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Abstract 

To analyze the delamination behavior of a thermoset composite, the parameters of a mixed mode 

cohesive model are identified by combining experimental displacement fields measured via global 

digital image correlation and load data in a single cost function written within a Bayesian framework 

using Finite Element Model Updating.  A sensitivity analysis shows that the load data are of prime 

importance to enable the sought parameters to be tuned.  Two delamination tests are analyzed in a 

single procedure that is first decoupled to find good initial guesses, and then fully coupled to get a 

set that is compatible with both experiments.  The sensitivity of the calibrated parameters to their 

initial guess is analyzed.  A low model error is found thereby validating the proposed approach 

(enabling to choose the best strategy for identification steps).  
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1. Introduction 

Composite laminates are extensively used in aeronautics and aerospace industries [1, 2] and thus 

challenge industry on its ability to accurately predict through numerical simulations and properly 

identify the behavior of specimens and structures up to failure.  One of the critical degradation 

mechanisms is delamination between plies [3, 4].  To characterize the interfacial properties, various 

experiments have been proposed.  For instance, double cantilever beam (DCB) tests [5] are 

considered to evaluate the mode I properties, and crack lap shear (CLS) configurations [6] for a priori 

mode II dominant propagations.  Global fracture properties (e.g., critical energy release rates, stress 

intensity factors) are classically determined by using point data (e.g., applied load and remote 

displacement [7, 8]).  An alternative route consists of utilizing full-field measurements [9-12]. 

Cohesive zone models (CZMs) are also used to predict delamination in composite materials 

[13-17].  Many of them are extensions of models initially applied to brittle materials [18], quasi-

brittle materials [19], or ductile materials [20].  Compared with the previous (global) approaches, 

CZMs account for crack initiation and propagation.  Full-field measurements techniques are very 

useful to identify material parameters of such models.  Döll and Könczöl [21] have shown how optical 

interferometry can be used to identify the strength of Dugdale model for PMMA.  Abanto-Bueno and 

Lambros [22] used a multicamera system to determine the cohesive properties of a copolymer via 

digital image correlation (DIC) analyses at two different scales.  Fedele et al. [11] calibrated the 

parameters of modified Xu and Needleman [23] model for a glare assembly by updating finite 

element simulations (FEMU) with Q4-DIC (i.e., global DIC based upon finite element discretizations of 

the displacement field using 4-noded quadrangles [24]).  Hong et al. [25] used a field projection 

method to extract cohesive parameters from full-field measurements and applied the technique to 

analyze cracking of PMMA.  Ferreira et al. [26] determined the traction profile in concrete when 



3 
 

boundary element simulations are combined with Q4-DIC measurements.  The authors have shown 

that Hillerborg’s model is a very good approximation of the traction/separation law.  Similarly, Shen 

and Paulino [27] tuned the traction profile with FEMU-U (meaning that FEMU uses only displacement 

data) for a ductile adhesive.  Fuchs and Major [28] utilized the J-integral to determine the cohesive 

stresses in glass/epoxy composites.  Réthoré and Estevez [29] updated X-FEM calculations to identify 

the parameters of a trapezoidal cohesive law applied to PMMA. 

The present paper is a follow up on the identification of global fracture mechanics 

parameters (i.e., crack tip position, energy release rate, and stress intensity factors) and their 

associated uncertainties using experimental/numerical analyses of DCB and CLS tests [12].  With such 

a procedure, the experimental mode mixity could also be analyzed.  More local analyses will be 

performed herein by considering a built-in cohesive zone model in the commercial finite element 

code Abaqus [30].  As proposed for the identification procedure of global parameters [11, 12], 

kinematic boundary conditions are prescribed in the finite element code in addition to the applied 

load, which is seldom considered.  The paper is organized as follows.  Section 2 describes the 

material, the specimen geometries, the mechanical tests and the full field measurements. The 

identification method updating the Finite Element (FE) model is introduced in Section 3.  The 

sensitivity analysis is presented in Section 4 where the results will bring some elements on the 

procedure for parameter identification. Section 5 deals with the identified results obtained on the 

studied material.  Last, Section 6 discusses the whole identification procedure and the results. 

2. Set-up and measurements 

In a previous study, the characterization of delamination properties was performed on a 0/0° 

interface configuration of a thermoset composite material T700/M21 (low grade made from pre-

pregs cured with industrial quality process [12]).  Three analyses were conducted to evaluate the 

mode I and II interlaminar fracture properties through DCB (Double Cantilever Beam) and CLS (Crack 

Lap Shear) tests.  These tests were analyzed separately.  The experiments were monitored by a 
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Canon EOS 350D camera with a Sigma lens of 180 mm focal length.  Displacement fields were 

measured using Q4-DIC [24].  The specificity of this technique is to use a finite element discretization 

with 4-noded bilinear elements (Q4) and thus to ensure a continuity of the measured displacement 

field.  The commercial CorreliSTC code was used [31].  In the present work, only the DCB test and one 

standard CLS experiment are considered to calibrate the cohesive properties thanks to a weighted 

Finite Element Model Updating (FEMU) approach.  One of the main points is to use both tests at the 

same time to identify the parameters of the cohesive model in only one single step. 

2.1. DCB configuration 

In this configuration, the sample is loaded in an opening mode as presented in Fig. 1a.  The 

dimensions of the sample are b = 20 mm, h1 = 2.17 mm, h2 = 1.85 mm, L = 250 mm, and t = 20 mm.  

The loading in the x-direction is performed along the perpendicular direction of the plies with a 

tension/compression servohydraulic testing machine.  Before the experiment is started, the sample 

was pre-cracked over a length a.  In practice, it is performed manually by the operator while carefully 

clamping the specimen ahead of the desired location.  An alternative is to perform a first propagation 

step with the testing machine; this step is then not taken into account in the subsequent 

investigation.  In the present case the first route was chosen.  The sample is then loaded under a 

displacement controlled procedure in which the force is measured and an image is acquired at each 

of the 28 steps of interest (Fig. 1b).  Figures 1c and 1d show the picture in the reference 

configuration and the last image in the deformed configuration of the ROI (Region of Interest, see 

Fig. 1a).  The different images are used to measure the displacement field via Q4-DIC.  In the present 

case, the edge size of each Q4 element is equal to 16 pixels (≈ 200 µm).  The longitudinal (x-axis) and 

the transverse (y-axis) displacement fields between these two images are shown in Figs. 1e and 1f, 

where the pixel size is equal to 12 µm. 

The presence of a crack is clearly visible in the image of the deformed configuration (Fig. 1d) 

and on the transverse displacement field (Fig. 1f).  Figure 1g shows the mode I crack opening 
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displacement for the first and the last analyzed picture.  It illustrates the change of crack opening and 

the resulting compression, in the right part, where the displacement jump is negative.  In the present 

case, the crack opening displacement is evaluated as the difference of mean displacement of the two 

layers of the sample. 

2.2. CLS configuration 

Figure 2a shows the loading for the CLS configuration.  The dimensions of the sample are b = 10 mm, 

h1 = 1.61 mm, h2 = 1.57 mm, and L = 250 mm.  It consists of a tensile test in a servohydraulic testing 

machine where the plies are aligned along the loading direction.  In this configuration, a pre-crack is 

manually created in the specimen by the operator while carefully clamping the two arms of the 

specimen.  Thirteen loading steps are analyzed (Fig. 2b) and the corresponding images are acquired.  

Figures 2c and 2d show the picture in the reference configuration and in the deformed configuration 

at the end of the analysis.  In this present case the edge size of each Q4 element is equal to 32 pixels 

(≈ 200 µm).  The physical size of one pixel is now 3.5 µm since a higher magnification was selected 

(i.e., to enable for a more local analysis of the cohesive zone model).  In this configuration, a mixed 

mode condition is induced by the experiment itself [12], which evolves during propagation.  The 

presence of the crack is observed when analyzing the displacement fields.  However, it is impossible 

to detect manually on the pictures since the mode I opening displacement is very small. 

3. Identification procedure of cohesive parameters 

3.1. Mesh generation 

The numerical model is implemented in the commercial finite element code Abaqus [29].  A 2D Finite 

Element (FE) model is developed considering the plane stress assumption (Fig. 3a).  Each part of the 

carbon-epoxy composite is meshed with CPS4 elements.  The interface is modelled thanks to zero 

thickness 4-noded cohesive elements (COH2D4).  The Dirichlet boundary conditions are based on the 

measured displacement field umeas from Q4-DIC analyses (Figs. 1 and 2).  Therefore, the whole 
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experiment is not modeled but only the ROI monitored for DIC purposes [11, 12].  In Ref. [12], a 

minimum mesh refinement of two is advised.  In the present case, a factor four on the refinement is 

selected to ensure an accurate description of the nonlinear stress shape behind the crack tip.  It was 

checked that a finer mesh would lead to very similar results.  In the numerical model, the prescribed 

displacements of these additional nodes are obtained with the Q4 interpolation functions of the 

measurement mesh.  Since the Q4-DIC code CorreliSTC provides measured displacement fields using 

meshes made of Q4 elements, this interpolation is direct and does not add any additional error 

contrary to local DIC approaches. 

3.2. Constitutive behavior 

The behavior of the composite layers is assumed to be elastic.  The elastic properties of each 0-

degree laminate are E1 = 120GPa, E2 = E3 = 8.9GPa, G12 = 5.3GPa, ν13 = ν12 = 0.33, ν23 = 0.35 where 1 is 

the longitudinal direction of the ply, 2 is the transverse one, and 3 the out-of-plane direction.  These 

values were obtained from previous identification campaigns where several tensile tests with loading 

and unloading sequences were performed on [0°], [±45°], [±67.5°] coupons tested on an 

electrohydraulic testing machine, in the same manner as Ref. [32]. 

The cohesive zone model is characterized by a traction-separation law, which depends on the 

fracture energy and the strength of the interface (Fig. 3b).  The area under the traction-displacement 

jump curves for a pure mode I or II is the respective fracture energy dependent on the critical crack 

opening displacement, final

i  

iic

final
i

dtG 





0

 (1) 
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The nominal traction, t, consists of two components in 2D problems, namely, tn and tt that represent 

the normal and the shear tractions, respectively.  The corresponding displacement jumps are δn and 

δt.  Denoting by h0 the original thickness of the cohesive element, the nominal strains are defined as 

h
i

i

0


   (2) 

where i = n or t.  The elastic behavior (Fig. 3b) of the interface is written as 
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where the off-diagonal terms in the stiffness matrix (i.e., Knt) are set to zero in order to express the 

uncoupled behavior between normal and shear components. 

In this work, a built-in CZM in Abaqus code is chosen even though the final goal is to use 

“bell-shape” models [4, 14, 15].  This is not detrimental to the present work whose purpose is the 

feasibility of the methodology rather than the details of the chosen CZM.  For pure mode I or II 

loadings, after the interfacial normal or shear tractions reach their respective interlaminar tensile or 

shear strengths, the stiffnesses are gradually reduced to zero (Fig. 3b) via a damage parameter [14-

16, 19].  As a first proposal and among the few equations proposed within the FE code, the coupling 

of the fracture energy under mixed mode condition is defined in terms of the Benzeggagh-Kenane 

criterion [33] so that the total fracture energy, CG , is expressed as 
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where tnT GGG  and   is set to 1 (meaning that the 2D propagation space is a triangle, which 

is valid as a first approximation). 

3.3. Inverse identification method 

To identify the cohesive parameters, which are gathered in vector θ, a cost function  (θ) is based 

on the comparison of the measured and simulated displacement fields and resultant forces 
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where dofN  is the number of kinematic degrees of freedom, sensorN  the number of load sensors and 

stepN  the number of loading steps for each experiment.   U
~

 and  F
~

 are the vectors gathering the 

measured displacements and forces, respectively,  U  and  F , which depend on the parameters 

θ, the calculated displacement and force vectors, u  and F  the standard displacement and force 

resolutions, respectively.  In the present case, weighted residuals are considered that stem from a 

Bayesian foundation to account for the standard resolution levels associated with Q4-DIC and the 

load sensors.  The underlying hypothesis is that noise is Gaussian and white.  The quadratic form is 

the argument of the exponential in the Gaussian probability distribution.  The additivity of the 

functionals is the counterpart of the statistical independence of the two measurements (i.e. load and 
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displacements), which implies that probabilities are multiplied.  The chosen normalization by the 

noise amplitude in all functionals guarantees that no additional prefactors are to be considered.  If 

only noise is present (i.e., no model error), the expectation of  (θ) is equal to 1 [34-36]. 

The standard displacement resolution pixel 040.u in both cases (or  0.5 µm for the DCB 

experiment, and  0.15 µm for the CLS experiment), whereas the standard load resolution is 

N 1
DCBF  and N 50

CLSF .  The identification of θ is performed through the minimization of the 

cost function through Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [37].   

3.4. Boundary condition selection 

It is worth noting that in all analyzed cases, experimental (i.e., measured) Dirichlet boundary 

conditions are applied to the numerical model.  Consequently, any mode mixity induced by the 

stacking sequence (e.g., if not symmetric) or by any delamination plane not exactly located at mid-

thickness (i.e., h1  h2) and/or loading conditions will be accounted for.  These real conditions are 

often not taken into account in classical methods.  In a previous work, it was shown that global mode 

mixities could be extracted by following such an approach [12]. 

A first identification route consists of prescribing the displacement on the whole boundary of 

the analyzed ROI in the CLS experiment as for the determination of global parameters [12].  Since 

displacements are prescribed, they will give rise to equilibrium gaps [38].  The equilibrium gap is 

separated into 8 contributions.  Along the laminate (x-) direction the right and left reaction forces 

should be equal to the applied load (Fig. 3c-d).  The right and left forces should be equal to 0 as well 

as the upper and lower ones.  The identification leads to results with displacement residuals close to 

levels obtained for a global model [12] (i.e., a root mean square difference between measured and 

computed displacements ≈ 0.3 pixel).  For the equilibrium constraint, the load residual is of the order 

of 200 N on each boundary except on the boundaries where forces are transmitted (right and left 
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boundaries along the laminate direction).  On these boundaries, the cumulated residual is greater 

than 1,400 N.  The same conclusion is drawn for the DCB test. 

For the DCB experiment, it is possible to circumvent this issue by comparing the resultant of 

the cohesive load with the measured load (Fig. 3c).  Conversely, for the CLS experiment, the upper 

and lower boundary conditions are stress-free in the simulations.  Thus, the equilibrium gap is only 

built with the resultant load on the right side, which is equal to that of the lower left boundary 

(Fig. 3d). 

4. Sensitivity analyses 

To determine the feasibility of the identification, a sensitivity (S) analysis is performed on the whole 

set of cohesive parameter θk [39], for all the spatial domain (x) and for all relevant time steps (t) of 

the tests.  This pre-analysis is carried out by means of the sensitivity matrix and allows for the best 

choice of identification strategy (e.g. two sets of parameters identified consecutively or only one set 

identified in one step).  These parameters are the 6 cohesive properties and for the DCB test the 

crack initiation force.  The latter is needed to account for the fact that the interface has been initially 

loaded at a level that is unknown.  The sensitivity of the displacement field and resultant forces, 

collectively denoted by P, is written as 

),,(),,(),( kkk ttt
k

 xPxPxS   (6) 

and quantifies the effect of a variation θk of each parameter θk on the measured quantifies P.  In the 

following analyses, a parameters variation of 1% is prescribed.  The higher the sensitivity the easier 

the identification of the corresponding parameter provided the levels of the sensitivity fields can be 

made greater than the measurement resolutions [34].   
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The following analysis is performed with the initial values of the sought parameters, namely, 

Knn = 39 GPa/mm, Ktt = 15 GPa/mm, σn = 15, MPa, σt = 37 MPa, GI = 350 J/m², and GII = 1500 J/m².  

These parameters are representative of values used at Airbus Group Innovations for such class of 

materials.  Moreover, a pre-loading at 60 N is chosen for the DCB test.  This force corresponds to a 

preloading performed before the measurement to localize the crack tip.  Figure 4 shows the 

displacement sensitivity maps of the last loading step of the DCB experiment for each parameter.  As 

expected, very small influences of the tangential parameters (i.e., Ktt, σt, GII) are observed on the 

displacements (< 10-5 pixel).  When compared with the standard displacement resolutions they are 

significantly smaller, thereby proving that this experiment does not give any indication on the shear 

contribution of the CZM.  On the contrary, the normal parameters lead to higher sensitivities, in 

particular the strength σn (10-4 pixel in the longitudinal direction, 10-3 pixel in the transverse 

direction), but also the stiffness Knn and the toughness GI in the longitudinal direction (10-4 pixel).  

However, these levels are still lower than the measurement resolution (greater than 10-2 pixel).  The 

fact that all three normal parameters exhibit the same type of sensitivity is due to crack propagation 

that occurs for the last 16 steps of the experiment [12]. 

Without any additional information, there is no hope of identifying the cohesive parameters 

with the considered approach (i.e., cost function only driven by displacement).  The same analysis is 

carried out for the load sensitivities in the loading direction for which measured data are available.  

Figure 5 shows that the sensitivity levels of the normal parameters are higher than the load 

resolution (of the order of 1N) in particular for the strength and toughness and to a lesser extent for 

the stiffness.  This result explains why it is mandatory (at least for this configuration) to use a specific 

cost function that combines displacement and load measurements. 

 A similar analysis is performed for the CLS test.  Figure 6 illustrates the displacement 

sensitivity maps of the last step of the CLS experiment, and Figure 7 the load sensitivity for all loading 

steps.  Extremely low sensitivities are observed for both toughnesses.  This result is to be expected 
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since it is believed that propagation was very limited for the last recorded picture [12] and the 

present FEMU process averages all steps.  Conversely, the sensitivities to tangential and normal 

stiffnesses and strengths are more pronounced.  This is due to the fact that the experiment was not 

in pure mode II loading [12].  There are strong correlations between normal and tangential 

parameters when displacements alone are analyzed.  This is to be expected since no absolute stress 

(or load) scale is accounted for.  As for the DCB test, the load sensitivities are very informative since 

their level is again higher than the load resolution for four out of 6 parameters (Figure 7).  In both 

cases, the load information is crucial if cohesive parameters are sought. 

In order to illustrate the global sensitivity to each parameter, the sensitivity matrix [M], 

which corresponds to the approximate Hessian of the nonlinear least squares formulation (5), is 

expressed as 

  j
t

ij i
M  SS ˆˆ  (7) 

where  jŜ  is either the vector gathering one component of the nodal displacements over space and 

time, or all the load sensitivities over time for given parameter variations.  The sensitivity matrices 

are shown for the DCB and CLS experiments in Figure 8.  A high level in the sensitivity matrix 

represents a significant influence of the observed parameter, and a high level of off-diagonal terms 

suggests inter-dependencies between parameters as well. 

For the DCB test, the displacement along the vertical direction shows that only the 

parameters Knn and σn are sensitive and strongly correlated (i.e., nonzero off-diagonal terms).  For the 

horizontal direction, the parameters Knn, Ktt, σn and σt are the most sensitive.  Moreover, the 

parameters Knn and σn are strongly correlated in addition to Ktt with σt.  Concerning the reaction 

forces, only the normal parameters (i.e., Knn, σn, GI) are linked and very influent (i.e., significantly 

higher than the load variance).  
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For the CLS experiment, the parameter Ktt is the most sensitive in the horizontal direction.  In 

the vertical direction, Knn and Ktt are the most sensitive and not too (anti-)correlated.  Concerning the 

reaction forces, all the parameters (i.e., normal and tangential) are influential.  This result confirms 

again the benefit to use such a combined cost function, i.e. mixing displacement and load 

measurements. 

5. Identification of cohesive parameters 

This section presents the results of the parameter identification.  Several protocols are considered 

based on the previous sensitivity analysis.  First, using only the CLS experiment (i.e., a priori mode II 

dominant [6]) the tangential behavior is analyzed with a high stiffness and strength in the normal 

direction (i.e., only the part related to the CLS test is considered in the cost function (5) with three 

unknown parameters).  Then, a similar analysis is performed for the normal parameters using the 

DCB experiment (i.e., only the part related to the DCB test is considered in the cost function (5) with 

3 unknown parameters).  Once a first set of the six parameters is obtained, they will be used 

separately to update them by following the same approach as before, considering a sequential 

identification protocol.  Last, with the two previously determined levels of cohesive parameters, the 

complete set of cohesive parameters is simultaneously identified by analyzing both tests with the 

coupled cost function   introduced in Equation (5).  

5.1. First series of independent identifications 

This first part aims to identify the tangential parameters using the CLS test.  In order to identify them, 

the normal behavior is kept constant and chosen close to a purely elastic behavior (i.e., Knn = 500 

MPa/mm, σn = 250 MPa, GI = 400 J/m²) with a high level for initiation.  The results are presented in 

Table 1 for different sets of bounds and initial values.  Even though the three different sets of 

parameters are not identical, their level of variation remains small and that of the cost function is 
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very close.  The values of each parameter with the lowest cost function is considered for the 

subsequent identification steps, namely, Ktt = 32 GPa/mm, σt = 17 MPa, and GII = 1200 J/m².   

The identified toughness GII is consistent with the level found by a global elastic identification 

when extrapolated to the failure load (1300 ± 50 J/m² [12]).  Let us also note that the cost function 

has a level that is equal to about 7 times the standard resolutions associated with displacement and 

load measurements.  This is an indication of a model error since if no model error had occurred, the 

cost function would be unitary.  Conversely, the fact that its level does not depart too much from 1 is 

an indication that the model should not be disqualified at this stage. 

Table 1: Tangential cohesive parameters identified when analyzing the CLS experiment for different 

bounds and initial values.  The normal parameters are set to high values 

Bounds 

Ktt (GPa/mm) 15 – 70 10 – 60 15 – 80 

σt (MPa) 10 – 60 5 – 70 15 – 70 

GII (J/m²) 700 - 1800 700 – 1800 700 - 1800 

Initial values 

Ktt (GPa/mm) 35 20 30 

σt (MPa) 18 23 32.5 

GII (J/m²) 1100 1600 1200 

Identified values 

Ktt (GPa/mm) 34 32 47 

σt (MPa) 19 17 27 

GII (J/m²) 1100 1200 890 

Cost function  (-) 7.55 7.53 7.57 

 

Second, the normal parameters are identified using the DCB test.  As in the previous case, the 

tangential behavior is assumed constant and purely elastic (i.e., Ktt = 500 MPa/mm, σt = 250 MPa, and 

GII = 1300 J/m²).  The results gathered in Table 2 show that depending on the initial set of parameters 

the converged solution is not identical.  However, all lie within the chosen bounds.  In the present 

case, the three solutions are not as close in terms of overall level of the cost function as for the CLS 

experiment.  This is presumably due to the existence of secondary minima in the cost function since 

its level at convergence is very close for the three sets of parameters.  The set of values 



15 
 

corresponding to the lowest cost function is chosen for subsequent analyses, namely, F = 58 N, 

Knn = 36 GPa/mm, σn = 15 MPa, and GI = 310 J/m².   

The identified toughness GI has a level lower than that identified with an elastic analysis 

(410 ± 50 J/m² [12]) yet with an identical order of magnitude.  The level of the cost function is very 

close to the standard resolutions associated with displacement and load measurements.  A very small 

model error is obtained in the present case, thereby validating it in the present analysis.  

Table 2: Normal parameters identified when analyzing the DCB experiment for different bounds and 

initial values.  The tangential parameters are set to high values 

Bounds 

FDCB (N) 56 - 62 55 – 63 57 - 63 

Knn (GPa/mm) 5 -30 5 – 45 7 – 30 

σn (MPa) 5 – 25 7 – 35 5 – 25 

GI (J/m²) 250 - 500 250 – 600 250 - 500 

Initial values 

FDCB (N) 59,5 59 60 

Knn (GPa/mm) 25 15 8.5 

σnn (MPa) 15 22 13 

GI (J/m²) 350 350 310 

Identified values 

FDCB (N) 59 58 60 

Knn (GPa/mm) 28 37 21 

σnn (MPa) 13 15 13 

GI (J/m²) 350 310 360 

Cost function  (-) 1.34 1.25 1.26 

 

5.2. Second series of independent identifications 

In this second loop, the tangential parameters are tuned by considering the values of the previously 

identified normal parameters, which still remain constant in the present minimization (F = 58 N, 

Knn = 36 GPa/mm, σn = 15 MPa, and GI = 310 J/m²).  The results are presented in Table 3.  As in the 

previous cases, depending on the initial guess the converged solution is different. The identified 

tangential parameters are Ktt = 12 GPa/mm, σt = 39 MPa, GII = 1100 J/m².   
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The identified toughness GII is still close to the level found with a global elastic identification 

(1300 ± 50 J/m² [12]).  Interestingly, the level of the cost function has been reduced by 20% (i.e., 

from 7.5 to 5.9) with this step.  This decrease is in part due to the change of the tangential 

parameters so that the minimization procedure is initialized with another set of parameters.  This 

result confirms what was expected from the sensitivity analysis, namely, that normal and tangential 

parameters had the same level of influence for the displacements. In particular, the stiffnesses Knn 

and Ktt were correlated as well the strengths σn and σt. 

Table 3: Tangential parameters identified when analyzing the CLS experiment for different bounds 

and initial values.  The normal parameters are set as the mean values of the previous identification 

step 

Bounds 

Ktt (GPa/mm) 5 – 70 5 – 80 5 - 50 

σt (MPa) 5 – 60 5 – 70 5 - 50 

GII (J/m²) 700 - 1800 700 – 1800 700 - 1800 

Initial values 

Ktt (GPa/mm) 35 30 32 

σt (MPa) 18 33 17 

GII (J/m²) 1100 1200 1200 

Identified values 

Ktt (GPa/mm) 12 12 11 

σt (MPa) 39 39 39 

GII (J/m²) 1100 1100 1000 

Cost function  (-) 5.924 5.925 5.926 

 

In order to identify the normal parameters, the tangential behavior is described with the 

previously identified parameters (i.e., Ktt = 12 GPa/mm, σt = 39 MPa, GII = 1100 J/m²).  The results are 

presented in Table 4.  The identified tangential parameters are F = 58 N, Knn = 38 GPa/mm, σn = 15 

MPa, and GI = 350 J/m².  The identified parameters and the cost function levels are close to those of 

Table 2 except for the stiffness Knn.  Although the sensitivity is not strongly correlated between Knn 

and the tangential parameters (i.e., Ktt, σt, GII), the Ktt parameter is slightly correlated with Knn and σn, 

which may explain the difference of identified values.  The levels of the cost function have been 
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slightly reduced with this additional step.  Being already close to 1, it was not expected to see 

significant changes when compared to those observed for the tangential parameters.  

Table 4: Normal parameters identified when analyzing the DCB experiment for different bounds and 

initial values.  The tangential parameters are set as the mean values of the previous identification 

step 

Bounds 

FDCB (N) 55 – 63 57 – 63 57 – 63 

Knn (GPa/mm) 1 – 45 7 – 30 7 – 40 

σn (MPa) 7 – 35 5 – 25 5 – 25 

GI (J/m²) 250 - 600 250 – 500 250 – 500 

Initial values 

FDCB (N) 59 60 60 

Knn (GPa/mm) 15 8.5 21 

σnn (MPa) 22 13 13 

GI (J/m²) 350 310 360 

Identified values 

FDCB (N) 58 59 60 

Knn (GPa/mm) 38 20 20 

σnn (MPa) 15 14 14 

GI (J/m²) 350 370 370 

Cost function  (-) 1.19 1.21 1.20 

 

5.3. Combined identification 

The last identification step consists of simultaneously identifying the normal and tangential cohesive 

parameters using both tests in a single analysis.  The cost function is weighted accordingly.  The 

results are gathered in Table 5.  The level of the cost function is about five times the resolution limit, 

which validates the chosen model.  The fact that this value lies between the two levels found by the 

two-step sequential identification procedure is expected thanks to the weighting introduced in 

Equation (5). 

It is worth noting that the initial guesses analyzed in this part are all slightly different from 

the set found in Tables 3 and 4.  The reason for this choice is to get some information about the 

sensitivity to the initial guess.  The two lower residuals lead to parameters that are close (Table 5). 
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Table 5: Cohesive parameters identified when analyzing both experiments for different bounds and 

initial values 

Bounds 

FDCB (N) 57 – 62 57 – 62 57 – 62 

Knn (GPa/mm) 10 – 40 10 – 40 10 – 40 

Ktt (GPa/mm) 9 – 30 5 – 30 5 – 30 

σn (MPa) 5 – 25 5 – 25 5 – 25 

σt (MPa) 15 – 45 15 – 45 15 – 45 

GI (J/m²) 250 – 450 250 – 450 250 – 450 

GII (J/m²) 900 - 1800 600 - 1800 600 - 1800 

Initial values 

FDCB (N) 59 58 60 

Knn (GPa/mm) 20 15 20 

Ktt (GPa/mm) 15 20 12 

σn (MPa) 15 20 14 

σt (MPa) 35 25 39 

GI (J/m²) 350 300 370 

GII (J/m²) 1300 1100 1100 

Identified values 

FDCB (N) 59 60 60 

Knn (GPa/mm) 23 16 21 

Ktt (GPa/mm) 12 19 11 

σn (MPa) 12 15 12 

σt (MPa) 33 22 34 

GI (J/m²) 340 350 360 

GII (J/m²) 1250 1250 1250 

Cost function  (-) 4.92 5.10 4.91 

 

The force used to initialize the simulation of the DCB test is very stable with a level of 

59 ± 0.1 N.  Among the six cohesive parameters, the level of confidence is very different.  For the 

toughness GI its level (350 ± 15 J/m2) becomes closer to that found with a purely elastic identification 

(410 ± 50 J/m² [12]).  In the experiment, crack propagation is observed making its uncertainty very 

small.  This phenomenon also explains the small fluctuation of the normal strength σn (13 ± 1.5 MPa).  

Conversely, the identification of the normal stiffness is less stable even in the normal direction 

(Knn = 18 ± 3 GPa/mm). 

The mean level GII (1250 ± 1 J/m²) is in very good agreement with a purely elastic 

identification when extrapolating the results for the failure load (1300 ± 50 J/m² [12]).  The shear 

strength σt (28 ± 6 MPa) is more difficult to capture.  The relative fluctuation of the tangential 



19 
 

stiffness (Ktt = 14 ± 4 GPa/mm) is of the same order of magnitude as that observed in the normal 

direction. 

In all analyzed cases, three different initial guesses were considered.  The aim was to 

investigate the sensitivity of the CZM parameters to such initial values, and the level of the 

identification residual at the end of the optimization procedure.  In general the level of the latter is 

very close, which indicates that overall calibration quality is similar.  However, the values of some 

parameters are not necessarily close (i.e., Knn, Ktt and t), which proves that they cannot be calibrated 

very precisely with the two considered experiments.  Conversely, the evaluation of FDCB, GI, GII, and n 

is more robust. 

Interestingly, the two energy release rates are very well captured and consistent with 

analyses based upon linear elastic fracture mechanics [12].  The two stiffnesses are more difficult to 

evaluate quantitatively.  They call for more accurate displacement measurements, but an order of 

magnitude is obtained, which is new for these types of tests.  When the experiment allows stable 

propagation to occur, the strength of the CZM model can be estimated (i.e., n with the DCB 

experiment).  For the CLS test, the propagation steps were very limited and did not yield a robust 

estimate of the strength t. 

6. Conclusion 

In this paper, two delamination tests are analyzed to determine the parameters modeling the 

cohesive behavior in mode I and II.  A combined cost function is introduced to study both tests at the 

same time with a weighting based upon a Bayesian framework to account for all sources of 

uncertainty.  In the present setting, the displacement correlations were neglected and only the 

standard displacement resolution was considered.  It could be extended to include the various 

correlations thanks to the covariance matrix associated with the measured degrees of freedom [34, 

35]. 
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A sensitivity analysis is developed to illustrate the identification feasibility of the cohesive 

parameters.  For the DCB test, the analysis shows a high sensitivity only for the normal behavior that 

illustrates a mode I loading.  For the CLS test, which is a priori expected to be mode II-dominant for 

nominal boundary conditions, the sensitivity has the same level between the normal and tangential 

parameters, thereby indicating a mixed mode configuration, which is confirmed by previous analyses 

based upon full-field measurements [12].  One of the key conclusions of this analysis is that without 

load data the cohesive parameters are not identifiable with the two experimental configurations 

studied herein. 

The identification procedure has been conducted by following a three-step approach.  The 

first step consists of identifying separately and sequentially the normal and tangential cohesive 

parameters by analyzing one test at a time.  The other parameters are set to levels representative of 

a pure elastic interfacial behavior.  Once a first set of parameters is obtained, it can be used to 

initialize a second step that still analyses the two tests independently.  The identification residuals 

allow the chosen model not to be disqualified.  Last, the two tests are studied simultaneously and the 

seven parameters are varied at the same time.  For this last step, the identification residuals amount 

to about 5 times the standard resolution of displacement and load data.  This low level validates the 

cohesive model used herein.  It is also shown that all the parameters can be identified and with an 

error indication that can be less than 1 % in the most favorable case up to 30 % in the most difficult 

instance.  This result was obtained for different initial guesses of the sought parameters. 

It is worth noting that having set the 7 parameters free directly, the identification would have 

been unstable.  This is one of the reasons of the developed 3-step strategy thanks to the sensitivity 

analysis.  The latter proves that the initial guess is very important.  This calls for simplified and fast 

techniques to get initial estimates faster than by performing finite element simulations, which are 

very demanding when dealing with cohesive zone models.  Since the mode I and II toughnesses 

identified with the present procedure are in good agreement when compared to linear elastic 
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fracture mechanics analyses [12], such type of approach is beneficial and leads to a more robust 

identification route.  Systematic sensitivity analyses with quantitative estimations of uncertainties 

and errors are useful whatever the mode mixity of tests or configurations. 

The present framework may also be used to identify initiation and propagation parameters 

under more complex configurations (e.g., interfaces between [±] plies) since it is very generic (i.e., it 

does not rely on closed-form solutions whose applicability is restricted to very simple cases).  It has 

been shown that it is possible not only to extract global propagation parameters (e.g., GI and GII) but 

also initiation values.  Future analyses will also have to be extended to cases of rapid propagation to 

study delamination under dynamic loading conditions.  One critical issue is related to the way the 

finite element simulations are driven with measured displacement fields that are corrupted by 

measurement uncertainties.  Spatiotemporal DIC analyses may be used to tackle such difficult 

problems [40]. 
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Figures 

 

Figure 1: (a) DCB sample with the position of the Region Of Interest (ROI) used to measure 

displacement fields.  (b) Load history.  Pictures of (c) initial and (d) last loading steps (the coordinates 

are expressed in pixels).  Measured (e) vertical and (f) horizontal displacement fields (expressed in 

pixels) for the last loading step. (g) Displacement jump (expressed in pixels) profile for the first and 

the last loading steps 
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Figure 2: (a) CLS sample with the position of the Region Of Interest (ROI) used to measure 

displacement fields.  (b) Load history.  Pictures of (c) initial and (d) last loading steps (the coordinates 

are expressed in pixels).  Measured (e) vertical and (f) horizontal displacement fields (expressed in 

pixels) for the last loading step 
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Figure 3: (a) Finite element mesh in which the cohesive nodes are marked in red.  

(b) Illustration of the cohesive law.  (c) Boundary conditions for the CLS experiment.  (d) Boundary 

conditions or the DCB experiment 
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Figure 4: Displacement (expressed in pixel) sensitivity maps of the DCB test for the last loading step 

in horizontal (left), and vertical (right) directions for a 1% variation of each cohesive parameter. 

(a,g) Ktt, (b,h) Knn, (c,i) σt, (d,j) σt, (e,k) GI, (f,l) GII 
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Figure 5: Reaction force sensitivity as a function of the loading step in the DCB experiment for a 

1% variation of each cohesive parameter 
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Figure 6: Displacement (expressed in pixel) sensitivity maps in the CLS test for the last loading step in 

horizontal (left), and vertical (right) directions for a 1% variation of each cohesive parameter. 

(a,g) Knn, (b,h) Ktt, (c,i) σn, (d,j) σt, (e,k) GI, (f,l) GII 
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Figure 7: Reaction force sensitivity as a function of the loading step in the CLS experiment for a 

1% variation of each cohesive parameter 



31 
 

 

Figure 8: Sensitivity matrix for the DCB experiment (left) for the displacement field in the horizontal 

(a), in the vertical direction (c), and for the cohesive reaction force (e).  Sensitivity matrix for the CLS 

experiment (right) for the displacement field in the horizontal (b), in the vertical direction (d), and for 

the reaction force (f) 


