Poincaré inequalities on intervals – application to sensitivity analysis

Abstract : The development of global sensitivity analysis of numerical model outputs has recently raised new issues on 1-dimensional Poincaré inequalities. Typically two kind of sensitivity indices are linked by a Poincaré type inequality , which provide upper bounds of the most interpretable index by using the other one, cheaper to compute. This allows performing a low-cost screening of unessential variables. The efficiency of this screening then highly depends on the accuracy of the upper bounds in Poincaré inequalities. The novelty in the questions concern the wide range of probability distributions involved, which are often truncated on intervals. After providing an overview of the existing knowledge and techniques, we add some theory about Poincaré constants on intervals, with improvements for symmetric intervals. Then we exploit the spectral interpretation for computing exact value of Poincaré constants of any admissible distribution on a given interval. We give semi-analytical results for some frequent distributions (truncated exponential, triangular, truncated normal), and present a numerical method in the general case. Finally, an application is made to a hydrological problem, showing the benefits of the new results in Poincaré inequalities to sensitivity analysis.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01388758
Contributeur : Olivier Roustant <>
Soumis le : lundi 12 décembre 2016 - 14:30:59
Dernière modification le : vendredi 20 octobre 2017 - 01:17:56

Fichiers

Poincare_Sensitivity.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01388758, version 2
  • ARXIV : 1612.03689

Citation

Olivier Roustant, Franck Barthe, Bertrand Iooss. Poincaré inequalities on intervals – application to sensitivity analysis. 2016. 〈hal-01388758v2〉

Partager

Métriques

Consultations de la notice

319

Téléchargements de fichiers

144