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Abstract. The technical and academic aspects of the EvenetBod,
and the abstract description of its applicationnidustrial contexts are
the subjects of numerous publications. In this pape describe the ex-
perience of development engineers non familiar &iknt-B to getting
to grips with this method. We describe in detaidsvhwe used the for-
malism, the refinement method, and its supportiriset to develop the
simple anti-collision function embedded in a smalling robot. We
show how the model has been developed from a $egloflevel require-
ments and refined down to the software specificatitor each phase of
the development, we explain how we used the metéxplpse the en-
countered difficulties, and draw some practicastas from this experi-
ment.

Keywords. Formal refinement, software verification, formatkifica-
tion, anti-collision, Event-B.

1 I ntroduction

The practical implementation details and the diffies encountered during the ap-
plication of the Event-B method by “typical induatrengineers” are usually not widely
discussed. Therefore, in the current publicatiomshare the methade have used, the
difficulties we have encountered, and some lesse@bave learnt when applying this
method to develop one particular function of ouaBmolling robot [1].

It is worth noting that even though this developmeas tightly driven by consider-
ations about aeronautical certification, the questf compliance with ARPs [2] or
DOs [3]-[5] objectives using Event-B is not dirgctiddressed here.

The paper is organized as follows. Section 2 cesliour development process. Sec-
tion 3 introduces our case study: the anti-collisianction of a small rover. Section 4
details the elaboration of the software requiremestng formal refinement. Section 5
covers related works. We conclude in section 6.



2 Formal Refinement in an Industrial Development Process

Our experiment focuses on the following developnaaiivities: (i) formalization
of the system specification, (ii) definition ofrefinement strategyiii) application of
the refinement strategy to elaborate a set of leght software requirements compliant
with the initial specification. Subsequent softwareduction activities are not detailed
and are the subject of an ongoing publication@@her activities such as integration or
testing are not addressed.

The development process starts with a set of irdbmequirements expressed in a
natural language. In order to optimize the modgland validation effort, the initial set
of requirements is decomposed into disjoint subsieésprocessing of which is realized
sequentially. Processing a subset of the requirenievolves several phasdsrmali-
zation, where requirements are translated into Event-Bstroats;validation, where
these constructs are validated against the iniSal specificationiefinementwhere
these constructs are made more conckedgfication, where the correctness of these
constructs is proved. This process stops wherl (§uaisets have been processed and
(ii) the set of modelling elements allocated tdwafe is completely defined. The over-
all development process is depictedrag. 1.
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Fig. 1. Overall development process

With respect to a typical development process énaronautical domain, this part
of the overall process covers part of gystem-level specificaticenddesign activity
(as per ARP4754 [2]) and part of theftware requirement activitjas per DO-178C
[3]).



In our case, we consider the last refinement oEtent-B model to carry high-level
requirements (HLR), i.e., “software requirementsaleped from analysis of system
requirements, safety-related requirements, aneésysatchitecture” (DO-178C). The
software code will be implemented from those HLRs part of the process is described
in [6].

3  TheCase Study

3.1 TheTwlRTeeRover and the ARP Function

TwiRTee is the three-wheeled robot (or “rover”) dises the demonstrator of the
INGEQUIP project conducted at thestitut de Recherche Technologique of Toulouse
(IRT Saint-Exupéry)lt is used to evaluate new methods and toolhiéndomain of
hardware/software co-design [1], virtual integratiand application of formal methods
for the development of equipment [7]. TwIRTee’shatecture, software, and hardware
components are representative of aeronauticaliaspaid automotive systems.

A rover performs a sequencerafssiong @ onFig. 2) defined by a start time and an
ordered set ofvaypointsto be passed-by. Missions are plana#dine and transmitted
to the rover by a supervision statid®)( To go from the first waypoint to the last, the
rover moves on a track materialized by a dark éinghe ground. In a more abstract
way, a complete mission can be modelled Ipath in agraphwherenodesrepresent
waypoints, anédgegepresent parts of the track joining two waypaints

A rover shares the tracks with several identicaérs. In order to prevent collisions,
each of them embeds a protection function (or ARIREh purpose is to maintain some
specified spatial®) and temporal separatio®] between them. ORig. 2, temporal
separations are represented by light green andréghareas superimposed on the map:
basically, rover 2 (resp. rover 1) shall never etite light green (resp. light red).

In our implementation, the ARP essentially actsdrjucing the rover speexhd, in
some specific cases, by performing a singeidance trajectory.To take the appro-
priate action, the ARP exploit the following infoation: the map, the position of all
other rovers transmitted by a centralized supemistation @), and its own position.

For this paper, we rely on a simplified versiontioé ARP function where some
specification elements such as the rovers positepeseds, decelerations, etc. are rep-
resented as discrete values (no use of Real otifkdgoBoint data). Interested readers
can refer to another study [9] conducted on thiseséunction but covering different
formal modelling aspects.
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Fig. 2. System overview

3.2 Rodin and Event-B

Event-B [10] is a method to develop systems acogrth a correct-by-construction
approach. It is the system level modelling evoluiid the B-method [11] successfully
applied in real-size industrial applications [1Phe Event-B method constructs a cor-
rect model of a system via a series of refinemehits specification. The correction of
a refinement is ensured by proving automaticallgnanually a set of proof obligations
generated from the model.

The Rodin Platforrhis an Eclipse-based IDE for Event-B that provieéective
support for refinement and mathematical proof. plaform is open source, based on
the Eclipse framework. Its development startedd@fduring the RODIN project, and
continued within the DEPLOY and ADVANCE projecthé& community is still active
regarding the development. The extensibility ofgketform through the use of plugins
is of great interest as it allows to rely amongeeshon (i) analysis tools for verification
(SMT solvers, model checkers) or validation (anonstsimulators generators) of the
models and the refinements, (ii) traceability fidieis for link with requirement docu-
ments, (iii) code generation tooling, (iv) autontatefinements methods easing the re-
finement work.

4 From System-level Requirementsto High-level Requirements

In our process, the latest refinement of the EBemodel represents software HLR.
As already studied in [10,13], the development a&ffnement strategy is the entry
point for the definition of Event-B models. It imgwes the understanding of the re-
guirements by the designer and the robustnes& afatelopment process by providing
an intermediate formalization phase between remérgs and design. Refinement
strategy application produces Event-B refinements.

1 http://www.event-b.org/



4.1 Building a Refinement Strategy

Our refinement strategy is based on Abrial [10]fl&uet al [13] and Wen Su et al
[14]. The work started with a thorough analysishaf requirements to identify the var-
iables used in the system and classify them asraiticontrolled (environment), or
controlled (system) ocommanded (operator). Requirements are classified according
to the same three categories. The main role oART function is to ensure the absence
of collision between rovers by controlling the decation of the rover. The controlled
variabledecelerationof the control function is chosen as the firsnaat of focus in
the requirements document for the elaboration @f#inement strategy.

Requirements Layering

The refinement strategy defines the processingrafdthe requirements. This order
is determined from the dependencies between vasatrid, consequently, between re-
quirements. In our case study, we identified dbeelerationfeature as dependent of
the occurrence ofonflicts and emergencybraking As a first abstractiongonflicts
might occur at any time and so migtmergency brakingur initial layer of refinement
was thus only composed of these three variables.

From this entry point, the next requirements laygesproduced by gradually intro-
ducing new features such afieet of roversdistances between roveiighibition by
operatoretc. Each feature is attached to a subset of thal irequirements. As some
requirements are linked to multiple features, they attached to multiple layers and
their implementation is gradually completed alonthwhe refinement of layers.

Complementary to the previohsrizontalrefinementsverticaldata refinements are
also performed. For instance, the values of thesldeation variable, initially con-
strained by a simple range in the early refinemestpome later constrained by axioms
specifying the semantics of deceleration. Similaty calculus of the distance between
roversthat was simply defined as a value in a rangdfiisa@ asa shortest path function.

L essons L earnt

Building a consistent, adequate and applicabl@eefent strategy is the first step
towards the correct understanding of the systemcanttibutes to the correct model-
ling of the system. If requirement classificati@na rather systematic activity, their
layering (or sequencing) is more difficult. Layegistarts with the identification of an
entry point from which the activity starts. Layagimay be driven by the identification
of the minimal subset of features that ensuresdipability to simulate and validate the
model at each layer.

4.2  Formalization of Requirements

Formalization starts with the definition of EvenieBntexts containing sets, constant
variables and constant relations, the definitiomdim of which are specified as axioms.
Then machines are detailed with variables andioglatwith their definition domain
specified as invariants. Variables require thersgtvf their initial value in the special
INITIALIZATION event. Variables shall be used in ewts specifying the condition
under which their value changes (guards) and hew #alue changes (actions). Event



execution modifies the state of the system. Praggseexpected to be verified by the
system shall be added as invariants of the maahideshall hold in every event.

Producing Event-B models from informal specificatican be done using multiple
approaches. A first approach relies on modellimgstiates of the system as sets. In that
interpretation, state changes are representedebfymtbvement” of elements from one
set to another. This approach has been used fantesin an alternative modelling of
our use case in [9] where the study goal was oe &nd the data refinements relied on
the use of real values.

Our modelling approach, depictedhig. 3, is inspired from [10]. The function is
first abstracted as a hierarchic cyclic state maebhbmprising two states: the first one
updates the state of the environment of the systeanthe second updates the state of
the system itself (i.e., performs the function undkesign). Transition from one state to
the other is triggered by dedicated eventw p( state_env_start and
arp_state_fun_start) updating a state variabker p_st at e. Sub state ma-
chines are triggered depending on activation véegl) mm fmj cnj en] _acti -
vat ed). This approach provides a clear separation betwlee environment and the
system under design, exposes the execution cyulesa facilitates the production of
the executable code from the model. Unfortunatetppsing the execution cycle of the
function may also introduce implementation detaitsearly in the refinement process.

f Environment state machine ) ( Function state machine
S O® H“o

arp_state_env_start: extended ordinary arp_state_fun_start:
REFINES REFINES
p_state_env_start arp_state_fun_start

a
WHERE WHERE

arp_state_fun_start

A 4

J arp_state_env_start

THEN THEN

END ) END

Fig. 3. Event-B model as a circuit

L essons Learnt

Modelling the system using our approach does stiffen some serious limitations.
We assume that all other rovers in the environrderimplement the same ARP func-
tion as the one under design. For our implementatlis assumption was added as a
new environment requirement. Such assumption wasiexessary in the alternative
modelling approach as every rover in the systemexaticitly modelled and each of
them implements the same ARP behaviour. Our madebipproach yields an ad-
vantage regarding the formal verification: as wendbmodel all the rovers, a level of
universal quantification in the model is removed.

Vertical data refinements produce detailed spetifins for variables and for func-
tions. These specifications may be purely dechegatir imperative. In the first case,
implementation is provided outside of the Event-&Id; in the second case, Event-B
is used to “code” the function. In our use caseijrfetance, an imperative model of the



simple “deceleration function” could be easily dg&d in Event-B. However, this
would be much more tedious for the “shortest paticfion”. Thus we have favoured
a pure declarative approach in Event-B, leavingrtidementation details to program-
ming languages.

The choice of the “set-oriented” or “finite-statexamine-oriented” modelling ap-
proach has an impact on efficiency. The use of isetgases abstraction and reduces
the modelling effort, but it increases the impletagion work. Reciprocally, using fi-
nite state machine approach is less abstractctaspact, more difficult to write, but
simplifies the implementation. Additionally, thip@roach also facilitates the automatic
discharging of POs but at the price of adding ifargs to propagate the values of var-
iables changed in sub states to the final statbeoktate machine. Note also that the
nature of the variables and the system under desigfikely to favor one or the other
modelling approaches.

Finally, it is worth noting thatwriting Event-B models does not require more
knowledgehan writing software. While using first order lognd set theory is a shift
from classical software engineering methods, tei®itgs to the mathematical back-
ground of any engineers. However, writing Event-8del requires a strong capability
of abstractionand a capability to describe without being ablexecute...

4.3 Verification of Refinements

Verification of formal refinements in the Event-Bethodology relies on the dis-
charging of automatically generated proof obligagi¢PO). POs can be automatically
discharged using predicate provers embedded iRtltén toolset. Plugins have been
developed to leverage the increasing capabilitieSMT solvers such as Alt-Erdo
Z33, CV4*, or others. Formal verification is conducted imghlel with formal refine-
ment: as soon as any element is added in an Evenbdel, PO are generated and
potentially discharged automatically. In some wthis can be related to the automatic
syntactic verifications performed by current IDEs.

Refinement Verification in Practice

The number of generated POs increases with thesihe model. Even with auto-
matic verification provided by embedded PP and SdiVers, some POs remain to be
proved “manually”. Hopefully, the proof plug-ins Rodin are easy to use and very
intuitive for the users, and thus is of great helgen manual proofs are required.

Unfortunately, diagnoserhy some PO fails to be discharged manually or autemat
cally remains difficult. The reason may be that pheperty simply does not hold, or
that either the automatic prover or the user isabte to carry out the proof. In the latter
case, reasons may be the limited capabilities @ftilman or mechanical prover, or
missing lemmas. Discriminating the various situagiés very hard and may require a
significant (but hard to estimate) effort.

2 http://alt-ergo.lri.fr/
3 https://github.com/Z3Prover/z3
4 http://cvcd.cs.nyu.edu/web/



Rodin embedded prover can be adapted through fivétibe/modification (with a
graphical interface) of profiles. Profiles custoatian finds its interest in case depend-
ent models as it provides tactics adapted to dpagifals to be proved. We relied on
profiles customization in our use case in ordexdd tactics such as “domain rewriting”
that were of great help for the automation of theopwork.

Part of the proof work was additionally assistedadging “helper” invariants. This
was unfortunately not enough to fully automateftirenal verification, as about 1% of
the proofs remained to be done by hand (a tota4d® POs including 15 proven by
hand). Part of the remaining proofs relate to the of non-linear arithmetic for which
automatic provers are not really efficient. We teath these proofs by adding theo-
rems adapted to the proof goals and by perforntieg proof by hand. The necessary
work was not complex but is time consuming duehi® hanual search for missing
theorems.

Lessons L earnt

Formal verification is the most time consuming tyiin the refinements process.
This work is complex and requires experience aredifip skills when automatic proof
fails to discharge all POs. Worse, the effort tmptete a proof is difficult to estimate.
This problem is made even more critical due tof#led that no guidance can be pro-
vided to complete a proof.

On the other side, proofs performed fully autonaljcand immediately may cover
other difficulties. Hence, our first proofs wererfeemed in no time due to contradic-
tory axioms/invariants/guards. Unfortunately, avwogdsuch inconsistencies is difficult
and detection cannot be done automatically. Soeliedron the voluntary insertion of
inconsistent axioms/invariants/guards to checktlfi@r consistency of the other axi-
oms/invariants/guards.

After a relatively short training on the Event-B thiedology, formalism and proof
techniques, it appears to us that modelling sys&mdsproving them using the Rodin
toolset is a task that is accessible to enginegrsssme background in mathematical
logics. However, the time needed for the modelting verification of a system remains
difficult to estimate. Worse, the effect of a simphodel modification on the proof
effort (especially, manual) is difficult to estireatVe really miss appropriate modeling
guidance.

4.4  Validation of Formal Requirements

Ideally, the set of requirements is consistent@nplete at each refinement level.
In reality, it is very likely that some requiremsritave been ignored, misunderstood,
or badly transcoded. As the rework of an Event-Rlehds fairly expensive, it shall be
validated as early and often as possible.

Executing the model has been identified by EverxBerts as the only mean to
achieve validation [15,16]. The production of siatats has been the subject of many
works[17]-[19] and tools have been developed for this purpose.



Simulator-Based Validation

In our experiment, we relied on ProB [20] completedrby B-Motion [21] and JeB
[22] as validation tools. The last two additionghisovide means to graphically repre-
sent the execution of the model: this greatly iowps stakeholders’ ability to validate
the Event-B models.

During the phase of requirement analysis, we d@esl@ simulator including move-
ment dynamics of the rovers on a map using Scid®shs depicted irFig. 4. The
purpose of the simulator was to validate our urtdeding of the specification. Such
simulator also has the interesting effect of praggicimulation scenarios that can be
used as test vectors fed to the Event-B simuldi®F Simulations relying on such
values directly contribute to the validation of Bt«8 models as they rely on pre-vali-
dated sets of values. Integration of third partgiudators and produced values can be
technically done relying on FMI (Functional Modeltérface) and the related plugin
developed for integration in the Rodin platform][17
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Fig. 4. ScicosLab simulator with graphical display (b) amdierlying model (a)

Developing Event-B simulators is easy, especiallyirdy the first steps of refine-
ment. However, generating actual input vectorgiersimulation can be quite tedious
and complex when the variables or constants amfeggbusing non-deterministic ex-
pressions.

We relied on JeB for the generation of a web-basmdlator and for the generation
of values for constants. JeB provides an autontiaitslation of Event-B models to an
executable JavaScript implementation. It is thessfide to provide JavaScript func-
tions computing the values for constants (respalbés and parameters). Such func-
tions produce values that are pretty-printed ugingnt-B notation. These values can
then be used in the original Event-B model makieB & very handy tool for the pro-
duction of test vectors for complex data (relativakies as sets of pairs etc...). Com-
puted values correction is formally verified usifB and SMT solvers when they are
injected in the Event-B model. In our ARP functima produced values of the refined
function for the calculus of the deceleration tcelpplied by the rover using JeB.

5 http://www.scicoslab.org/



In control systemdliveness propertiesr correctness properties suchdesadlock
freenesshall be verified to ensure the responsiveneisso$ystem. Simulation can be
used to obtain a first level of confidence on theemce of deadlocks, before resorting
to formal proof. Deadlock freeness theorems cagereerated using dedicated Rodin
plugins, but depending on the model size, theiffication may become very challeng-
ing. Verifying these properties can also be dosiagimodel checking. But this ap-
proach suffers from the classical limitations ofdabcheckers. In our experiment, we
used a translation to another formalism and togldet. and S3, see [6]) after intro-
ducing a scheduling sequence of events to theraysteler design to tackle more effi-
ciently and automatically the verification of thqa®perties.

Lessons L earnt

Validating a formal model with respect to a seinéérmal requirements is a difficult
task. Hopefully, the Event-B environment providesed of very helpful animation
tools. Animation allows stakeholdersdeethe behavior of the formal model and vali-
date it. Furthermore, it allows to assess reaciyalzihd liveness properties that are
difficult (and sometime impossible) to express diyeon the Event-B model and to
formally verify these properties using model chegkiHowever, as for any test-based
approach, confidence on the validation dependfiercdverage of the validation sce-
narios.

45 M odel Review

The review activity in a classical development gsxaims at ensuring the correct
implementation of requirements as code or the comafinement of requirements, to
detect inconsistencies and misinterpreted requingsnand enforce the use of devel-
opment standard (e.g., code writing standards)e Hee consider three specific goals:
ensure a correct encoding of the designer’s intedltice the verification effort, and
support traceability.

Ensure Correct Encoding of Designer | ntent

The correct encoding of the designer intent is mtsby the validity, correctness,
consistency and completeness of the formal model eispect to the requirements.
We provide here multiple elements supporting tlialg

Introduction of verification lemmais a starting point advocated in many publica-
tions to assess the consistency of an Event-B méddlready stated, success in prov-
ing obviously false theorems/invariants/guardsiputontexts/machine/events allows
to detect inconsistencies in contexts/machineaalisttion/event guards and parameters
definitions.

Additional automated tooling for checking expressicould also help in our verifi-
cation process, as an example, checking if boutatgd variables are used in quanti-
fied constructs or writing implications in the bodf existentially quantified expres-
sions might raise a warning for the designer.

A proofreading approacho model review could also be applied to Event-&leis
by having a reviewer to rewrite chosen guards amdriants using natural language.



The reviewer would then check if the natural larggiaxpressions are indeed correct
rewritings of the associated requirements. The sig@pproach could also be done
and would be safer (reviewer to write the natumabjuage expression of the guard using
FOL) but less straightforward for engineers. Preadting should be focused on com-
plex guards and invariants that are more likelgdotain errors and on invariants stat-
ing key properties of the system under design.

Minimize Verification Effort

Verification is one of the most expensive actitie the development of embedded
critical systems. Minimizing verification efforts thus of primary interest.

To facilitate the (possibly automatic) verificatiprocess, we have to add additional
lemmas to the model. Those lemmas were explidipiified as “helper” lemmas, so
as to ease the work of assessing the correctitireahodel. After several modifications
of the model, some of those lemmas became unnegessh were removed from the
model to lighten the verification. It is worth nagj that some tautologies were kept in
the model even though they did not bring additiantdrmation as they appeared to be
very helpful to support “case splitting” and sinfiplihe automatic proof.

The verification effort obviously strongly depenals the ability for the verifier to
understand the model. One way to achieve thismgtiak on the compliance to a set of
well-defined modelling rules compiled in a “modedii standard”, in a way similar to
what is usually done for software coding. Many sufter code writing such as MISRA-
C[23] can be applied to the writing of logical egpsions: avoid deep nesting, avoid
too long lines of code, line breaks position acoaydo operators, indentation con-
sistency, parenthesizing consistency, avoid hawilogoperator of different precedence
at the same level of indentation. Verification effcan also be strongly reduced by an
appropriate organization of the models. For ingtaircour experiment, we applied the
following rule about model elements ordering: “treler of declaration of constants,
variables or parameters should match the ordeppéarance of their respective defi-
nition (axioms, invariants, guards)”.

It is obvious but worth noting that adding commentthe model significantly con-
tributes to a better understanding of the interthefdesigner and of the structure and
choices made during the design process. Commealidghof help and not state obvi-
ous information.

Existing tooling may also simplify the models ahdg impact its understandability.
For instance, the “theory” plugin provides the dality to factorize properties or ex-
pressions of the model and thus simplifies theimgitand, later, the understanding) of
complex Event-B models.

We have provided here a few examples of good mesfor the writing of an Event-
B model to produce more readable, reviewable ansl timderstandable models. There
exists many works and standards used in the indtesensure such properties for code
but to our knowledge there is a minimal work doneapplying this to logical specifi-
cation. We plan on tackling these with more detailsa dedicated publication.



Traceability

Aeronautics certifications require to trace eadigteelements to some requirement.
The corresponding certification objective is “Hilgvel requirements are traceable to
system requirements” (DO178 Annex A, table A-3,eakive 6). In our experiment,
ensuring traceability during the refinement prodass relied on making explicit the
mapping between the elements in the informal sjpatibn and Event-B constructs. At
high level, naming conventions allowed us to liakle refinement layer defined by the
refinement strategy to its corresponding Event-R:mt@ze and context. Newly intro-
duced model element (constant, axiom, variableariant, event, guard and action)
were commented with the name of the requiremewtioh it was linked. If an element
could not be linked to a requirement, it was markedderived” and the corresponding
derived requirement was added to the specification.

We decided to use this approach to keep the trditgatefacts visible at all time.
An alternative solution would be to rely on thectability plugin integrated in the Ro-
din platform that is based on the requirement mameamt toolset of the Eclipse plat-
form®. This solution would simplify the traceability iew process and avoid cluttering
of the models. Unfortunately, it was not availafdethe version of Rodin we used in
our experiment (such integration is planned to fowiged at the time of writing).

Lessons L earnt

We advocate that code review can be applied totEyenodels and may help in (i)
demonstrating the correct encoding of the interthefdesigner in the formal model;
and (ii) minimizing the verification effort by adtipg appropriate modelling patterns.

Model review against a well-defined modelling stamtlis a simple and efficient
means to enhance the quality of the model and estthecnumber of errors. The benefits
of such activity strongly overcome its cost. Heriteshall be an integral part of the
Event-B models development process. We believelieatomplexity of such a review
activity is affordable for software engineers wlithsic mathematical knowledge.

Additionally, generating appropriate documentatfoom Event-B models would
also greatly simplify the review work. Indeed, thay of displaying models in the Ro-
din environment is not really adapted to a properaw activity. For instance, a cate-
gorization of model elements and comments accorttirtheir purpose / role (tracea-
bility, design choices, model element meaning, gariaformation ...) would greatly
help the review process.

Our approach to deal with traceability was appliedab our use case because of the
granularity of our requirements. Tracing more alxgtrequirements to specific model
elements would be difficult to manage and verifgttivay. Relying on an intermediate
level of (semi-)formal requirements as advocatefP# on the use of the “extended
problem frame” approach would be more generalizable

6 http://www.eclipse.org/rmf/



5 Related Works

Research projects have produced a large literatmrthe methodology and tools
around the use of Event-B for system modellingjdets such as DEPLOY, for in-
stance, have provided some very valuable resulth@application of Event-B on in-
dustrial use cases [24]. In this work, they relytba “extended problem frames” ap-
proach as an intermediate formalism between inforetuirements and Event-B mod-
els to further formalize relations between requigata elements and thus simplify the
formalization work. Model validation is tackledtimeir approach using traceability and
animation through the use of ProB. To assess delaflleeness, they rely exclusively
on ProB.

A complete approach for the design and concepti@enpacemaker system [25] and
an adaptive cruise control has been developedrghgiL9]. Formalization of require-
ments is done through the extraction of modes anidlies and introduction of refine-
ment charts [25]. Event-B models are then producedfied and validated [26]. The
whole process is also confronted to a potentialimsesoftware certification environ-
ment [27].

Our work on the analysis and formalization of regoients does not provide addi-
tional elements compared to previously presentae sif the art applications. We ad-
vocate on relying on animation technologies to iowprthe understanding of simula-
tion results by stakeholders by providing graph&eiulators generated using B-Mo-
tion and/or JeB. Simulation input data may be peoeduthrough the use of simulators
generators like JeB. We propose to additionally o#l a transformation of Event-B
models to HLL for verification and validation. Ansilar approach is advocated in the
FORMOSE project relying on UPPAAL [28]. We propose an aiddial review pro-
cess to complement validation relying on softwangaw techniques ensuring a better
detection of conception errors and misunderstandirlge specification during Event-
B models design.

6 Conclusion

This work focuses on the application of the Eventi&hod on part of the process
followed during an industrial development. We gémame lessons and proposed some
of the simple practices that we applied during éxperiment. Relying on the Event-B
methodology for the development of systems provadésmework for the formaliza-
tion of textual requirements. This is strengthertimg traditional error prone formali-
zation step of a software development process. &amodelling, verification and val-
idation of Event-B models at an early stage proddery valuable and fast feedback
on the correction of requirements.

One important conclusion of our experiment residéke very fact that we — “stand-
ard” software engineers — were able to apply ththateon a non-trivial problem in a
very reasonable time. This is in particular du¢hi® great maturity of the toolset and
the efficiency of the underlying provers. Howewdis positive conclusion is certainly

7 http://formose.lacl.fr/



largely due to the natural adequacy of our probierine method. An additional con-
clusion of our experiment is that classical vedfion and validation activities shall be
complemented by review activities. They strongintcibute to reduce the number of
errors and more generally to enhance the qualitheimodel.

Before moving to a large scale industrial applmatisome very important questions
remain to be answered: What is the actual usagaitoofithe methodology, consider-
ing the constraints imposed by the capability efalatomatic verification means? How
robust is the method to a change in the requiresfevithat are the good modeling
practices to enhance this robustness and to radaoceerification effort? Definitely, it
is necessary to evaluate the method on differgrastyf systems to detect weak and
strong points for its application.

This work will be pursued to answer these questiang more specifically to ad-
dress the applicability of the Event-B method iD@-178C compliant development
process. Additional tooling may be necessary fr plrpose.
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