
HAL Id: hal-01386847
https://hal.science/hal-01386847v3

Preprint submitted on 5 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Event-B at Work: some Lessons Learnt from an
Application to a Robot Anti-Collision Function

Arnaud Dieumegard, Ning Ge, Eric Jenn

To cite this version:
Arnaud Dieumegard, Ning Ge, Eric Jenn. Event-B at Work: some Lessons Learnt from an Application
to a Robot Anti-Collision Function. 2016. �hal-01386847v3�

https://hal.science/hal-01386847v3
https://hal.archives-ouvertes.fr

Event-B at Work: some Lessons Learnt from an
Application to a Robot Anti-Collision Function

Abstract. The technical and academic aspects of the Event-B method,
and the abstract description of its application in industrial contexts are
the subjects of numerous publications. In this paper, we describe the ex-
perience of development engineers non familiar with Event-B to getting
to grips with this method. We describe in details how we used the for-
malism, the refinement method, and its supporting toolset to develop the
simple anti-collision function embedded in a small rolling robot. We
show how the model has been developed from a set of high-level require-
ments and refined down to the software specification. For each phase of
the development, we explain how we used the method, expose the en-
countered difficulties, and draw some practical lessons from this experi-
ment.

Keywords: Formal refinement, software verification, formal verifica-
tion, anti-collision, Event-B.

1 Introduction

The practical implementation details and the difficulties encountered during the ap-
plication of the Event-B method by “typical industrial engineers” are usually not widely
discussed. Therefore, in the current publication, we share the method we have used, the
difficulties we have encountered, and some lessons we have learnt when applying this
method to develop one particular function of our small rolling robot [1].

It is worth noting that even though this development was tightly driven by consider-
ations about aeronautical certification, the question of compliance with ARPs [2] or
DOs [3]–[5] objectives using Event-B is not directly addressed here.

The paper is organized as follows. Section 2 outlines our development process. Sec-
tion 3 introduces our case study: the anti-collision function of a small rover. Section 4
details the elaboration of the software requirements using formal refinement. Section 5
covers related works. We conclude in section 6.

Arnaud Dieumegard1, Ning Ge1, 2, Eric Jenn1

1IRT Saint-Exupéry
118 Route de Narbonne, 31432 Toulouse, France

<firstname.lastname>@irt-saintexupery.com
2Systerel Toulouse

La Maison des Lois, 2 impasse Michel Labrousse, 31036 Toulouse, France
<firstname.lastname>@systerel.fr

2 Formal Refinement in an Industrial Development Process

Our experiment focuses on the following development activities: (i) formalization
of the system specification, (ii) definition of a refinement strategy, (iii) application of
the refinement strategy to elaborate a set of high-level software requirements compliant
with the initial specification. Subsequent software production activities are not detailed
and are the subject of an ongoing publication [6]. Other activities such as integration or
testing are not addressed.

The development process starts with a set of informal requirements expressed in a
natural language. In order to optimize the modelling and validation effort, the initial set
of requirements is decomposed into disjoint subsets, the processing of which is realized
sequentially. Processing a subset of the requirements involves several phases: formali-
zation, where requirements are translated into Event-B constructs; validation, where
these constructs are validated against the initial user specification; refinement, where
these constructs are made more concrete; verification, where the correctness of these
constructs is proved. This process stops when (i) all subsets have been processed and
(ii) the set of modelling elements allocated to software is completely defined. The over-
all development process is depicted on Fig. 1.

System

requirements

process

Software

requirements

process

Software Design

Software

Coding

System requirements

HLR

LLR

Source code

Integration

Fig. 1. Overall development process

With respect to a typical development process in the aeronautical domain, this part

of the overall process covers part of the system-level specification and design activity
(as per ARP4754 [2]) and part of the software requirement activity (as per DO-178C
[3]).

In our case, we consider the last refinement of the Event-B model to carry high-level
requirements (HLR), i.e., “software requirements developed from analysis of system
requirements, safety-related requirements, and system architecture” (DO-178C). The
software code will be implemented from those HLR; this part of the process is described
in [6].

3 The Case Study

3.1 The TwIRTee Rover and the ARP Function

TwIRTee is the three-wheeled robot (or “rover”) used as the demonstrator of the
INGEQUIP project conducted at the Institut de Recherche Technologique of Toulouse
(IRT Saint-Exupéry). It is used to evaluate new methods and tools in the domain of
hardware/software co-design [1], virtual integration, and application of formal methods
for the development of equipment [7]. TwIRTee’s architecture, software, and hardware
components are representative of aeronautical, spatial and automotive systems.
A rover performs a sequence of missions (� on Fig. 2) defined by a start time and an
ordered set of waypoints to be passed-by. Missions are planned off-line and transmitted
to the rover by a supervision station (�). To go from the first waypoint to the last, the
rover moves on a track materialized by a dark line on the ground. In a more abstract
way, a complete mission can be modelled by a path in a graph where nodes represent
waypoints, and edges represent parts of the track joining two waypoints.

A rover shares the tracks with several identical rovers. In order to prevent collisions,
each of them embeds a protection function (or ARP) which purpose is to maintain some
specified spatial (�) and temporal separation (�) between them. On Fig. 2, temporal
separations are represented by light green and light red areas superimposed on the map:
basically, rover 2 (resp. rover 1) shall never enter the light green (resp. light red).

In our implementation, the ARP essentially acts by reducing the rover speed and, in
some specific cases, by performing a simple avoidance trajectory. To take the appro-
priate action, the ARP exploit the following information: the map, the position of all
other rovers transmitted by a centralized supervision station (�), and its own position.

For this paper, we rely on a simplified version of the ARP function where some
specification elements such as the rovers positions, speeds, decelerations, etc. are rep-
resented as discrete values (no use of Real or Floating Point data). Interested readers
can refer to another study [9] conducted on this same function but covering different
formal modelling aspects.

W1

Spatial separation

Mission:
(W1,W4,W5)

W5

W4 W7

W6

Map

W8

Mission:
(W5,W2,W5)

Map

W2Rover 1

Rover 2W3

Temporal separation

Position transmissionSupervision

station

Waypoint

�

�

�

�

�

Fig. 2. System overview

3.2 Rodin and Event-B

Event-B [10] is a method to develop systems according to a correct-by-construction
approach. It is the system level modelling evolution of the B-method [11] successfully
applied in real-size industrial applications [12]. The Event-B method constructs a cor-
rect model of a system via a series of refinements of its specification. The correction of
a refinement is ensured by proving automatically or manually a set of proof obligations
generated from the model.

The Rodin Platform1 is an Eclipse-based IDE for Event-B that provides effective
support for refinement and mathematical proof. The platform is open source, based on
the Eclipse framework. Its development started in 2004 during the RODIN project, and
continued within the DEPLOY and ADVANCE projects. The community is still active
regarding the development. The extensibility of the platform through the use of plugins
is of great interest as it allows to rely among others on (i) analysis tools for verification
(SMT solvers, model checkers) or validation (animators, simulators generators) of the
models and the refinements, (ii) traceability facilities for link with requirement docu-
ments, (iii) code generation tooling, (iv) automated refinements methods easing the re-
finement work.

4 From System-level Requirements to High-level Requirements

In our process, the latest refinement of the Event-B model represents software HLR.
As already studied in [10,13], the development of a refinement strategy is the entry
point for the definition of Event-B models. It improves the understanding of the re-
quirements by the designer and the robustness of the development process by providing
an intermediate formalization phase between requirements and design. Refinement
strategy application produces Event-B refinements.

1 http://www.event-b.org/

4.1 Building a Refinement Strategy

Our refinement strategy is based on Abrial [10], Butler et al [13] and Wen Su et al
[14]. The work started with a thorough analysis of the requirements to identify the var-
iables used in the system and classify them as either uncontrolled (environment), or
controlled (system) or commanded (operator). Requirements are classified according
to the same three categories. The main role of the ARP function is to ensure the absence
of collision between rovers by controlling the deceleration of the rover. The controlled
variable deceleration of the control function is chosen as the first element of focus in
the requirements document for the elaboration of the refinement strategy.

Requirements Layering
The refinement strategy defines the processing order of the requirements. This order

is determined from the dependencies between variables and, consequently, between re-
quirements. In our case study, we identified the deceleration feature as dependent of
the occurrence of conflicts and emergency braking. As a first abstraction, conflicts
might occur at any time and so might emergency braking. Our initial layer of refinement
was thus only composed of these three variables.

From this entry point, the next requirements layers are produced by gradually intro-
ducing new features such as: fleet of rovers, distances between rovers, inhibition by
operator etc. Each feature is attached to a subset of the initial requirements. As some
requirements are linked to multiple features, they are attached to multiple layers and
their implementation is gradually completed along with the refinement of layers.

Complementary to the previous horizontal refinements, vertical data refinements are
also performed. For instance, the values of the deceleration variable, initially con-
strained by a simple range in the early refinement, become later constrained by axioms
specifying the semantics of deceleration. Similarly, the calculus of the distance between
rovers that was simply defined as a value in a range is refined as a shortest path function.

Lessons Learnt
Building a consistent, adequate and applicable refinement strategy is the first step

towards the correct understanding of the system and contributes to the correct model-
ling of the system. If requirement classification is a rather systematic activity, their
layering (or sequencing) is more difficult. Layering starts with the identification of an
entry point from which the activity starts. Layering may be driven by the identification
of the minimal subset of features that ensures the capability to simulate and validate the
model at each layer.

4.2 Formalization of Requirements

Formalization starts with the definition of Event-B contexts containing sets, constant
variables and constant relations, the definition domain of which are specified as axioms.
Then machines are detailed with variables and relations with their definition domain
specified as invariants. Variables require the setting of their initial value in the special
INITIALIZATION event. Variables shall be used in events specifying the condition
under which their value changes (guards) and how their value changes (actions). Event

execution modifies the state of the system. Properties expected to be verified by the
system shall be added as invariants of the machine and shall hold in every event.

Producing Event-B models from informal specification can be done using multiple
approaches. A first approach relies on modelling the states of the system as sets. In that
interpretation, state changes are represented by the “movement” of elements from one
set to another. This approach has been used for instance in an alternative modelling of
our use case in [9] where the study goal was on time and the data refinements relied on
the use of real values.

Our modelling approach, depicted in Fig. 3, is inspired from [10]. The function is
first abstracted as a hierarchic cyclic state machine comprising two states: the first one
updates the state of the environment of the system and the second updates the state of
the system itself (i.e., performs the function under design). Transition from one state to
the other is triggered by dedicated events (arp_state_env_start and
arp_state_fun_start) updating a state variable arp_state. Sub state ma-
chines are triggered depending on activation variables ([mm|fm|cm|em]_acti-
vated). This approach provides a clear separation between the environment and the
system under design, exposes the execution cycle, and so facilitates the production of
the executable code from the model. Unfortunately, exposing the execution cycle of the
function may also introduce implementation details too early in the refinement process.

Function state machineEnvironment state machine

arp_state_fun_start

arp_state_env_start

fm

cm emmm
fm

Fig. 3. Event-B model as a circuit

Lessons Learnt
Modelling the system using our approach does suffer from some serious limitations.
We assume that all other rovers in the environment do implement the same ARP func-
tion as the one under design. For our implementation, this assumption was added as a
new environment requirement. Such assumption was not necessary in the alternative
modelling approach as every rover in the system was explicitly modelled and each of
them implements the same ARP behaviour. Our modelling approach yields an ad-
vantage regarding the formal verification: as we do not model all the rovers, a level of
universal quantification in the model is removed.

Vertical data refinements produce detailed specifications for variables and for func-
tions. These specifications may be purely declarative or imperative. In the first case,
implementation is provided outside of the Event-B world; in the second case, Event-B
is used to “code” the function. In our use case, for instance, an imperative model of the

simple “deceleration function” could be easily designed in Event-B. However, this
would be much more tedious for the “shortest path function”. Thus we have favoured
a pure declarative approach in Event-B, leaving the implementation details to program-
ming languages.

The choice of the “set-oriented” or “finite-state-machine-oriented” modelling ap-
proach has an impact on efficiency. The use of sets increases abstraction and reduces
the modelling effort, but it increases the implementation work. Reciprocally, using fi-
nite state machine approach is less abstract, less compact, more difficult to write, but
simplifies the implementation. Additionally, this approach also facilitates the automatic
discharging of POs but at the price of adding invariants to propagate the values of var-
iables changed in sub states to the final state of the state machine. Note also that the
nature of the variables and the system under design are likely to favor one or the other
modelling approaches.

Finally, it is worth noting that writing Event-B models does not require more
knowledge than writing software. While using first order logic and set theory is a shift
from classical software engineering methods, this belongs to the mathematical back-
ground of any engineers. However, writing Event-B model requires a strong capability
of abstraction and a capability to describe without being able to execute…

4.3 Verification of Refinements

Verification of formal refinements in the Event-B methodology relies on the dis-
charging of automatically generated proof obligations (PO). POs can be automatically
discharged using predicate provers embedded in the Rodin toolset. Plugins have been
developed to leverage the increasing capabilities of SMT solvers such as Alt-Ergo2,
Z33, CV44, or others. Formal verification is conducted in parallel with formal refine-
ment: as soon as any element is added in an Event-B model, PO are generated and
potentially discharged automatically. In some way, this can be related to the automatic
syntactic verifications performed by current IDEs.

Refinement Verification in Practice
The number of generated POs increases with the size of the model. Even with auto-

matic verification provided by embedded PP and SMT solvers, some POs remain to be
proved “manually”. Hopefully, the proof plug-ins in Rodin are easy to use and very
intuitive for the users, and thus is of great help when manual proofs are required.

Unfortunately, diagnose why some PO fails to be discharged manually or automati-
cally remains difficult. The reason may be that the property simply does not hold, or
that either the automatic prover or the user is not able to carry out the proof. In the latter
case, reasons may be the limited capabilities of the human or mechanical prover, or
missing lemmas. Discriminating the various situations is very hard and may require a
significant (but hard to estimate) effort.

2 http://alt-ergo.lri.fr/
3 https://github.com/Z3Prover/z3
4 http://cvc4.cs.nyu.edu/web/

Rodin embedded prover can be adapted through the definition/modification (with a
graphical interface) of profiles. Profiles customization finds its interest in case depend-
ent models as it provides tactics adapted to specific goals to be proved. We relied on
profiles customization in our use case in order to add tactics such as “domain rewriting”
that were of great help for the automation of the proof work.

Part of the proof work was additionally assisted by adding “helper” invariants. This
was unfortunately not enough to fully automate the formal verification, as about 1% of
the proofs remained to be done by hand (a total of 2442 POs including 15 proven by
hand). Part of the remaining proofs relate to the use of non-linear arithmetic for which
automatic provers are not really efficient. We dealt with these proofs by adding theo-
rems adapted to the proof goals and by performing their proof by hand. The necessary
work was not complex but is time consuming due to the manual search for missing
theorems.

Lessons Learnt
Formal verification is the most time consuming activity in the refinements process.

This work is complex and requires experience and specific skills when automatic proof
fails to discharge all POs. Worse, the effort to complete a proof is difficult to estimate.
This problem is made even more critical due to the fact that no guidance can be pro-
vided to complete a proof.

On the other side, proofs performed fully automatically and immediately may cover
other difficulties. Hence, our first proofs were performed in no time due to contradic-
tory axioms/invariants/guards. Unfortunately, avoiding such inconsistencies is difficult
and detection cannot be done automatically. So we relied on the voluntary insertion of
inconsistent axioms/invariants/guards to check for the consistency of the other axi-
oms/invariants/guards.

After a relatively short training on the Event-B methodology, formalism and proof
techniques, it appears to us that modelling systems and proving them using the Rodin
toolset is a task that is accessible to engineers with some background in mathematical
logics. However, the time needed for the modelling and verification of a system remains
difficult to estimate. Worse, the effect of a simple model modification on the proof
effort (especially, manual) is difficult to estimate. We really miss appropriate modeling
guidance.

4.4 Validation of Formal Requirements

Ideally, the set of requirements is consistent and complete at each refinement level.
In reality, it is very likely that some requirements have been ignored, misunderstood,
or badly transcoded. As the rework of an Event-B model is fairly expensive, it shall be
validated as early and often as possible.

Executing the model has been identified by Event-B experts as the only mean to
achieve validation [15,16]. The production of simulators has been the subject of many
works [17]–[19] and tools have been developed for this purpose.

Simulator-Based Validation
In our experiment, we relied on ProB [20] complemented by B-Motion [21] and JeB

[22] as validation tools. The last two additionally provide means to graphically repre-
sent the execution of the model: this greatly improves stakeholders’ ability to validate
the Event-B models.

During the phase of requirement analysis, we developed a simulator including move-
ment dynamics of the rovers on a map using ScicosLab5 as depicted in Fig. 4. The
purpose of the simulator was to validate our understanding of the specification. Such
simulator also has the interesting effect of producing simulation scenarios that can be
used as test vectors fed to the Event-B simulators [19]. Simulations relying on such
values directly contribute to the validation of Event-B models as they rely on pre-vali-
dated sets of values. Integration of third party simulators and produced values can be
technically done relying on FMI (Functional Model Interface) and the related plugin
developed for integration in the Rodin platform [17].

Fig. 4. ScicosLab simulator with graphical display (b) and underlying model (a)

Developing Event-B simulators is easy, especially during the first steps of refine-
ment. However, generating actual input vectors for the simulation can be quite tedious
and complex when the variables or constants are specified using non-deterministic ex-
pressions.

We relied on JeB for the generation of a web-based simulator and for the generation
of values for constants. JeB provides an automatic translation of Event-B models to an
executable JavaScript implementation. It is then possible to provide JavaScript func-
tions computing the values for constants (resp. variables and parameters). Such func-
tions produce values that are pretty-printed using Event-B notation. These values can
then be used in the original Event-B model making JeB a very handy tool for the pro-
duction of test vectors for complex data (relations values as sets of pairs etc…). Com-
puted values correction is formally verified using PP and SMT solvers when they are
injected in the Event-B model. In our ARP function we produced values of the refined
function for the calculus of the deceleration to be applied by the rover using JeB.

5 http://www.scicoslab.org/

In control systems, liveness properties or correctness properties such as deadlock
freeness shall be verified to ensure the responsiveness of the system. Simulation can be
used to obtain a first level of confidence on the absence of deadlocks, before resorting
to formal proof. Deadlock freeness theorems can be generated using dedicated Rodin
plugins, but depending on the model size, their verification may become very challeng-
ing. Verifying these properties can also be done using model checking. But this ap-
proach suffers from the classical limitations of model checkers. In our experiment, we
used a translation to another formalism and toolset (HLL and S3, see [6]) after intro-
ducing a scheduling sequence of events to the system under design to tackle more effi-
ciently and automatically the verification of those properties.

Lessons Learnt
Validating a formal model with respect to a set of informal requirements is a difficult

task. Hopefully, the Event-B environment provides a set of very helpful animation
tools. Animation allows stakeholders to see the behavior of the formal model and vali-
date it. Furthermore, it allows to assess reachability and liveness properties that are
difficult (and sometime impossible) to express directly on the Event-B model and to
formally verify these properties using model checking. However, as for any test-based
approach, confidence on the validation depends on the coverage of the validation sce-
narios.

4.5 Model Review

The review activity in a classical development process aims at ensuring the correct
implementation of requirements as code or the correct refinement of requirements, to
detect inconsistencies and misinterpreted requirements, and enforce the use of devel-
opment standard (e.g., code writing standards). Here, we consider three specific goals:
ensure a correct encoding of the designer’s intent, reduce the verification effort, and
support traceability.

Ensure Correct Encoding of Designer Intent
The correct encoding of the designer intent is ensured by the validity, correctness,

consistency and completeness of the formal model with respect to the requirements.
We provide here multiple elements supporting this goal.

Introduction of verification lemmas is a starting point advocated in many publica-
tions to assess the consistency of an Event-B model. As already stated, success in prov-
ing obviously false theorems/invariants/guards put in contexts/machine/events allows
to detect inconsistencies in contexts/machine initialisation/event guards and parameters
definitions.

Additional automated tooling for checking expressions could also help in our verifi-
cation process, as an example, checking if bounded logic variables are used in quanti-
fied constructs or writing implications in the body of existentially quantified expres-
sions might raise a warning for the designer.

A proofreading approach to model review could also be applied to Event-B models
by having a reviewer to rewrite chosen guards and invariants using natural language.

The reviewer would then check if the natural language expressions are indeed correct
rewritings of the associated requirements. The opposite approach could also be done
and would be safer (reviewer to write the natural language expression of the guard using
FOL) but less straightforward for engineers. Proofreading should be focused on com-
plex guards and invariants that are more likely to contain errors and on invariants stat-
ing key properties of the system under design.

Minimize Verification Effort
Verification is one of the most expensive activities in the development of embedded

critical systems. Minimizing verification efforts is thus of primary interest.
To facilitate the (possibly automatic) verification process, we have to add additional

lemmas to the model. Those lemmas were explicitly identified as “helper” lemmas, so
as to ease the work of assessing the correction of the model. After several modifications
of the model, some of those lemmas became unnecessary and were removed from the
model to lighten the verification. It is worth noting that some tautologies were kept in
the model even though they did not bring additional information as they appeared to be
very helpful to support “case splitting” and simplify the automatic proof.

The verification effort obviously strongly depends on the ability for the verifier to
understand the model. One way to achieve this goal relies on the compliance to a set of
well-defined modelling rules compiled in a “modelling standard”, in a way similar to
what is usually done for software coding. Many rules for code writing such as MISRA-
C[23] can be applied to the writing of logical expressions: avoid deep nesting, avoid
too long lines of code, line breaks position according to operators, indentation con-
sistency, parenthesizing consistency, avoid having two operator of different precedence
at the same level of indentation. Verification effort can also be strongly reduced by an
appropriate organization of the models. For instance, in our experiment, we applied the
following rule about model elements ordering: “the order of declaration of constants,
variables or parameters should match the order of appearance of their respective defi-
nition (axioms, invariants, guards)”.

It is obvious but worth noting that adding comments in the model significantly con-
tributes to a better understanding of the intent of the designer and of the structure and
choices made during the design process. Comments shall be of help and not state obvi-
ous information.

Existing tooling may also simplify the models and thus impact its understandability.
For instance, the “theory” plugin provides the capability to factorize properties or ex-
pressions of the model and thus simplifies the writing (and, later, the understanding) of
complex Event-B models.

We have provided here a few examples of good practices for the writing of an Event-
B model to produce more readable, reviewable and thus understandable models. There
exists many works and standards used in the industry to ensure such properties for code
but to our knowledge there is a minimal work done on applying this to logical specifi-
cation. We plan on tackling these with more details on a dedicated publication.

Traceability
Aeronautics certifications require to trace each design elements to some requirement.

The corresponding certification objective is “High-level requirements are traceable to
system requirements” (DO178 Annex A, table A-3, objective 6). In our experiment,
ensuring traceability during the refinement process first relied on making explicit the
mapping between the elements in the informal specification and Event-B constructs. At
high level, naming conventions allowed us to link each refinement layer defined by the
refinement strategy to its corresponding Event-B machine and context. Newly intro-
duced model element (constant, axiom, variable, invariant, event, guard and action)
were commented with the name of the requirement to which it was linked. If an element
could not be linked to a requirement, it was marked as “derived” and the corresponding
derived requirement was added to the specification.

We decided to use this approach to keep the traceability artefacts visible at all time.
An alternative solution would be to rely on the traceability plugin integrated in the Ro-
din platform that is based on the requirement management toolset of the Eclipse plat-
form6. This solution would simplify the traceability review process and avoid cluttering
of the models. Unfortunately, it was not available for the version of Rodin we used in
our experiment (such integration is planned to be provided at the time of writing).

Lessons Learnt
We advocate that code review can be applied to Event-B models and may help in (i)

demonstrating the correct encoding of the intent of the designer in the formal model;
and (ii) minimizing the verification effort by adopting appropriate modelling patterns.

Model review against a well-defined modelling standard is a simple and efficient
means to enhance the quality of the model and reduce the number of errors. The benefits
of such activity strongly overcome its cost. Hence, it shall be an integral part of the
Event-B models development process. We believe that the complexity of such a review
activity is affordable for software engineers with basic mathematical knowledge.

Additionally, generating appropriate documentation from Event-B models would
also greatly simplify the review work. Indeed, the way of displaying models in the Ro-
din environment is not really adapted to a proper review activity. For instance, a cate-
gorization of model elements and comments according to their purpose / role (tracea-
bility, design choices, model element meaning, general information …) would greatly
help the review process.

Our approach to deal with traceability was applicable to our use case because of the
granularity of our requirements. Tracing more abstract requirements to specific model
elements would be difficult to manage and verify that way. Relying on an intermediate
level of (semi-)formal requirements as advocated in [24] on the use of the “extended
problem frame” approach would be more generalizable.

6 http://www.eclipse.org/rmf/

5 Related Works

Research projects have produced a large literature on the methodology and tools
around the use of Event-B for system modelling. Projects such as DEPLOY, for in-
stance, have provided some very valuable results on the application of Event-B on in-
dustrial use cases [24]. In this work, they rely on the “extended problem frames” ap-
proach as an intermediate formalism between informal requirements and Event-B mod-
els to further formalize relations between requirements elements and thus simplify the
formalization work. Model validation is tackled in their approach using traceability and
animation through the use of ProB. To assess deadlock freeness, they rely exclusively
on ProB.

A complete approach for the design and conception of a pacemaker system [25] and
an adaptive cruise control has been developed by Singh [19]. Formalization of require-
ments is done through the extraction of modes and variables and introduction of refine-
ment charts [25]. Event-B models are then produced, verified and validated [26]. The
whole process is also confronted to a potential use in a software certification environ-
ment [27].

Our work on the analysis and formalization of requirements does not provide addi-
tional elements compared to previously presented state of the art applications. We ad-
vocate on relying on animation technologies to improve the understanding of simula-
tion results by stakeholders by providing graphical simulators generated using B-Mo-
tion and/or JeB. Simulation input data may be produced through the use of simulators
generators like JeB. We propose to additionally rely on a transformation of Event-B
models to HLL for verification and validation. A similar approach is advocated in the
FORMOSE7 project relying on UPPAAL [28]. We propose an additional review pro-
cess to complement validation relying on software review techniques ensuring a better
detection of conception errors and misunderstanding of the specification during Event-
B models design.

6 Conclusion

This work focuses on the application of the Event-B method on part of the process
followed during an industrial development. We give some lessons and proposed some
of the simple practices that we applied during this experiment. Relying on the Event-B
methodology for the development of systems provides a framework for the formaliza-
tion of textual requirements. This is strengthening the traditional error prone formali-
zation step of a software development process. Formal modelling, verification and val-
idation of Event-B models at an early stage provide a very valuable and fast feedback
on the correction of requirements.

One important conclusion of our experiment resides in the very fact that we – “stand-
ard” software engineers – were able to apply the method on a non-trivial problem in a
very reasonable time. This is in particular due to the great maturity of the toolset and
the efficiency of the underlying provers. However, this positive conclusion is certainly

7 http://formose.lacl.fr/

largely due to the natural adequacy of our problem to the method. An additional con-
clusion of our experiment is that classical verification and validation activities shall be
complemented by review activities. They strongly contribute to reduce the number of
errors and more generally to enhance the quality of the model.

Before moving to a large scale industrial application, some very important questions
remain to be answered: What is the actual usage domain of the methodology, consider-
ing the constraints imposed by the capability of the automatic verification means? How
robust is the method to a change in the requirements? What are the good modeling
practices to enhance this robustness and to reduce the verification effort? Definitely, it
is necessary to evaluate the method on different types of systems to detect weak and
strong points for its application.

This work will be pursued to answer these questions, and more specifically to ad-
dress the applicability of the Event-B method in a DO-178C compliant development
process. Additional tooling may be necessary for this purpose.

7 REFERENCES

[1] P. Cuenot, E. Jenn, E. Faure, N. Broueilh, and E. Rouland, “An Experiment on
Exploiting Virtual Platforms for the Development of Embedded Equipments,” in
8th European Congress on Embedded Real Time Software and Systems (ERTS
2016), 2016.

[2] SAE, SAE ARP4754 Certification Considerations for Highly-Integrated Or
Complex Aircraft Systems. Warrendale, USA: Society of Automotive Engineers
(SAE), 1996.

[3] RTCA, DO-178C, Software Considerations in Airborne Systems and Equipment
Certification. Special Committee 205 of RTCA, 2011.

[4] RTCA, “DO-333 Formal Methods Supplement to DO-178C and DO-278A,”
RTCA & EUROCAE, Dec. 2011.

[5] RTCA, “DO-331 Model-Based Development and Verification Supplement to
DO-178C and DO-278A,” RTCA & EUROCAE, Dec. 2011.

[6] N. Ge, A. Dieumegard, E. Jenn, and L. Voisin, “From Event-B to Verified C via
HLL,” Oct-2016.

[7] M. Clabaut, N. Ge, N. Breton, E. Jenn, R. Delmas, and Y. Fonteneau, “Industrial
Grade Model Checking Use Cases, Constraints, Tools and Applications,” in 8th
European Congress on Embedded Real Time Software and Systems (ERTS
2016), Toulouse, France, 2016.

[8] N. Ge, E. Jenn, N. Breton, and Y. Fonteneau, “Formal Verification of a Rover
Anti-collision System,” in Critical Systems: Formal Methods and Automated
Verification, M. H. ter Beek, S. Gnesi, and A. Knapp, Eds. Springer International
Publishing, 2016, pp. 171–188.

[9] N. K. Singh, Y. Ait-Ameur, M. Pantel, A. Dieumegard, and E. Jenn, “Stepwise
Formal Modeling and Verification of Self-Adaptive systems with Event-B. The
Automatic Rover Protection case study,” presented at the ICECCS, 2016.

[10] J.-R. Abrial, Modeling in Event-B - System and Software Engineering. Cam-
bridge University Press, 2010.

[11] J.-R. Abrial, The B-book: Assigning Programs to Meanings. New York, NY,
USA: Cambridge University Press, 1996.

[12] J.-L. Boulanger, Formal methods applied to complex systems: implementation of
the B Method. 2014.

[13] M. Butler, “Towards a cookbook for modelling and refinement of control prob-
lems,” 2009.

[14] W. Su, J.-R. Abrial, R. Huang, and H. Zhu, “From requirements to development:
methodology and example,” in Formal Methods and Software Engineering,
Springer, 2011, pp. 437–455.

[15] A. Mashkoor, J.-P. Jacquot, and J. Souquières, “Transformation heuristics for
formal requirements validation by animation,” in 2nd International Workshop on
the Certification of Safety-Critical Software Controlled Systems-SafeCert 2009,
2009.

[16] S. Hallerstede, M. Leuschel, and D. Plagge, “Refinement-animation for Event-
B—towards a method of validation,” in International Conference on Abstract
State Machines, Alloy, B and Z, 2010, pp. 287–301.

[17] V. Savicks, M. Butler, J. Colley, and J. Bendisposto, “Rodin multi-simulation
plug-in,” presented at the 5th Rodin User and Developer Workshop, Toulouse,
France, 2014.

[18] F. Yang, “A Simulation Framework for the Validation of Event-B Specifica-
tions,” Université de Lorraine, 2013.

[19] N. K. Singh, “Reliability and safety of critical device software systems,” Ecole
Centrale de Nantes, 2011.

[20] M. Leuschel and M. Butler, “ProB: A model checker for B,” in International
Symposium of Formal Methods Europe, 2003, pp. 855–874.

[21] L. Ladenberger, J. Bendisposto, and M. Leuschel, “Visualising event-B models
with B-motion studio,” in International Workshop on Formal Methods for In-
dustrial Critical Systems, 2009, pp. 202–204.

[22] F. Yang, J.-P. Jacquot, and J. Souquières, “JeB: safe simulation of Event-B mod-
els in javascript,” in 2013 20th Asia-Pacific Software Engineering Conference
(APSEC), 2013, vol. 1, pp. 571–576.

[23] MIRA Ltd, “MISRA-C:2004 Guidelines for the use of the C language in Critical
Systems.” .

[24] L. Petre, K. Sere, and L. Tsiopoulos, “Deploy Methods: Final Report,” D44, Apr.
2012.

[25] D. Méry and N. K. Singh, “Formal Specification of Medical Systems by Proof-
Based Refinement,” ACM Trans Embed Comput Syst, vol. 12, no. 1, p. 15:1–
15:25, Jan. 2013.

[26] D. Méry and N. K. Singh, “Real-Time Animation for Formal Specification,” in
Complex Systems Design & Management 2010, Paris, France, 2010, pp. 49–60.

[27] D. Méry and N. K. Singh, “Trustable Formal Specification for Software Certifi-
cation,” in 4th International Symposium On Leveraging Applications of Formal
Methods - ISOLA 2010, Heraklion, Crete, Greece, 2010, vol. 6416, pp. 312–326.

[28] G. Behrmann et al., “UPPAAL 4.0,” in Third International Conference on the
Quantitative Evaluation of Systems - (QEST’06), 2006, pp. 125–126.

