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Language constrained stabilization of discrete-time switched linear
systems: a Lyapunov-Metzler inequalities approach

Marc Jungers, Antoine Girard and Mirko Fiacchini

Abstract— This paper addresses the issue of stabilizability of
an autonomous discrete-time switched system via a switching
law that is constrained to belong to a language generated
by an nondeterministic finite state automaton. Firstly the
automaton is decomposed into strongly connected components
to reduce the problem to the stabilizability of each non
trivial strongly connected component. Secondly the approach
considering Lyapunov–Metzler inequalities taking into account
the language constraint for a strongly connected component is
proposed. Links with the current literature are discussed and
a detailed example is given to illustrate our contributions.

I. INTRODUCTION

Discrete-time switched systems are the association of
a finite set of difference equations with a switching law
that defines the active mode at each time [16]. They are
a particular case of hybrid systems. Switched systems are
particularly popular in control system theory due firstly to
their ability to model real applications in broad fields and
secondly to the richness and complexity of their behaviors.
For instance, the stability analysis of switched systems with
arbitrary switching laws is not intuitive and has motivated a
great range of contributions, see [2], [11], [17] and references
therein for more details.

The issue of designing a stabilizing switching law is
also of interest and several results are provided in the
literature [23]. Among them, one can cite the min-switching
strategy associated with Lyapunov–Metzler inequalities [10];
the invariant set approach offering necessary and sufficient
conditions for the stabilizability [8] or sufficient conditions
based on LMIs [7]; the piecewise quadratic control-Lyapunov
function approach (and its link with switched LQR prob-
lem) [26] and finally the feedback stabilization expressed
via the joint spectral subradius [13].

Nevertheless switched systems should take into account
constraints to be more in accordance with applications. That
induces increased difficulties in their studies, which are
the focus of recent contributions [3]. The constraints may
be numerous and here we will consider only constraints
concerning the admissible switching laws, like dwell-time
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constraints (the duration between two consecutive switches
should be greater than a given value), or modal constraints
(some transitions from one mode to another are forbidden).

Stability of switched systems with constrained switching
laws has been already investigated. Generally it consists in
restricting the class of admissible switching laws [18]. Let us
cite the case of (average) dwell-time constraints [12] and the
modal constraints defined via a directed graph [25] treated
via path depending Lyapunov functions [15] and recently
via the constrained joint spectral radius [19]. Notice also the
issue of determining an upper bound on dwell time allowing
the stability [14].

Recent works deal with the stabilization of switched
systems with constraints on the switching law. The paper [6]
is focused on a modified min-switching strategy taking into
account a fixed dwell-time, [9] provides conditions based
on invariant set theory for language constrained switching
laws. A generic formulation to cope with large classes
of constraints is to specify a constrained language with a
nondeterministic automaton [1] and to impose that the ad-
missible switching laws belong to this language. Automaton
decomposition techniques can thus be generically used to
check whether an abstract property holds for a hybrid system
or at least propagates in the automaton [21].

This paper considers the issue of stabilizability of a
discrete-time switched system with switching laws belonging
to the language generated by a nondeterministic automaton.
The contribution of this paper is twofold. Firstly the automa-
ton is decomposed into strongly connected components in
order to simplify methodologically the stabilizability prob-
lem. Secondly a Lyapunov-Metzler inequalities approach
taking into account the language is considered per strongly
connected component to check the stabilizability of the
switched system. When such Lyapunov-Metzler inequalities
exist for at least one strongly connected component, a control
policy is determined via a min-switching strategy.

The paper is organized as follows. Section II formalizes
the problem of stabilizability. Section III gathers the defini-
tions of useful tools that allow the generic methodology to
investigate the stabilizability in Section IV. The main result
concerning the Lyapunov-Metzler inequalities approach for
a strongly connected component is provided in Section V,
with a discussion establishing the link with the literature of
stabilizability without language constraints. Detailed illustra-
tions are provided in Section VI to emphasize the efficiency
of our approach before concluding remarks in Section VII.

Notation: The notation is standard. Given n ∈ N, define
Nn = {x ∈ N : 1 ≤ x ≤ n}. Given α ∈ Rn, αi denote



its i-th element; given π ∈ Rn×m, πij is the entry of i-th
row and j-th column. A′ denotes the transpose of matrix A.
In (0n×p) is the n-order identity matrix (n × p-order null
matrix). For a finite set S, |S| denotes its cardinality.

II. PROBLEM FORMULATION

We consider a discrete-time switched linear system of the
form

xk+1 = Aσ(k)xk, (1)

where xk ∈ Rn is the state at time k ∈ N and σ : N → Nq
is the switching law and {Ai}i∈Nq

, with Ai ∈ Rn×n for all
i ∈ Nq . Given the initial state x0 and a switching law σ(·),
we denote with xσN (x0) the state of the system (1) at time
N starting from x0 by applying the switching law σ(·).

In this paper, we impose the constraint that the switching
law σ(·) has to be an element of the language specified by
a nondeterministic finite automaton [1].

Definition 1: A nondeterministic finite automaton is a
tuple A = (S,Σ, δ,S0) where S is a finite set of automaton
states; Σ is a finite set of labels for the transitions; δ :
S × Σ → 2S is a set-valued transition map, and S0 ⊆ S
is a subset of initial states.

Here the automaton is specified as follows. The labels are
the modes of the system (1) and Σ = Nq . S is a set of
p = |S| automaton states and we will denote S = {ei}i∈Np

to avoid confusion with the elements of Σ.
Definition 2: A state s ∈ S is said to be reachable

from state s̃ ∈ S if s = s̃ or if there exists a finite
sequence s0, s1, . . . , sN such that s0 = s̃, sN = s and
for all k ∈ {0, . . . , N − 1}, there exists σk ∈ Σ such that
sk+1 ∈ δ(sk, σk). A state s ∈ S is said to be non-blocking
if there exists σ ∈ Σ such that δ(s, σ) 6= ∅, otherwise it is
said to be blocking.
A switching law σ : N→ Σ is said to belong to the language
of A denoted σ ∈ L(A) if there exists s : N→ S such that
s(0) ∈ S0 and for all k ∈ N, sk+1 ∈ δ(sk, σ(k)).

In this paper, we consider the following notion of control
policy and stabilizability.

Definition 3: A control policy ν : Rn × S → Σ × S is
such that, for any (x, r) ∈ Rn × S ,

ν(x, r) = (i(x, r), s(x, r))

∈ Σ× δ(r, i(x, r)), with δ(r, i(x, r)) 6= ∅. (2)

Roughly speaking, i(x, r) is the mode to apply and
s(x, r) the following automaton state. This implicit definition
could be split into two steps: firstly select i(x, r) such that
δ(r, i(x, r)) 6= ∅. Secondly select s(x, r) ∈ δ(r, i(x, r)).

Definition 4: The system (1) is globally exponentially
stabilizable relatively to the language L(A) via a control
policy ν, if there are c ≥ 0, λ ∈ [0, 1) and s ∈ S0, such that
for all x ∈ Rn, every switching law σ ∈ L(A) generated
by the first component of the control policy ν starting from
(x, s) verifies ‖xσk(x)‖ ≤ cλk‖x‖.

The problem investigated here is formalized as follows.

Problem 1: Let us consider the system (1) and the au-
tomaton A defining the language constraints for the switch-
ing laws. Determine a control policy ν that generates switch-
ing laws σ ∈ L(A) verifying the language constraints
and that globally exponentially stabilizes the closed-loop
system (1).

Roughly speaking solving Problem 1 consists in obtaining
sufficient conditions on the set of initial states of the automa-
ton S0 and a strategy to build under conditions a switching
law that globally exponentially stabilizes the system (1). Our
approach in this paper is based on a min-switching strategy
associated with Lyapunov-Metzler inequalities taking into
account the language constraints of the switching laws.

III. PRELIMINARIES

In this section, we first introduce several classes of matri-
ces and tools related to the nondeterministic finite automa-
ton A (see for example [4], [20]).

From the definition of a stochastic matrix, which is a
square matrix with nonnegative entries and all row sums are
equal to 1, we extend the definition as follows.

Definition 5: A real-valued rectangular matrix is called a
rectangular stochastic one, if all its components are nonnega-
tive and the sum of each row is unitary. The set of rectangular
stochastic matrices of dimension n1 × n2, (n1, n2) ∈ N2, is
denoted Mn1×n2

⊂ Rn1×n2 .
Remark 1: For the min-switching strategy of switching

system (without constraints) in discrete-time [10] a square
Metzler matrix (with its off-diagonal components nonnega-
tive) is crucial. It is only a stochastic matrix in discrete-time.
In the whole paper, we will call the rectangular stochastic
matrices also rectangular Metzler matrices with abuse of
language for this reason.

With the automaton A, it is possible to associate the finite
directed graph or digraph G = (V, E), for which the set of
vertices is the finite set of states V = S and the set of edges
is related to the transitions map δ: E = {(s, r) ∈ S2, ∃` ∈
Σ, r ∈ δ(s, `)}.

Let us give some definitions related to the digraph G and
its strongly connected components.

Definition 6: Let (s, r) ∈ V2. s and r are strongly
connected if s = r or if there exist a directed path from
s to r and a directed path from s to r. This relation between
nodes is reflexive, symmetric and transitive and it is then an
equivalence relation on the nodes.

This equivalence relation allows to partition V of G into
disjoint sets called Strongly Connected Components defined
in Definition 7.

Definition 7: Strongly Connected Components (SCCs).
Let G = (V, E) be a finite digraph and C ⊂ V . C is strongly
connected if for every pair of vertices (s, r) ∈ C2, s and
r are strongly connected. A strongly connected component
(SCC) of the digraph G is a maximally strongly connected
set of vertices. This is an equivalence class for the relation
of strongly connectivity. In other words, C is an SCC if C
is strongly connected and if there does not exists a SCC
distinct from C which includes C. A SCC C is called trivial



if C = {s} and (s, s) 6∈ E . A SCC C is called terminal
if there is no SCC D 6= C such that (s, r) ∈ E for some
s ∈ C and r ∈ D. Finite digraph G is cyclic if and only if G
contains a nontrivial SCC.

Every vertex of the digraph G belongs to one and only one
SCC: the SCCs are equal or disjoint. This is not necessarily
the case for its edges. In the following, we will denote CGi
(i ∈ Nd) the d SCCs of the digraph G and pi = |CGi |. We
define the condensation of G as follows.

Definition 8: The condensation of a digraph G is a digraph
GSCC = (VSCC, ESCC) built as follows. Each SCC CGi is
contracted into a single vertex, that is |VSCC| = d. The set
of condensated edges ESCC consists in the directed edges of
G making the link between the SCCs. Formally if G admits
d SCCs, VSCC = {eSCC

1 , · · · , eSCC
d } and

ESCC = {(eSCC
i , eSCC

j ) ∈ VSCC × VSCC, ∃(i0, j0) ∈ S2,

(ei0 , ej0) ∈ Ci × Cj , ∃` ∈ Σ, ej0 ∈ δ(ei0 , `)}. (3)

The condensation GSCC is a Directed Acyclic Graph
(DAG), because it does not contain any cycle. We can define
a relation between the SCCs as Ci � Cj if there exists
a path between one vertex in Ci and a vertex in Cj . This
is a partial relation order between the SCCs because it is
reflexive (Ci � Ci), antisymmetric (Ci � Cj and Cj � Ci
imply Ci = Cj) and transitive (Ci � Cj and Cj � C` imply
Ci � C`).

Computing the condensation of a digraph is a standard task
and several dedicated algorithms are available in the litera-
ture. Among them, one can cite the Kosaraju’s algorithm [22]
or the Tarjan’s algorithm [24].

Let us define a rectangular Metzler matrix admissible to
a SCC of the automaton A.

Definition 9: Let A = (S,Σ, δ,S0), with Σ = Nq and
C = {c1, · · · , ch} one of its nontrivial SCC.

Π ∈ Rhq×h is a said to be a rectangular Metzler matrix
admissible with the SCC C, if Π′ ∈Mq×hq and

∀(i, j, `) ∈ N2
h × Nq, ci 6∈ δ(cj , `) ∩ C ⇒ πi+(`−1)q,j = 0.

(4)
Remark 2: The relation (4) may be viewed as a layout on

the rectangular Metzler matrix Π.
Example 1: Let us consider the automaton A defined by

Figure 1, where S = {e1, e2} (p = 2), Σ = {1, 2} (q = 2),
δ(e1, 1) = {e2}, δ(e2, 1) = {e1, e2}, δ(e2, 2) = {e2} and
S0 = {e1}.

e1 e2

1

1, 21

Fig. 1. Nondeterministic graph, Example 1.

This is a nondeterministic automaton because δ(e2, 1)
is not reduced to a singleton. A admits a single SCC
C1 = {e1, e2}. An admissible rectangular Metzler matrix
Π ∈ R4×2 associated with C1 is of the form

Π =

(
0 1 0 0
α β 0 1− α− β

)′
, (5)

with scalars α ≥ 0, β ≥ 0 such that α+ β ≤ 1.

IV. GENERIC APPROACH FOR LANGUAGE CONSTRAINED
STABILIZATION

First of all, we are interested in looking for switching laws
of infinite length satisfying Proposition 2. We denote the state
of the constrained switched system as the concatenation of
the state xk ∈ Rn of the system (1) and the state of the
automaton sk ∈ S. The trajectory is thus the function k 7→
(xk, sk), with k ∈ N. For a given trajectory k 7→ (xk, sk),
the function k 7→ sk is called its projection on the automaton
state space and k 7→ xk its projection on the system state
space.

Proposition 2: Let G be the digraph associated with the
automaton A and its condensation GSCC. Every trajectory of
the constrained switched system in the sense of Definition 4
has a projection on the automaton state that ultimately enters
and does not exit a non trivial SCC.

Proof: The proof is obtained thanks to the fact that the
condensation is a DAG.

The first corollary of Proposition 2 is that without loss
of generality, we can build an automaton Ã based on the
automaton A such that L(A) = L(Ã) and Ã has only non
trivial terminal SCC. This starts from Ã = A and erases
iteratively all the trivial terminal SCC. This is equivalent to
consider Assumption 1.

Assumption 1: For all s ∈ S, s is non-blocking.
Guided by Proposition 2, we introduce the implicit def-

inition of control policy admissible with a SCC and the
definition of exponentially stabilizing control Lyapunov func-
tion for switched systems, inspired by [26] and that are
defined only on a restriction of the automaton state set S.
See also [9].

Definition 10: Let C be a nontrivial SCC induced by the
automaton A. A control policy over C is defined by νC :
Rn × C → Σ× C such that, for any (x, r) ∈ Rn × C,

νC(x, r) =(i(x, r), s(x, r)) ∈ Σ×(δ(r, i(x, r)) ∩ C),
with δ(r, i(x, r)) ∩ C 6= ∅. (6)

(notice that since C is a nontrivial SCC, there always exists
a label i(x, r) such that δ(r, i(x, r)) ∩ C 6= ∅.)

Definition 11: Let us consider a nontrivial SCC C of
the directed digraph G induced by the automaton A. A
nonnegative continuous function V : Rn × C → R+ is an
exponentially stabilizing control Lyapunov function (ECLF)
of the system (1) in C if for any (x, r) ∈ Rn × C, we have

1) κ1‖x‖2 ≤ V (x, r) ≤ κ2‖x‖2 for some finite positive
constants κ1 and κ2;

2) V (Ai(x,r)x, s(x, r)) − V (x, r) ≤ −κ3‖x‖2, for a
constant κ3 > 0 and for (i(x, r), s(x, r)) = νC(x, r).

The existence of an ECLF on a SCC induced by the
automaton A implies exponential stabilizability of the sys-
tem (1) under language constraints. We can thus provide a
solution to Problem 1 into two steps:

Step 1: Firstly, for any nontrivial SCC induced by the
automaton A, it is checked if there exists a ECLF.
If there exists at least one nontrivial SCC for which



there exists a ECLF, Problem 1 may have a solution
depending on the initial automaton states.

Step 2: Secondly, we have to check if at least one initial
condition can reach a SCC that admits a ECLF.
The set of automaton states that can reach a given
SCC is the union of all the SCC (trivial or not)
that are a predecessor, in the sense of the partial
relation order of the SCCs (see Definition 8), of
any nontrivial SCC associated with an ECLF. In
other words, if d is the number of SCCs, let be
Q = {i ∈ Nd, Ci admits an ECLF}, then

S̃0 = S0
⋂( ⋃

j∈Q

⋃
i∈Nd,
Ci�Cj

Ci
)

(7)

is the set of initial automaton states that can be
chosen to reach a SCC that admits an ECLF. If
S̃0 6= ∅, then Problem 1 admits a solution.

The second step can be viewed as the reachability on a
digraph, which is decomposed into SCCs. There are several
dedicated algorithms in graph theory. One of the most
reknown is the Dijkstra’s algorithm [5]. Such an algorithm
may be considered to build a finite path between any s ∈ S̃0

(defined by Equation (7)) and an arbitrary r ∈
⋃
j∈Q
Cj . This

path is the prefix of a stabilizing switching law verifying the
constrained language L(A).

Solving Problem 1 is reduced to solve the first step. That
is the goal of the following section.

V. APPROACH BASED ON LYAPUNOV–METZLER
INEQUALITIES

This section is focused on providing a solution for Step 1
with an approach considering Lyapunov–Metzler inequalities
taking into account the language constrained L(A).

A. Lyapunov–Metzler inequalities to obtain an ECLF on a
SCC

This subsection is dedicated to obtain sufficient conditions
for the stabilizability of a SCC induced by the automaton
A. These sufficient conditions are expressed as Lyapunov–
Metzler inequalities. This result is gathered in Theorem 1
that provides also the related control policy over this SCC.

Without loss of generality for analogous reasons than
in [8], we will consider the following condition concerning
the system.

Assumption 2: The matrices Ai (i ∈ Nq) are nonsingular.
Theorem 1: Let be C a nontrivial SCC induced by the

automaton A, containing h = |C| automaton states, denoted
C = {c1, · · · , ch}. If there exist a rectangular Metzler matrix,
admissible with the SCC C, that is Π ∈ Rqh×h with Π′ ∈
Mh×qh and h symmetric positive definite matrices Mi, i ∈
Nh, such that the h bilinear matrix inequalities

∀j ∈ Nh, Mj >
∑

(i,`)∈Nh×Σ
ci∈δ(cj ,`)∩C

πi+(`−1)h,jA
′
`MiA`, (8)

are satisfied, then C admits an ECLF on the form

Vmin :


C × Rn −→ R+,
(cj , x) 7−→ min

(i,`)∈Nh×Σ
ci∈δ(cj ,`)∩C

V (ci, A`x), (9)

where

V :

{
C × Rn −→ R+,
(ci, x) 7−→ x′Mix.

(10)

Moreover, after an (arbitrary) prefix allowing to reach in
finite time an automaton state ci0 ∈ C ⊆ S (i0 ∈ Nh)
from s0 ∈ S0, that is there exists K ∈ N such sK = ci0 ,
a min-switching strategy taking into account the language
constraint is defined by

(sk+1, σ(k)) = νC(xk, sk) ∈ arg min
(i,`)∈Nh×Σ
ci∈δ(sk,`)

x′kA
′
`MiA`xk,

(11)
and xk+1 = Aσ(k)xk.

Proof: We would like to ensure ∀(j, x) ∈ Nh × Rn,
x 6= 0, ∃(i, `) ∈ Nh × Σ, ci ∈ δ(cj , `) and V (ci, A`x) <
V (cj , x). This is equivalent to

min
(i,`)∈Nh×Σ
ci∈δ(cj ,`)

V (ci, A`x) = min
(i,`)∈Nh×Σ
ci∈δ(cj ,`)

x′A′`MiA`x < V (cj , x).

Due to Lyapunov–Metzler inequalities (8) related to the
SCC C of A, and due to the fact that Mi > 0n (i ∈ Nh), we
have

min
(i,`)∈Nh×Σ
ci∈δ(cj ,`)

x′A′`MiA`x ≤
∑

(i,`)∈Nh×Σ
ci∈δ(cj ,`)∩C

πi+(`−1)h,jx
′A′`MiA`x

< x′Mjx = V (cj , x). (12)

For k ∈ N, with k ≥ K, this implies that by applying the
control policy (sk+1, σ(k)) = νC(xk, sk) defined by (11),
we have, for xk 6= 0 and xk+1 given by (1)

Vmin(sk+1, xk+1) < Vmin(sk, xk). (13)

Thanks to Assumption 2, Vmin(·, ·) is a positive definite
function with respect to the second argument, that is the
system state. That concludes the proof.

Theorem 1 calls some comments.
• The inequalities (8) are bilinear matrix inequalities due

to the product of a scalar (component of the rectangular
Metzler matrix) and a (Lyapunov) matrix. Nevertheless
when fixing the rectangular Metzler matrix, the inequal-
ities (8) become linear. That fact allows a numerical
method to solve inequalities (8) via a research in line
in function of the parameters of the rectangular Metzler
matrix. It should be noticed that the number of param-
eters to consider decreases when the number of zeros
in the layout (4) increases.

• The Lyapunov–Metzler inequalities approach leads to
only sufficient conditions for stabilizability when there
is no language constraint. See [7] for related discussions
and counterexamples. This is the same in the framework
of this paper.



• It is noteworthy that the prefix obtained by the Di-
jkstra’s algorithm can always be formulated with a
min-switching strategy because it is always possible to
design outside C a collection of matrices Mi enforcing
this path.

B. Recovering the results with unconstrained languages

This subsection aims at emphasizing that applying Theo-
rem 1 allows to recover results from the literature dealing
with stabilizing switching systems without language con-
straints. Consider a switched system of the form (1) with
unconstrained switching law. We may propose (at least) two
automata.

Automaton 1: We consider only one automaton state.A =
({e1},Nq, δ, {e1}), where the transition map verifies e1 ∈
δ(e1, i), ∀i ∈ Nq . This automaton is depicted on the left of
Figure 2.
A admits only a single nontrivial SCC: C1 = {e1}. By

applying Theorem 1 on C1, Π ∈ Rq×1, we obtain the
following Lyapunov–Metzler inequality

M1 >
∑
`∈Nq

π`,1A
′
`M1A`. (14)

The Inequality (14) is exactly the one in [10, Lemma 1].
We recall that Inequality (14) implies the existence of
standard Lyapunov–Metzler inequalities and that the convex
combination

∑
`∈Nq

π`,1A` is Schur.
Automaton 2: We consider q automaton states. A =

({e1, · · · , eq},Nq, δ, {e1, · · · , eq}), where the transition map
verifies {ei} = δ(ej , i), ∀(i, j) ∈ N2

q . In other words,
the arrival of a transition is indexed by the mode i. This
automaton is depicted on the right of Figure 2.
A admits only a single nontrivial SCC: C1 = {e1, · · · , eq}.

By applying Theorem 1 on C1, Π ∈ Rq2×q , we obtain the
following Lyapunov–Metzler inequalities

∀j ∈ Nq, Mj >
∑
`∈Nh

π`+(`−1)q,jA
′
`M`A`. (15)

Since the rectangular Metzler matrix is admissible with the
single nontrivial SCC of A, only q lines among q2 can be not
trivial (namely the index of these lines are {i(q+1)−q}i∈Nq ).
By erasing these trivial lines, we can build a square extraction
of Π, Π̃ ∈ Rq×q , which is a square Metzler matrix Π̃′ ∈
Mq×q , such that

π̃`,j = π`+(`−1)q,j , ∀(`, i) ∈ N2
q. (16)

By introducing Pi = A′iMiAi, ∀i ∈ Nq , (Pi > 0n, thanks
to Assumption 2 the inequality (15) reads

Pj = A′jMjAj >
∑
`∈Nq

π̃`,jA
′
jA
′
`M`A`Aj

= A′j(
∑
`∈Nq

π̃`,jP`)Aj , ∀j ∈ Nq, (17)

which are the standard Lyapunov–Metzler inequalities [10].

VI. ILLUSTRATIONS

Example 3: Let us consider the switched system (1) with
q = 3 modes, x′0 =

(
1 −1

)′
and[

A1 A2 A3

]
=

[
0.9 0 0.6 0 1.2 1
0 0.7 0 1/0.6 0 0.8

]
.

e1 e1 e2 e3

1, · · · , q 1

3

2
2

31

31

2

Fig. 2. Automatons 1 with q = 1 (left) and 2 with q = 3 (right).

The automaton defining the constrained language is de-
picted on Figure 3, with S0 = {e1, e2, e4}. It consists of
p = 6 states and admits d = 4 SCCs which can be described
as follows:
• C1 = {e1} is a trivial SCC.
• C2 = {e5, e6} is a nontrivial SCC. Inequalities (8) admit

(at least) a solution. For instance, we have

M5 =

[
0.0407 0.1665
0.1665 2.4735

]
; M6 =

[
0.0167 0.1668
0.1668 6.5058

]
and M5 > 0.4A′1M6A1 + 0.6A′3M5A3,

M6 > 0.8A′2M5A2 + 0.2A′3M6A3.

• C3 = {e4} is a nontrivial SCC. A2 being unstable, In-
equality (8) associated with C3 cannot admit a solution.

• C4 = {e2, e3} is a nontrivial SCC. The only possible
cycle is a periodic one and A2A3 is not stable. Inequal-
ities (8) associated with C4 cannot admit a solution.

C1

C2

C3

C4e1 e3 e2

e6e5 e4

2

1

3

2

2

1

1

3

2

1

3

2

Fig. 3. Automaton related to Example 3 and its related SCCs: the trivial
SCC are depicted with a pattern and the nontrivial SCC are colored in red.

Thanks to the DAG gathering the SCCs, we have C1 �
C4 � C2 � C3. Every vertex of C2 can be reached by every
vertex of C2 ∪ C4 ∪ C1. In order to obtain a prefix of a
stabilizing control policy, we have to select as initial vertex
an element of S0

⋂
(C2 ∪ C4 ∪ C1) = {e1, e2}, which is not

empty. The system is thus stabilizable and there is a solution
to Problem 1.

For the prefix of the stabilizing switching law, we choose
e1 ∈ S0

⋂
(C2 ∪ C4 ∪ C1) as initial vertex of the e6 ∈ C2 to

be reached by the prefix. The Dijkstra path is then given by:

e1
σ(0)=1−−−−→ e3

σ(1)=2−−−−→ e5
σ(2)=1−−−−→ e6,

with K = 3. For k ≥ K, we can thus apply the min-
switching control policy defined by (11) resulting in the



trajectory in the system state space and in the automaton
state space depicted in Figure 4. Moreover the switching law
induced by this control policy is depicted on Figure 5, in ad-
dition of the min-switching Lyapunov function Vmin(sk, xk),
for k ≥ K + 1. We can observe that the Lyapunov function
decreased as expected.
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Fig. 4. Trajectories k 7→ xk and k 7→ sk related to Example 3. The vertical
red line split in time the Dijkstra path and the application of min-switching
strategy.
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Fig. 5. Functions k 7→ σ(k), for k ∈ N and k 7→ Vk , for k ≥ K + 1
related to Example 3. The vertical red line split in time the Dijkstra path
and the application of min-switching strategy.

VII. CONCLUSION

In this paper, the stabilizability of an autonomous discrete-
time switched system with language constraints concern-
ing the switching law has been investigated. Based on a
decomposition into strongly connected components of the
automaton generating the constrained language and based on
their properties, a methodology has been applied to consider
only the stabilizability on strongly connected components.
Afterwards, a Lyapunov–Metzler inequalities approach has
been applied to check the existence of an exponentially
stabilizing control Lyapunov function over each strongly
connected component. The stabilizability is obtained thanks
to a prefix given by the Dijkstra algorithm plus a min-
switching strategy induced by the exponentially stabilizing
control Lyapunov function over at least one strongly con-
nected component. Several numerical and generic examples
have been presented to illustrate the contribution.
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[14] Ö. Karabacak. Dwell time and average dwell time methods based on
the cycle ratio of the switching graph. Systems & Control Letters,
62:1032–1037, 2013.

[15] J. W. Lee and G. E. Dullerud. Uniformly stabilizing sets of switching
sequences for switched linear systems. IEEE Transactions on Auto-
matic Control, 52:868–874, 2007.

[16] D. Liberzon. Switching in Systems and Control. Systems and Control:
Foundations and Applications. Birkhäuser, 2003.
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