×A

|x|2 + δA(α0, α) dµ̃t(x, α) ≤ C0.

Our aim is to check that the map Ψε : (µt) → (µ̃t) has a fixed point. Let us first prove
that (µ̃t) is uniformly continuous in t with a modulus ω independent of (µt) and ε. Recall that
the set D defined by (38) is compact. Moreover, the subset M of measures in P1(Rd) with
a second moment bounded by a constant C0 is also compact. By Lemma 5.2, the map F is
continuous on the compact set D ×M, and thus uniformly continuous. On the other hand,
Lemma 5.4 states that the map t → Du(t, ·) is continuous from [0, T ] to D, with a modulus
independent of (µt). As (mt) is also uniformly continuous in time (recall (37)), we deduce that
(µ̃t := F (mt, Du(t, ·)) is uniformly continuous with a modulus ω independent of (µt) and ε.

Let K be the set of µ ∈ C0([0, T ],P(Rd × A)) with a second order moment bounded by C0

and a modulus of time-continuity ω. Note that K is convex and compact and that Ψε is defined
from K to K.

Next we show that the map µ → Ψε(µ) is continuous on K. Let (µn) converge to µ in K.
From the stability of viscosity solution, the solution un of (28) associated to µn converge locally
uniformly to the solution u associated with µ. Moreover, recalling the estimates (40), the (Dun)
are uniformly bounded and converge a.e. to Du by semi-concavity. Let mn be the solution to
(41) associated with µn and un. By the stability part of Lemma 5.3, any subsequence of the
compact family (mn) converges uniformly to a solution (41). This solution m being unique,
the full sequence (mn) converges to m. By continuity of the map F , we then have, for any
t ∈ [0, T ],

Ψε(µn)(t) = F (mt, Du(t, ·)) = lim
n
F (mn,t, Dun(t, ·)) = lim

n
Ψε(µn)(t).

Since the (mn) and (Dun) are uniformly continuous in time, the convergence of Ψε(µn) to Ψε(µ)
actually holds in K.

So, by Schauder fixed point Theorem, Ψε has a fixed point µε. It remains to let ε → 0.
Up to a subsequence, labelled in the same way, (µε) converges to some µ ∈ K. As above, the
solution uε of (28) associated with µε converges to the solution u associated with µ and Duε

converges to Du a.e.. The solution mε of (41) (with µε and uε) satisfies the estimates (35),
(36) and (37). Thus the stability result in Lemma 5.3 implies that a subsequence, still denoted
(mε), converges uniformly to a solution m of the unperturbed Kolmogorov equation (30). Recall
that µεt = F (mε

t , u
ε(t, ·)) for any t ∈ [0, T ]. We can pass to the limit in this expression to get

µt = F (mt, u(t, ·)) for any t ∈ [0, T ]. Then the triple (u,m, µ) satisfies system (33).

6 Conclusion

In this paper, we proposed a model for optimal execution or optimal trading in which, instead of
having as usual a large trader in front of a neutral “background noise”, the trader is surrounded
by a continuum of other market participants. The cost functions of these participants have the
same shape, without necessarily sharing the same values of parameters. Each player of this
mean field game (MFG) is similar in the following sense: it suffers from temporary market
impact, impacts permanently the price, and fears uncertainty.

The stake of such a framework is to provide robust trading strategies to asset managers,
and to shed light on the price formation process for regulators.

Our framework is not a traditional MFG, but falls into the class of extended mean filed
games, in which participants interact via their controls. We provide a generic framework to
address it for a vast class of cost functions, beyond the scope of our model.
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Thanks to it, we solved our model and provide insights on the influence of its parameters
(temporary and permanent market impact coefficients, terminal penalization, risk aversion and
duration of the game) on the obtained results. We provide the solution in a closed form and
formulate a series of “stylized facts” (Stylized Fact 1 to Stylized Fact 6) describing our results.
For instance we unveil three components of the optimal control: two coming from the mean field
E(t) and its derivative E ′(t) (summarized in a function h1(t)), and the third one proportional
to the remaning quantity to trade q(t) via an increasing function h2(t). We show also how to
slow down trading when the net inventory of the participants is of the opposite sign (i.e. the
“market” is buying while the trader is selling, or the reverse): h2(t) is unchanged but h1(t) is
changed in its opposite.

To conclude on this, we provide numerical illustrations showing market participants could
end up not following their initial instructions, for some configurations of the market structure.
This could help regulators to smooth such behaviours if needed.

In a second stage, we address the case of heterogenous preferences (i.e. when each agent
has his own risk aversion parameter). We show the existence of an unique solution but do no
more have a closed form formulation. Last but not least we study a more realistic case in which
participants do not know instantaneously the optimal strategies of others, but have to learn
them. We list in Proposition 4.2 conditions needed so that the learnt strategy is the optimal
one.

A Proof of Proposition 3.1

Proof of Proposition 3.1. The discriminant of the second order equation is

∆ = α2 + 16κφ

and the roots are

r± = − α

4κ
± 1

κ

√
κφ+

α2

16
.

Hence
E(t) = E0a (exp{r+t} − exp{r−t}) + E0 exp{r−t}

where a ∈ R determined by the condition

κE ′(T ) + AE(T ) = 0

and thus has to solve the relation

κE0 [a (r+ exp{r+T} − r− exp{r−T}) + r− exp{r−T}]
+AE0 [a (exp{r+T} − exp{r−T}) + exp{r−T}] = 0.

There is a unique solution if E0 6= 0 and

(42) κ (r+ exp{r+T} − r− exp{r−T}) + A (exp{r+T} − exp{r−T}) 6= 0.

Writing r± = − α

4κ
± θ where θ := 1

κ

√
κφ+ α2

16
, condition (42) is equivalent to[

(−α
4

+ κθ) exp{θT} − (−α
4
− κθ) exp{−θT}

]
+ A [exp{θT} − exp{−θT}] 6= 0,

which leads to the condition

−α
2

sh{θT}+ 2κθch{θT}+ 2Ash{θT} 6= 0.
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As ch{θT} > sh{θT}, one has

−α
2

sh{θT}+ 2κθch{θT}+ 2Ash{θT} > sh{θT}
(
−α

2
+ 2κθ + 2A

)
= sh{θT}

(
−α

2
+ 2

(
κφ+

α2

16

)1/2

+ 2A

)
≥ 2Ash{θT} > 0.

So condition (42) is always fulfilled and

a = − κr− exp{r−T}+ A exp{r−T}
κ (r+ exp{r+T} − r− exp{r−T}) + A (exp{r+T} − exp{r−T})

= − (−α/4− κθ + A) exp{−θT}
−α

2
sh{θT}+ 2κθch{θT}+ 2Ash{θT} .

To compute h2, we note that it solves the following backward ordinary differential equation
(15a): {

0 = 2κ · h′2(t) + 4κ · φ− (h2(t))
2

h2(T ) = 2A

It is easy to check the solution is given by (18), where where r = 2
√
φ/κ and c2 solves the

terminal condition. Hence

c2 =
1− A/√κφ
1 + A/

√
κφ
· e−rT .
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