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Abstract

There seems to be nothing short of a double whammy hitting the users
of probability, and among them physicists, especially those involved
in the foundations of quanta. First is the instant instinctual reaction
that phenomena which interest one do sharply and clearly divide into
the dichotomy of two and only two alternatives of being either “deter-
ministic”, or on the contrary, being “probabilistic”. However, there is
also a second, prior and yet deeper trouble, namely, the “probabilis-
tic” case is strongly believed to be equally clear and well-founded as
is the “deterministic” one. And the only difference seen between the
two is that the latter can talk also about “individual” phenomena,
while the former can only do so about large enough “ensembles” for
which, however, it is believed to be equally clear, precise and rigorous
with the “deterministic” approach. Or briefly, “probabilistic” is seen
as nothing else but the “deterministic” on the level of “ensembles” ...
The fact, however, is that there is a deep gap between the empirical
world of “random” phenomena, and on the other hand, theories of
“probability”. Furthermore, any attempt to bridge that gap does in-
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evitably involve infinity, thus aggravating the situation to the extent
that even today, and even if not quite realized by many, theories of
“probabilities” have a shaky foundation.
This paper tries to bring to the awareness of various users of “proba-
bilities”, and among them, to physicists involved in quanta, the fact
that - seemingly unknown to them - they are self-inflicted victims of
the mentioned double whammy.

“Science is not done scientifically ...”

“Physics is too important to be left to
physicists ...”

What is the ... probability ... that there is a
valid concept such as “probability” ?

1. Introduction : the Gap between “Random” and
“Probabilistic”

Formulated briefly, the main issue in this paper could be introduced
as follows :

i) there is a gap between what go by the name of “random” empirical
phenomena, and on the other hand, theories of “probabilities” which
are supposed to be their mathematical models,

ii) that gap cannot be bridged without effective involvement of infinity
at every “probabilistic” step,

iii) in view of i) and ii), none of the existing theories of “probabilities”
is well-founded.

And now, some details.

Among physicists, as well as many others, there is a deeply entrenched
instant reflex to classify manageable phenomena of interest according
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to the sharp dichotomy of two and only two alternatives, namely, ei-
ther “deterministic”, or else, “probabilistic”. Furthermore, and in
fact, yet more questionably, this foundational error is seriously aggra-
vated by considering the concept of “probabilistic” as being equally
well founded with the “deterministic” one.
As for all other phenomena beyond the “deterministic” and “prob-
abilistic” ones, they are seen to belong to that rather unfathomable
category of “chaos”, and thus preferably to be avoided as such, if pos-
sible ...

This paper starts by recalling main moments in what is seemingly
hardly known still today to be in fact the yet unsettled issue of the
foundation of “probabilities”. And it does so beginning with the 1600s,
when Blaise Pascal and Pierre de Fermat initiated in modern times
the study of “probabilities”. Then it mentions the pursuit of the sub-
ject in the 1700s, when the mathematician brothers Bernoulli started
to deal with “probabilities” more deeply. Following that, the paper
continues with important foundational moments nearer to our days.

Upon the hopefully resulting clarification of the fact of the long ongo-
ing lack of foundation of the concept of “probability” several negative
consequences in a better understanding of quanta are also presented.

However, it is important to note that the aim here is not the pre-
sentation of a comprehensive history of the foundations of “probabili-
ties”, or of the misunderstandings implied upon the understanding of
quanta, tasks which quite likely would each have to run into a book of
several volumes. Instead, the paper tries to focus only on sufficient in-
stances of considerable foundational significance, sufficient - hopefully
- to open up an awareness in those users of “probabilities” who happen
to be more careful, than approaching “probabilities” in a mere routine
manner, and doing so without any interest in a better understanding
of what may in fact be involved.

And sorry to say, but with rare exceptions, physicists in foundations
of quanta are among many others who make systematic use of “proba-
bilities” regardless of the fact that their awareness of the still ongoing
rather shaky foundations of “probabilities” is regrettably missing to a
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large extent ...
Or even worse, they may be deeply convinced that, on the contrary,
“probabilities” do by now have one or another as solid a foundation,
as solid as “deterministic” theories may ever have.

This double ignorance does indeed act still today as a double whammy,
and specifically as seen in the sequel, does so prominently regarding
quanta ...

In this respect, and without intending any particular harm, one may
point out as a typical such instance the recent 2003 book “Probability
Theory, The Logic of Science”, by the physicist E.T. Jaynes (1922-
1998), a book which in many respects is indeed remarkable, and yet
- as argued in the Appendix to this paper - presents but one of the
various misguided and rather superficial claims to offer a foundation
to “probabilities”, even if only with the modest aim to be of use on
empirical levels mainly, and mostly by physicists ...

All in all, since by far the most important and consequential present
day users of “probabilities” seem to be theoretical physicists, espe-
cially those involved in quanta, this paper is dedicated to an attempt
to try and save, so to say, their ... intellectual, and in particular, pro-
fessional souls ...

Amusingly, a main culprit in perpetuating the mentioned double ig-
norance regarding the shaky foundations of “probabilities” has - ever
since the mid 1920s - been the group of supporters of various versions
of the “Copenhagen Interpretation” of quanta, where “probabilities”
were for the first time ever in physics claimed to be foundationally
important in what become the concept of the “instant collapse of the
wave function”, and the subsequent “measurement problem”.
Indeed, it was precisely that “Copenhagen Interpretation”, as fer-
vently promoted by Niels Bohr, Werner Heisenberg, Max Born, and
others, which with an obvious pride of setting up an unprecedented
first in the whole history of science insistently kept claiming that the
quanta were ontologically probabilistic, and not merely epistemically,
like for instance, was the case with the role of “probabilities” in Sta-
tistical Mechanics ...
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And such an ontological claim kept being made in spite of the ongo-
ing objection of Albert Einstein, Erwin Schroedinger, and later David
Bohm, among others ...

And so it comes to pass that noticed by preciously few in quanta,
a still deeper and more crucial problem to be addressed even before
that of “collapse” and “measurement”, has been - and keeps being
even today - the still ongoing shaky foundations of the very concept of
“probabilities”, a concept which gets essentially - and all too obviously
- involved in both the mentioned so called “collapse” and “measure-
ment”.

Looking forward, therefore, to the better future times when the very
first foundational issue in quanta may at long last become the issue of
the foundations of “probabilities” themselves ...

Let us now try to get into some details ...

Ludwig Boltzmann (1844-1906) introduced Statistical Mechanics in
the late 1800s and developed it to a considerable extent, including im-
portant applications in physics. Then, starting in the mid 1920s and
for several decades after, there was the exclusive domination of the
“Copenhagen Interpretation” in quanta. An effect of such a state of
affairs seems to have been the instant and unquestioned reflex in the
thinking not only of physicists, according to which the various phe-
nomena of their respective interest do clearly and sharply divide into
the dichotomy of two and only two classes, namely, “deterministic”, or
on the other hand, “probabilistic”.
Regarding the “deterministic” phenomena, the foundational situation
has always seemed to be quite clear and rigorous, except perhaps for
what is called since the 1960s, and especially the late 1970s, by the
amusing name of “deterministic chaos”.
After all, the foundational clarity and precision involved are supposed
to be some of the essential features of “deterministic” phenomena,
and obviously, they are a sine-qua-non in “causality” which is seen
to be but a paradigmatic feature of “determinism” and which, among
others, means that one can obtain a precise mathematical modelling
even of all individual entities involved, and not only of large enough
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ensembles of such individual entities.

On the other hand, due to the long ongoing lack of familiarity with -
let alone understanding of - the reality of the essentially messy founda-
tional aspects of the concept of “probability”, the rather unshakable
conviction rules still today, and not only among physicists, that the
mentioned dichotomy “deterministic versus probabilistic” has by now
both sides of it equally clearly defined and well founded.

The aim of this paper is to point to some of the most fundamental
moments when, ever since the early 1700s and the contributions of
the Bernoulli brothers in mathematics, the highly questionable foun-
dations of “probabilities” have in fact been highlighted and discussed,
even if hardly with any effect upon most of the users of “probabili-
ties”, among them as rather significant ones nowadays, the physicists,
and especially those involved in quanta.

As a caveat before getting into the main subject, let us mention no
less than two divergent trends :

Since the late 1920s, Bruno de Finetti (1906-1985), being aware of the
lack of a proper foundation of the concept of “probability”, did develop
an alternative approach which got named “subjective probability”, [3],
and which later became popular in certain circles which promoted a
Bayesian a view of “probability”. In fact, “subjective probability”
goes so far as simply to deny the very existence of “probability”, as
mentioned in the sequel.

Then, since the 1960s, there is also an awareness in certain circles
about the third alternative class of phenomena of interest - beyond
the “deterministic” and “probabilistic” ones - namely, the so called
“fuzzy” phenomena which were introduced by the Azerbaijan-American
electrical engineer Lofti A. Zadeh (1921- ).
Furthermore, as mentioned, since the 1960s and especially late 1970s,
there is also an awareness of the so called “deterministic chaos”.

Seemingly - and quite hard to say whether fortunately or not - the
above two additional classes of phenomena, namely, “fuzzy” and “de-
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terministic chaos”, have not so far made it into the foundations of
quanta ...

Last, and by no means least, there has also been the class of “plau-
sible” events as promoted by the well known Hungarian-American
mathematician G. Polya (1887-1985). In some useful and important
sense, the concept of “plausibility”, as meant by Polya, is supposed to
be weaker, and thus more general, than that of “probability”. A good
fist description of that relationship can be found in the mentioned
book of E.T. Jaynes, for instance. Further related comments will be
presented in the sequel.

2. Why at all “Probabilities” ?

Pascal seems to be the first in modern times to have had an inter-
est in trying to bridge the gap between a certain class of empirical
phenomena, called for convenience “random”, and on the other hand,
some hoped for convenient rational, and in particular mathematical
modelling of them by what came to be called “probabilities”. His in-
terest arose related to usual card games, or games in tossing a coin
or a dice. Such were the class of “random” empirical phenomena con-
sidered. And it was precisely their a priori clearly stated rules which
- at first sight - made them seem amenable to a rational, and even
numerical computational approach.

On the other hand, to set up any clearly stated and well founded
mathematical model, one had first to give a precise and usable defini-
tion of “probability”, which Pascal did as follows :

In the case of tossing a fair coin, for instance, the “probability” of
getting a “head”, or alternatively, getting a “tail”, was by definition
equal to 1/2. And in more general situations with a finite number
of “random” outcomes, Pascal’s definition was similarly simple and
practical as well. Namely, the number 0 ≤ p ≤ 1, given by

(2.1) p = m
n
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is by definition the “probability”, where n ≥ 1 is the finite number
of all possible “random” empirical events under consideration, while
0 ≤ m ≤ n is the implicitly finite number of all favourable such “ran-
dom” empirical events.

***

Let us, therefore, for convenience - and hopefully, also clarity - denote
by Ran the realm of empirical phenomena which are to be considered
“random”, and on the other hand, let us denote by Prob the realm
of mathematical models described by theories of “probabilities” which
are supposed to model the so called “random” empirical phenomena,
that is, the realm Ran.

Consequently, and for instance, the successive tossing of a given fair
coin in which each such toss is assumed to be independent of all the
other ones, belongs toRan, while the mathematical formula (2.1) does
belong to Prob.

As for the mentioned gap between Ran and Prob, it is of no less than
of foundational importance to note - and then keep in mind in the
sequel - that the above concept Prob is up to us humans to define.
Indeed, any given mathematical theory, be it even merely in a stage of
development, can - rightly or wrongly - be considered by us to belong,
or for that matter not to belong, to Prob.
On the other hand, regarding the realm of Ran, it is obvious that we
simply cannot give a definition even to the concept of fair coin, unless
in some way it is circular, that is, self-referential, and/or unnoticed by
us, it makes some appeal to concepts in Prob ...
And on top of it, such a possible definition may - in a way or another
- have serious problems in trying to avoid the concept of infinity ...
As for giving a proper and useful definition for the concept of “ran-
dom”, the situation is by no means less easy ...

Thus the above essential difference between Ran and Prob is precisely
the mentioned gap which still today causes the foundational shakiness
in theories of “probability” ...
Regarding the mentioned essential difficulties in defining the concept
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of “random”, we cannot so easily avoid an implied lack of clarity at
the very foundational levels of the whole theory of “probabilities” ...

Furthermore, the inevitable involvement of infinity in dealing with the
gap between Ran and Prob, that already happens even in that most
simple case of tossing a fair coin, as seen in (2.4), (2.5) in the sequel.

And precisely here - with the involvement of infinity - there is a main
and yet unsolved issue regarding “probabilities” ...
And it is not only unsolved, but very few of those using “probabili-
ties” are aware of it to any relevant extent, let alone are aware of its
all important and unavoidable foundational role ...

To give here a rather blatant example in this regard, anticipating
briefly related arguments in the sequel, let us note the following.

The “Copenhagen Interpetation” of quanta :

a) claimed to abolish “determinism” in the realms of quanta,

b) claimed to replace “determinism” with “probabilities”,

c) imposed the transition from a) to b), with the claim
to be but a new universal paradigm not only related to
quanta, but in the whole of “modern” - as opposed to
“classical” - physics, thus expelling the relevance of any
and all ontological concerns from “modern” physics, and
allowing instead only and only epistemological concerns,

d) utterly failed to realize that the transition from a) to b)
did in no way eliminate “determinism” from physics, let
alone, from its foundations, but instead, it merely shifted
“determinism” from the level of individual empirical phe-
nomena, to that of certain alleged to exist ensembles of
“random” empirical phenomena,

e) the transition from a) to b) was made at the cost of
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involving infinity at each and every even minutest “proba-
bilistic” step, as noted already in that most simple example
of (2.1) above.

Indeed, the “Copenhagen Interpretation” of quanta, as well as the
interpretations associated with it in various ways, did - and still do
today - all the above a) - e), and seemingly keep doing so

f) in a proverbial ... blissful ignorance ... of the utter lack
of any satisfactory foundations of “probabilities”,

g) yet are clinging as much as possible to “determinism”,
albeit this time simply shifted away by one single level, as
mentioned at d) ,

h) and then on top of all that, bring infinity in, at each
and every even minutest “probabilistic” step.

Let us try to recapitulate :

Obviously, the motivating idea of the definition of “probability” cho-
sen in (2.1) was simple, and at least at first sight, it was also intuitively
to the point, namely :

(2.2) The empirical phenomenon of tossing a given number n ≥ 2
of times a fair coin, with each such toss being independent of all the
other ones, was considered to be “random”, where the meaning of the
concept of “random”, and in particular, of fair coin, was left in fact
undefined in any proper manner.

(2.3) Furthermore, it was supposed that an infinite succession of such
so called, yet not defined precisely “random” tossing, that is, with n
going through all the values 2, 3, 4, . . ., had the miraculous property
that a unique number 0 ≤ ρ ≤ 1 was - irrespective of all other con-
siderations - associated with it once and for evermore. That is, no
matter when and where, if an alleged fair coin was to be subjected to
the above procedure, then ρ would for sure be there, and would by
necessity have ever the very same value.
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(2.4) Counting for each n ≥ 2 the value m of “heads” in the respective
n tosses of the alleged fair coin, one would always obtain

(2.5) limn→∞
m
n

= limn→∞
n−m
n

= 1
2

and thus a really nice connection would result between a presupposed
yet undefined “randomness” at the empirical end which is given by
that mysterious number ρ, and on the other hand, at the theoretical
end, where the number p is defined in (2.1). Indeed, in (2.5), either
we like it or not, the alleged and yet undefined “randomness” appears
due to the infinite sequence of numbers m which correspond to each
n = 2, 3, 4, . . ., and which numbers m can be obtained properly - that
is, effectively - only and only by being noted as the result of n suc-
cessive tossing under the conditions mentioned above, that is, for all
values n = 2, 3, 4, . . ., which of course is but infinitely many ...

(2.6) Therefore, the miraculous connection in (2.5) between the em-
pirical ρ and the theoretical p, that is, between the realms of Ran and
Prob, is only obtained at infinity ...
And so terribly regrettably, nobody would ever be able effectively to
perform the infinite operations in (2.5), so as to verify whether indeed
the claimed result in (2.5) may hold, or on the contrary ...
And as seen later, this is indeed a major spoiler of the whole idyllically
assumed achievement in (2.5) ...

(2.7) Also, before one may accept (2.5) regarding “probabilities”, let
us recall the following. The seemingly neat and obvious nature of the
alleged link in (2.5) between the realms ofRan and Prob can quite eas-
ily be challenged upon certain second thoughts that may arise from
what is called the Law of Truly Large Numbers, of briefly (LTLN),
mentioned in Example 4.1 in the sequel.

***

Now of course, there are any number of far more complicated so called
“random” empirical phenomena of interest than those in (2.5), and
which are waiting to benefit from a mathematical modelling ...
To mention but one of them which popped up early in the study of
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“probabilities”, we can recall the Law of Large Numbers, or briefly
(LLN).

Indeed, one of the first major positive hints regarding the existence
of some sort of theory of “probabilities” was considered to be given
by the mathematical theorem of the (LLN), which was seemingly first
stated, but without a proof, by Gerolamo Cardano (1501-1576).
As it happened, Jacob Bernoulli managed to come up with a rigorous
enough proof on (LLN), at least according to the standards of the time,
and published it in the early 1700s. And in our times, it is known as
the Weak Law of Large Numbers, that is in fact, as (WLLN). Hence
(WLLN) = (LLN).

Before we would, however, get carried away too much with the enthu-
siasm produced by the (LLN) regarding any possible theory of “prob-
abilities”, let us mention here briefly the other side of the proverbial
coin, namely :

The result in the (LLN) seen below in (2.12), is that

limn→∞ P ( |Yn − µ| ≥ ε ) = 0

which means that, as n → ∞, the “probability” of no
matter how small a deviation of the sample mean Yn from
the mean µ of the samples Xn, a deviation above any given
a priori fixed ε > 0, must tend to zero.

As mentioned, this result has been seen as being of a major posi-
tive nature about the chances and meaning of any suitable theory of
“probabilities” ...

However, what passes hardly at all noticed is the following :

By the very same kind of argument which leads to the
above (LLN), we have also to accept that together with
such a positive result we may - with equally significant
“probabilities” - have to encounter, along n→∞, no mat-
ter how long sequences of completely aberrant values of the
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samples X1, X2, X3, ..., . . . , Xn, as argued in the sequel in
Example 4.1.

In other words, we have for too long by now been focusing exclu-
sively on the “good news” of the (LLN), and totally disregarded the
equally valid “bad news” of the Law of Truly Large Numbers, or briefly
(LTLN) ...

Let us then first have a closer look at what (LLN) did actually accom-
plish. In a brief presentation, the situation is as follows.

Example 2.1

Let X1, X2, X3, . . . be an infinite sequence of independent and iden-
tically distributed “random” variables, each having the same mean
< Xn > = µ, and the same standard deviation var(Xn) = σ. De-
fine then an infinite sequence of associated “random” variables, which
constitute what is called the sample means of the “random” variables
X1, X2, X3, . . ., namely

(2.8) Yn = X1+...+Xn

n
, n ≥ 1

Then we have

(2.9) < Yn >= <X1+...+Xn>
n

= <X1>+...+<Xn>
n

= µ, n ≥ 1

Further we obtain

(2.10)

var(Yn) = var(X1+...+Xn

n
) = var(X1

n
) + ...+ var(Xn

n
) =

= σ2

n2 + ...+ σ2

n2 = σ2

n
, n ≥ 1

Therefore, by the Chebyshev inequality, for all ε > 0, one has

(2.11) P ( |Yn − µ| ≥ ε ) ≤ var(Yn)
ε2

= σ2

n×ε2 , n ≥ 1

It then follows that, for all ε > 0, we have
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(2.12) limn→∞ P ( |Yn − µ| ≥ ε ) = 0

that being the expression of the (LLN).

***

What one can easily note in the above relations (2.8) - (2.12) is the
following.

The entities X1, X2, X3, . . . are merely the mathematical models - be-
longing to Prob - of entities in the realm of Ran. And of course, so
are the derived entities Y1, Y2, Y3, . . ..
As for the entities < Xn > = µ and var(Xn) = σ, their left hand
terms are in general mathematical integrals, which in particular cases
may be countable or finite sums of numbers, thus they as well belong
to the realm of Prob.
In rest, (2.9) - (2.12) are purely mathematical relations, thus again,
they belong to the realm of Prob.

And then, arises the following QUESTION :

How does - if at all - the (LLN) help bridge the gap between
Ran and Prob ?

Well, one thing is clear : all the entities X1, X2, X3, . . ., Y1, Y2, Y3, . . .,
< Xn > = µ and var(Xn) = σ, as well as the relations (2.8) - (2.12)
belong to Prob.
So that, the only possible connection to Ran of the above formula-
tion of the (LLN), as well as of its proof, may possibly come from
some abuse by which we may for the moment assume that the entities
X1, X2, X3, . . ., Y1, Y2, Y3, . . . do actually belong to Ran as well ...

However, even in the case of such an abuse, the limit in (2.12) is essen-
tially different from the limits in (2.5). Indeed, in the latter, the values
of m are supposed to be extracted from the effective observation of a
specific “random” empirical process, thus clearly, all those values m
do belong rather to Ran, than to Prob.
On the other hand, none of the values in (2.12) belongs to Ran !
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Consequently, the (LLN) has a highly questionable relation to the
realm of Ran, being instead rather a purely mathematical theorem
within the realm of Prob ...

By the way, the so called Strong Law of Large Numbers, or (SLLN),
does not change at all the negative facts mentioned above. In particu-
lar, it does not give any positive answer to the corresponding QUES-
TION :

How does - if at all - the (SLLN) help bridge the gap
between Ran and Prob ?

Indeed, the (SLLN) states that

(2.13) P ( limn→∞ Yn = µ ) = 1

***

As it happened however - and quite unfortunately - the highly ques-
tionable interpretation which the (LLN) got from the very beginning
was that of representing a most relevant and promising inroad into the
realm of “random” empirical processes, of representing a most relevant
and promising link between Ran and Prob ...
And either we like it or not, that early interpretation has still remained
quite the same today ...
Except that there is no longer hardly any awareness of the deeply
problematic nature of any such possible claim, as seen above in some
of the more blatant details, details known in fact by now for about
three centuries ...

Instead of such an awareness, and also in the case of no matter how
general and involved “random” empirical processes, we witness a full
and never questioned confidence in no less than two assumptions,
namely :

(2.14) There exists a well defined numerical value ρ associated with
each and every of the specific “random” empirical processes modelled.
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(2.15) The larger the numbers of empirical “random” instances in-
volved, the more the mathematically computed “probability” p is
supposed to approach the corresponding and assumed to exist unique
numerical value ρ.

***

In other words, the justification of the definition of “probability” in
(2.1) rests upon no less than two limit-like assumptions :

(2.16) Each and every “random” empirical phenomenon has from the
start, and independent of all else, associated with it for evermore a
unique numerical value 0 ≤ ρ ≤ 1.

(2.17) For each and every “random” empirical phenomenon, the math-
ematical number p defined according to (2.1) does approach arbitrarily
close the value ρ when, for instance, the limit procedure in the (LLN),
or other appropriate and far more general limit procedures are applied.

***

However, ever since the emergence of such results as the (LLN), those
involved in “probabilities” did - in their hope-charged enthusiasm - not
much care about highly questionable and/or conflicting facts which,
as mentioned, started to accumulate right at the beginning.

First of all in this regard, is the massive asymmetry between the exis-
tential status of ρ in (2.14), and on the other hand, of p in (2.15).
Indeed, the existence of every such ρ is merely an assumption which
hardly ever - if at all - has any kind of more serious empirical and/or
theoretical support.
On the other hand, the existence of p is as simple an issue as its direct
and effective computation in the fraction in (2.1), in which the only dif-
ficulty may arise with the combinatoric complexities possibly involved
in the computation of m as a function of n, with n finite and arbitrary.

This most relevant asymmetry, however, has up until today all too
frequently been completely missed from consideration ...
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Another truly dramatic trouble was produced by the Bernoulli broth-
ers themselves as early as 1713, and it became known under the name
of the “St. Petersburg Paradox”.

Amusingly, this paradox, mentioned briefly below as cited from Wiki-
pedia, shows the untenable nature of having to introduce infinity, in
order to hope to bridge the gap between (2.14) and (2.15), or put
more simply, between the number p which mathematics is supposed
to be able to deliver, and on the other hand, the number ρ whose very
existence, let alone uniqueness, is - and can only be - a sort of not
easy to accept ontological assumption.

And as a side remark here, it is to be noted that E. T. Jaynes himself
in his mentioned book [4] - as seen in the Appendix to this paper,
as well as related to his interpretation of the Bertrand Paradoxes in
Probability, [4, pp. 386] - says rather explicitly that ρ is supposed to
depend on one or another of the finite processes involved which give
the terms of the limit-like processes that are assumed to define the
“probabilities” of interest. Thus it is hard to see how such numbers ρ
may in general end up being unique, depending, as they are supposed
to do, on one or another of the mentioned finite processes ...

Later we shall see that infinity does massively trouble the whole foun-
dations of “probability”. And it does so no less than in two ways,
namely, not only by its sine-qua-non direct effect by the arbitrarily
large positive numbers needed to be able to apply (LLN) meaning-
fully, but also by its effect through arbitrarily small strictly positive
numbers as well, as seen in the so far never properly dealt with issue of
the “Cournot Principle” which was formulated back in the early 1800s.

Briefly now, to the St. Petersburg Paradox, see Wikipedia.

A casino offers a game of chance for a single player in which a fair
coin is tossed at each stage. The initial stake starts at 2 dollars and
is doubled every time “head” appears. The first time “tail” appears,
the game ends and the player wins whatever is in the pot. Thus the
player wins 2 dollars if “tail” appears on the first toss, 4 dollars if
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“head” appears on the first toss and “tail” on the second, 8 dollars
if “head” appears on the first two tosses and “tail” on the third, and
so on. Mathematically, the player wins 2k dollars, where “k” equals
number of tosses.

QUESTION : What would be a fair price to pay the casino for enter-
ing the game?

To answer this, one needs to consider what would be the average pay-
out ?
The answer is obviously as follows : with “probability” 1

2
, the player

wins 2 dollars; with “probability” 1
4
, the player wins 4 dollars; with

“probability” 1
8
, the player wins 8 dollars, and so on. The expected

value is thus

E = (1
2
× 2) + (1

4
× 4) + (1

8
× 8) + . . . = 1 + 1 + 1 + . . . =∞

Assuming the game can continue as long as the coin toss results in
“head”, and in particular that the casino has unlimited resources, this
sum grows without bound and so the expected win for repeated play
is an infinite amount of money.
Considering nothing but the expected value of the net change in one’s
monetary wealth, one should therefore play the game at any price if
offered the opportunity.

And yet, NO ONE is willing to pay any larger amount of money in
order to play that game, in spite of the fact that on average, and ac-
cording to the definition in (2.1), the expectation of the game is an
infinite amount of money ...

This is, therefore, the paradox ...

Of course, there have been any number of comments, interpretations,
alleged solutions, and so on ...
And yet, none of them found anything wrong with the definition (2.1),
and even less suggested a replacement for it which would eliminate that
paradox ...
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And needless to say, a redefinition of p in (2.1) and/or a clarification
of the ontological status of ρ in (2.14) would be the natural direct way
to deal with the “St. Petersburg Paradox” ...
But then, who knows ?
Far more radical approaches to “probability” may as well be needed ...

And in order to indicate possible hints, let us recall in passing two
views which have more than on occasion fascinated larger numbers of
people interested in “probabilities”.

Richard von Mises (1883-1953) - not to be confused with Ludwig von
Mises (1881-1973), his yet more famous brother - was a mathemati-
cian and engineer interested among others in “probabilities”. Being
an adept of Positivism in philosophy, he strongly advocated the view
that “probability” should be defined - in the above terms - rather by
“ρ”, than by “p”. That is, he tried hard to base the whole issue of
“probability” upon the realm of Ran, rather than Prob. In his re-
spective venture, he inevitably conflicted sharply with Kolmogorov’s
view of “probabilities”, and in the longer run, rightly or wrongly, he
lost that competition ...
As understood by many at the time, von Mises was stating the so
called “frequentist” view of “probabilities”, which formulated roughly
would mean that - in terms of (2.1), (2.5) - he claimed as definition of
the concept of “probability” the relation

p = limn→∞
m
n

which, of course, cannot be effectively implemented in the realm of
Ran, as it would involve no less than infinitely many operations.

A second, far less ... unrealistic ... definition of “probability” was that
one given by Bruno de Finetti (1906-1985), and according to which,
[3] :

“Probability does NOT exist.”

or more precisely, “probabilities” do not and cannot have any objective
existence or reality, being instead mere expressions of uncertainties of
individuals ...
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Therefore the name of “subjective probability” for the theory devel-
oped by de Finetti. And to add to the drama, let us mention related
to the above sentence of de Finetti, the following citation from the
very beginning of the paper [6], namely :

“It is strange that the summary of a lifetime of work on
the theory of “X ′′ should begin by declaring that “X ′′ does
not exist, but so begins de Finetti’s Theory of Probability
(1970/1974) :

‘My thesis, paradoxically, and a little provoca-
tively, but nonetheless genuinely, is simply this :

PROBABILITY DOES NOT EXIST

The abandonment of superstitious beliefs about
the existence of the Phlogiston, the Cosmic Ether,
Absolute Space and Time, ... or Fairies and
Witches was an essential step along the road to
scientific thinking. Probability, too, if regarded
as something endowed with some kind of objec-
tive existence, is no less a misleading misconcep-
tion, an illusory attempt to exteriorize or mate-
rialize our true probabilistic beliefs, [3, p. x].’

Of course, what de Finetti meant by this was that probabil-
ity does not exist objectively, independently of the human
mind. Rather :

‘[I]n the conception we follow and sustain here,
only subjective probabilities exist i.e., the de-
gree of belief in the occurrence of an event at-
tributed by a given person at a given instant and
with a given set of information, [3, pp. 34].’

And yet, amusingly, there has recently been a certain interest in us-
ing “subjective probabilities” related to quanta, as for instance in [2] ...
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So much for having any ... clarity ... on the level of foundations of
“probabilities” ...

3. The Cournot Principle

A. A. Cournot (1801-1877) was a French philosopher and mathemati-
cian involved among others in theoretical economics. He formulated
the following principle which was supposed to govern the practical
applications of “probabilities”, see [10-13] :

A physically impossible event is one whose probability is
infinitely small. This remark alone gives substance - an ob-
jective and phenomenological value - to the mathematical
theory of probability.

Maurice Frèchet (1878-1973), one of the great French mathematicians
who started the two modern branches of mathematics called Topology,
respectively, Functional Analysis, did propose the name “Cournot’s
Principle” for the above statement.

The essence - so easily missed by so many even today - of that prin-
ciple is that :

(3.1) It asks the practically all important question whether there is
a small enough, yet nonzero probability p > 0, such that all events
with that, or with a still smaller probability in some given class of
“random” events, can be considered as being impossible from practi-
cal point of view, thus could simply be disregarded as events ?

(3.2) It answers that question with a firm and clear “YES”.

(3.3) It is, however, rather ambiguous regarding the respective values
of p > 0. Indeed, it merely qualifies such small values of p > 0 as
being “infinitesimal”, which is of course rather vague, especially when
considered within usual mathematics, that is, outside of Nonstandard
Analysis ...
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***

Indeed, at the time when Cournot formulated that principle, there
was not yet any rigorous mathematical theory of “infinitesimals”, ex-
cept for the rather informal ideas of G. W. Leibniz (1646-1716). In
this regard, the first rigorous such mathematical theory, Nonstandard
Analysis, came later, in the 1960s, as developed by Abraham Robin-
son.
And as follows from the context of his writings, Cournot did most
likely not refer to the “infinitesimals” of Leibniz, when stating his
mentioned principle.

Amusingly, when in the 1930s, A. N. Kolmogorov (1903-1987) intro-
duced his presently used theory of probability, he took in fact a de-
cision - not quite mentioned explicitly, and even less argued for - to
reject (3.2) above in the Cournot Principle. Indeed, according to Kol-
mogorov, every probability P is a mathematical entity given by a
non-negative sigma-additive measure, thus it is characterized by the
relation

(3.4) P (
⋃

1≤n<∞ An ) =
∑

1≤n<∞ P (An)

whenever the “random” events A1, A2, A3, . . . ⊆ E are pair-wise dis-
joint, plus of course the relation P (E) = 1, where E is the total space
of “random” events.

Implicitly however, (3.4) obviously implies that no matter how small
the nonzero probability P (An) > 0 of any given event An may be, that
event simply cannot ever be disregarded in the right hand term, since
its disregard would invalidate the equality in (3.4), thus would make
P no longer be sigma-additive.
And yet, the series in the right hand term of (3.4) does converge to
a number which is between 0 and 1, since the left hand term of the
equality in (3.4) is a “probability”, thus it is a finite number, more
precisely, at most 1. Therefore we must always have

(3.5) limn→∞ P (An) = 0

22



It follows that, whenever the left hand term in (3.4) is not zero, and the
sequence P (A1), P (A2), P (A3), . . . contains infinitely many nonzero
terms, then it must contain terms P (An) > 0 which are arbitrarily
small.

On the other hand, clearly, in the usual finite case of the additivity
property (3.4), namely

(3.6) P (A1

⋃
. . .

⋃
An) = P (A1) + . . .+ P (An)

with pair-wise disjoint “random” events A1, . . . , An, the Cournot Prin-
ciple simply need not always apply, since none of the finitely many
strictly positive quantities P (Ai) in the right hand term can be arbi-
trarily small, although at least one of them may nevertheless happen
to be “infinitesimal” in the less than clear enough sense of Cournot.

So that, it is precisely here that we see the fundamental difference,
and still disregarded problem which stares us right into the face the
moment infinity is introduced into “probabilities” ...

However, other questionable things happen as well with the concept of
Kolmogorov probability, and no one seems to care much in the least ...

Indeed, if we take as a Kolmogorov probability space the usual unit
interval [0, 1] ( R with the usual Lebesgue measure, then every single
point x ∈ [0, 1] defines a one point event A = {x} which has probabil-
ity P (A) = 0, and thus it is simply redundant probabilistically. Yet,
if one now eliminates from [0, 1] all such redundant points x ∈ [0, 1],
then clearly, one remains with the void set.
In other words, in the Kolmogorov probability space [0, 1] one cannot
eliminate but only a rather small subset of all the redundant points.
This is clearly in contradiction with what happens in a probability
space given by a finite or countable set E, where all points with zero
probability can be eliminated, and one remains with a space that is
isomorphic probabilistically.
The above strange behaviour even of such a simple Kolmogorov prob-
ability space like [0, 1] is the reason while a whole lot of technical com-
plications arise in the study of time-continuous stochastic processes.
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And unfortunately, even Nonstandard Analysis, and the respective
Loeb Integration, cannot get rid of all such technical difficulties.

4. Axioms Involving INFINITY

The axiomatic method in mathematics was, as is well know, originated
by Euclid in his geometry book “Elements” more than two millennia
ago. Instead of “axioms”, Euclid used the term “postulates”. How-
ever, in view of the modern mathematical terminology, we shall prefer
the term “axioms”.

Amusingly, the whole book “Elements” rests only on five postulates,
or rather axioms, which are the following, see Wolfram MathWorld :

I) A straight line segment can be drawn joining any two points.

II) Any straight line segment can be extended indefinitely in a straight
line.

III) Given any straight line segment, a circle can be drawn having the
segment as radius and one endpoint as center.

IV) All right angles are congruent.

V) If two lines are drawn which intersect a third in such a way that
the sum of the inner angles on one side is less than two right angles,
then the two lines inevitably must intersect each other on that side if
extended far enough.

This fifth postulate is equivalent to what is known as the “Parallel
Postulate”.

Euclid’s fifth postulate cannot be proven as a theorem based alone on
the previous four postulates, although this was attempted by many
people, among them a number of outstanding mathematicians. Eu-
clid himself used only the first four postulates - the so called “Ab-
solute Geometry” - for the first 28 propositions of the Elements, but
was forced to invoke the parallel postulate for proving the 29th propo-
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sition in his book. In 1823, Janos Bolyai and Nicolai Lobachevsky
independently realized that entirely self-consistent “non-Euclidean ge-
ometries” could be created in which the parallel postulate did not hold.
Seemingly, Gauss had also discovered, but suppressed the existence of
non-Euclidean geometries, being possibly concerned about the likely
negative effects upon his personal reputation, had he supported the
existence of such geometries in public.

Amusingly, Euclid, and following him everybody for more than two
millennia, that is, until the early 1800s, firmly believed that a postu-
late, that is, an axiom must be obviously and beyond any doubt true.
This is why the fifth postulate was not accepted easily, since unlike
the first four postulates, it could obviously not be verified - and thus
confirmed or denied - without involving infinity.

Well, the next time the same kind of obstacle appeared with the in-
evitable involvement of infinity in an axiom happened with the es-
sential gap between “probability” p defined in (2.1), and and on the
other hand, an assumed to exist unique numerical value ρ for every
so called “random” empirical phenomenon which the “probability” p
was supposed to approximate arbitrarily well, under conditions such
as, for instance, those in the (LLN).
Or put simply, the inevitable involvement of infinity happened with
the gap between (2.14) and (2.15).

Thus it turns out that two rather crucial moments in mathematics
when infinity appears in axioms, and does so in unavoidable manner
are :

First, more than two millennia ago

(4.1) with the fifth Euclidean postulate of parallels,

and then, about two millennia later,

(4.2) with the gap between “probability” and the mentioned assumed
to exist unique numerical value of so called “random” empirical phe-
nomena, that is, with the gap between (2.14) and (2.15).
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Now, a relevant difference between these two cases of axioms, both
essentially involving infinity, is as follows :

In the case of Euclid’s fifth postulate, the two parallel lines involved
are not supposed to come arbitrarily near to one another. In addi-
tion, both those parallel lines are perfectly equally supposed to exist
as purely mathematical entities, that is, the existence of none of them
is less certain than that of the other one.

On the other hand, in the case of “probability”, only the “probability”
“p” is supposed to exist, and as such, exist as a mathematical entity,
namely as given by the definition (2.1), and further specified in (2.15).

Indeed, the assumed to exist unique numerical value “ρ” associated to
every so called “random” empirical phenomenon which the “probabil-
ity” “p” is supposed to approximate arbitrarily well, under conditions
such as, for instance, those in the (LLN), is only an assumed existence,
without any satisfactory supporting argument ever being given in this
regard.
In addition, it is also supposed that the “probability” “p” given by
(2.1) must tend to that merely assumed to exist unique numerical
value “ρ” of the respective so called “random” empirical phenomenon.

Further, it is worth noting that the difficulties involved with the in-
evitable presence of infinity in the fifth postulate have been surpris-
ingly and spectacularly solved in the early 1800s, leading to most pro-
tean generalizations like Reimannian and yet more general geometries,
some of which turned out to be sine-qua-non for General Relativity,
for instance.
And amusingly, the situation as a whole proved to be in principle triv-
ially easy : all three logical possibilities can indeed happen, namely,
given a line L and a point P outside of it, then every line through P
must meet L, or alternatively, there is only one line through P which
never meets L, as well as the third possibility, namely that, there may
be many lines through P which never meet L.

On the other hand, the difficulties involved with the similarly in-

26



evitable presence of infinity related to the gap between the “proba-
bility” p, and on the other hand, the assumed to exist unique nu-
merical value ρ associated with each so called “random” empirical
phenomenon, value which the “probability” p is supposed to approx-
imate arbitrarily well, has not only been not solved at all, but it has
rather passed unnoticed. Or like in the case of Kolmogorov approach
to “probability”, it has been replaced by enforcing an ad-hock decision
which was not explicitly enough expressed, and even less supported
by any satisfactory argument.
And needless to say, therefore : much unlike with the fifth postulate
of Euclid, here there is only one single expected outcome. Namely, the
“probability” p must always converge to the assumed to exist unique
numerical value ρ of the so called “random” empirical phenomenon
under consideration.

The rather obvious conclusion from the above is that foundationally -
and hardly know by its various users - the very concept of “probabil-
ity” is still today on shaky grounds.

And as if the disregard of the Cournot Principle would not be enough,
recently, the long ongoing hope-charged enthusiasm propagated ever
since by results like the (LLN) has rather seriously been punctured
by what is called “The Law of Truly Large Numbers”, or in short
(LTLN), Wikipedia.

Indeed, a simple version of that result goes at follows.

Example 4.1

Assume that a given event happens with a probability of 0.1% in one
trial. Then the probability that this rather unlikely event does not
happen in a single trial is 99.9% = 0.999.

In a sample of 1000 independent trials, the probability that the event
does not happen in any of them is 0.9991000, or 36.8%. The prob-
ability that the event happens at least once in 1000 trials is then
1− 0.368 = 0.632 or 63.2%.
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Now, the probability that it happens at least once in 10, 000 trials is
1 − 0.99910000 = 0.99995, that is 99.995%, which of course is surpris-
ingly near to certainty, for comfort.

Consequently, this “unlikely event” has a probability of 63.2% of hap-
pening if 1000 independent trials are conducted, or over 99.9% for
10, 000 trials. In other words, a highly unlikely event, given enough
trials with some fixed number of draws per trial, is even more likely
to occur.

Thus one can conclude that with a sample size large enough, any out-
rageous thing is likely to happen.

Let us now look at the above in a more general setup.

We start with a probability 0 < a < 1, instead of 0.1% as above.
It follows, as above, that the probability of that less likely event X
not happening is b = 1− a > 99.9% = 0.999.

Let us now take a large integer number, say, N > 1000.
Then, the probability in N independent trials that the event X never
happens is bN , while the probability that the event X will happen at
least once is c = 1− bN = 1− (1− a)N .

And it is easy to show that

sup 0<a< 1, N>1 (1− (1− a)N) = 1

since for every given 0 < ε < 1, we have

0 < (1− a)N < ε ⇐⇒ 1− ε(1/N) < a

and for any given 0 < a < 1, one can obviously choose N > 1 for
which the relation 1− ε(1/N) < a holds.

Thus the probability c for the less likely event X to happen in N inde-
pendent trials can become arbitrarily near to 1, no matter how small
the probability a of the event X in one single trial is, provided that
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N is ... truly ... large ...

This Law of Truly Large Numbers, or (LTLN), is attributed to Persi
Diaconis and Frederick Mosteller.

Remark 4.1

It follows that the Law of Large Numbers is but only one side of the
proverbial coin.
And the other side is that the convergence in (2.12) guaranteed by
(LLN) does not in any way mean any sort of steady, orderly, disci-
plined, let alone, monotonic convergence, since with high probability,
it can any time be interrupted by arbitrarily long behaviour contrary
to any usual expectation regarding convergence.

Briefly, the quality in managing a process merely by “probabilities” is
in fact surprisingly far lower than what happens to be in the common
perception or intuition ...
Consequently, any alleged “foundation” of any more important class
of phenomena on “probabilistic” grounds is by it very nature a rather
poor performance ...

So much, therefore, for the view that - regarding quanta, for instance -
the “probabilistic” concept provides a neat foundation, even if shifted
from ontology to epistemology ...

***

The obvious practical effect is that, while the (LLN) tells us the “good
news”, namely, how much the “probability” may approach the as-
sumed to exist unique numerical value of the so called “random” em-
pirical phenomenon studied, on the other hand, the (LTLN) tells us
how incredibly “bad news” can with high probability happen never-
theless, and that we do not - and simply cannot - have any guarantee
against them ...

So much for the ... enthusiasm ... implied in “probabilities” by purely
mathematical results such as the (LLN) ...
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5. Quantum Implications

Starting with the “Copenhagen Interpretation” in the mid 1920s, as
well as with all other later interpretations of quanta in which the con-
cept of “probability” plays some more or less foundational role, there
is in fact inevitably a yet deeper, prior and all overriding concern, one
more important than any possible other ones which have been raised
related to the involvement of “probabilities” in such interpretations.
Namely, it is the above mentioned concern about the very foundations
of “probabilities” as a valid concept ...
And that concern may as well regard the concept of “subjective prob-
ability”, even if it does so in a way different from the concern about
the usual and shaky concept of “probability” ...

Amusingly, this obvious lack of concern regarding the very first prior-
ity in the “Copenhagen Interpretation” - and of all other interpreta-
tions in which “probability” in any form plays some foundational role
- seems to have been just about completely missed so far by the proud
proponents of such “probability” based interpretations of quanta ...

This omission is of course natural, and in fact unavoidable, as long
as the awareness about the shaky foundations of the presently used
concept of “probability” is lacking in general, and thus it is not con-
sidered, let alone eliminated in a proper manner.
As for the proposition of using “subjective probability” in the foun-
dations of quanta, the comment in the sequel may apply.

The effect is that the “Copenhagen Interpretation” - together with all
other interpretations in which “probability” is foundational - simply
becomes ridiculous, and does so in more than one way :

• The pride of the unprecedented demotion in physics of “deter-
minism” from its traditional ontological position - which includes
as well it ontological position in Special and General Relativity -
to a mere epistemic one, followed by its replacement with “prob-
abilities” which are claimed to occupy in quanta the position of
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the “new foundational ontological” concept, turns out to install
in fact but only a shaky, ill-founded concept ...

• Even without the above error, the demotion of “determinism” is
merely of one single step. Namely, “determinism” still remains
perfectly valid, this time on the level of quantum ensembles, and
it is rejected only on the level of individual quantum phenomena.

In view of the above, the objection of Einstein, Schroedinger and a
few other remarkable physicists, against the demotion by the “Copen-
hagen Interpretation” of “determinism” from its traditional ontolog-
ical role still stands, even if seemingly such objection was not based
on the awareness that the concept of “probability” is poorly founded ...

As for the possible foundational role of “subjective probability” in
quanta, the question obviously is :

To what extent a foundation upon any sort of “subjectiv-
ity” may nevertheless lead to a theory which is not merely
“subjective altogether” ?

After all, and for example, both Special and General Relativity, by
setting aside the absolute nature of “space” and “time”, do essentially
base themselves on the “subjectivity” of “reference frames” and the
respective specific “observations”.
And yet, and most obviously, neither Special, nor General Relativity
is merely a theory which is “subjective altogether” ...

Could any theory of quanta, based on “subjective probabilities”, repli-
cate such a performance ?

6. And How About Plausibility ?

As also presented in some detail - and in fact as its very first chapter -
by E.T. Jaynes in his mentioned book “Probability Theory, The Logic
of Science”, [4], it is important to note that the rules which associate
numerical values to different degrees of “plausibility” do not contain
any formula with sigma-additivity, like for instance, in (3.4), or in
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general, formulas referring to an infinite number of events.
Consequently, the concept of “plausibility” is not inevitably liable to
the Cournot Principle.

Also, if we denote by Plau the realm of so called “plausible” empirical
phenomena, then obviously

(6.1) Ran ( Plau

since as mentioned, the latter are required to satisfy fewer conditions.

On the other hand, just like in the case of “probabilities”, the nu-
merical values attributed to various degrees of “plausibility” are again
to be in some conveniently approximating relationship with certain
assumed to exist and unique values attributable to “plausible” phe-
nomena.

What seems quite remarkable in this regard is that, as seen for in-
stance in [7,8], a good deal of the basics of quantum theory can be
reconstituted in the mentioned more general terms of “plausibility”,
instead of the more restrictive terms of “probability” ...

Appendix : Questionable Issues Regarding the E. T. Jaynes
Approach to “Probabilities”

Once again, let us emphasize that the book “Probability Theory, The
Logic of Science”, [4], by E.T. Jaynes is most definitely worth reading,
as it offers a remarkable trove of detailed knowledge regarding “prob-
abilities”, or more precisely, regarding attempts to relate the realm
of Ran to the realm of Prob, and in that process, to accomplish a
considerable development of the latter ...

Here however, we shall mention several questionable issues in that
book, and the fact remains that they do not represent anywhere near
an exhaustive such presentation of all such issues regarding the views
of Jaynes on “probabilities”.
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First perhaps, we have already such a questionable issue at the very
beginning of that book. Namely, there, on page xxi of the Preface, we
find the following :

“From many years of experience with its applications in
hundreds of real problems, our views on the foundations
of probability theory have evolved into something quite
complex, which cannot be described in any such simplistic
terms as ’pro-this’ or ’anti-that’.”

On the other hand, on the very next page xxii of the same Preface,
one can read :

“In our view, an infinite set cannot be said to possess any
’existence’ and mathematical properties at all - at least
in probability theory - until we have specified the limiting
process that is to generate it from a finite set. In other
words, we sail under the banner of Gauss, Kronecker and
Poincaré rather than Cantor, Hilbert, and Bourbaki.”

Certainly, E. T. Jaynes can perfectly be understood regarding his re-
spective feelings - but not necessarily properly qualified views as well
- regarding mathematics, given the fact that he was, and considered
himself to be, a physicist. And as such, he was not supposed to be
much familiar, let alone particularly fond of, modern, let alone the
state-of-the-art mathematics of the second half of the 20th century,
although much of his life happened to be spent during that period ...
However, to the extent that one tries to deal with difficult issues
in present day physics, such as among others, foundational ones in
quanta, one must use mathematics ...
And then, and why not, preferably make use of mathematics at its
best, a fact that is well known ever since Galileo Galilei (1564-1642)
who is credited with a statement saying in essence that

“... the book of Nature is written in the language of math-
emtics ...”

a comment which was renewed by Eugene Wigner in 1960, in his fa-
mous paper “The Unreasonable Effectiveness of Mathematics in the
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Natural Sciences”.

And then, would it indeed be appropriate for a physicists to ... pick
and choose ... among mathematicians ?
And moreover, to do so by choosing exclusively those of two or more
centuries old generations who had no - and simply could not have - any
ideas about the extraordinary achievements of modern mathematics,
while at the same time rejecting precisely those top modern mathe-
maticians who contributed most to the best of present day mathemat-
ics ?

The amusing aspects involved in the above ... picking and choosing ...
of mathematicians by Jaynes, however, do not seem to end so easily,
once one embarks upon such a strange approach in science ...
Indeed, why - for instance - could not one choose Ptolemy’s cosmolog-
ical views, instead of those of Copernicus ?
After all, the breathtaking sophistication of those ... circles upon cir-
cles upon circles ... of the former would naturally seem not to few to
be far far more suited ... there up in the Heavens ..., than the utter
poverty in simplification introduced instead of them by the latter ...
Or how about the manifestly erroneous understanding on the part
of Jaynes of the Bourbaki group of French mathematicians as being
far too modern for comfort, a view which clearly is another source of
amusement ... ?
Indeed, the fact is that the Bourbaki group was not exactly ... too
modern ...
After all, they did refuse to accept in mathematics the so called Cat-
egory Theory, introduced in the early 1940s by the American mathe-
maticians Samuel Eilenberg and Saunders Mac Lane. And the reason
for that refusal was the view of the Bourbaki group that the mentioned
theory was far too abstract, that is, so abstract as not to be able to
have much meaningful input into mathematics ...
Therefore, at least on that count, the members of the Bourbaki group
were not at all the most ... modern ... mathematicians at the time ...
On the other hand, what happened was that an exceptional mathe-
matician at the time, Alexander Grothendieck (1928-2014), found it
necessary to break with the Bourbaki group due, among others, to
their mentioned rejection of Category Theory ...
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Furthermore, by the time of the 1990s, while Jaynes was still with us,
Category Theory proved to be important not only in mathematics,
but also in physics, for instance, in the study of quanta ...
And to add to the amusement, it was the idea of certain mathemati-
cians involved in quantum physics to introduced and develop a consid-
erable generalization of Category Theory itself, namely, the so called
n-Categories ...

Regardless of the above questionable picking and choosing, however,
the very method suggested by Jaynes to deal with infinity, namely to
“have specified the limiting process that is to generate it from a finite
set”, even when it is considered all on its own, can lead one to ask the
following obvious QUESTION :

When already in ancient Greece they discovered that
√

2
is not a rational number, and when later they tried to
approximate it better and better, did they do so based
on the mentioned “principle” of Jaynes, namely, to have
the resulting limiting processes expected to deliver

√
2 in

different ways depending on the various particular finite
features of the infinite sequences involved in its assumed
approximation ?

Well, most certainly, no one ever expected to obtain different results
for
√

2, depending on the specific infinite limiting process that was to
generate

√
2 from one or another sequence of finite sets of numbers

involved.
Instead, and due to various reasons - still very much valid today -
everybody involved in approximating

√
2 could only and only think

about one and only one resulting value for
√

2 ...

And such a basic and elementary mistake in understanding infinity, can
nevertheless be so loudly and up front be expressed, although there
simply cannot be any doubt that Jaynes knew and understood far
more mathematics, than to expect different values for

√
2, depending

on the specific finite aspects of the infinite limiting processes involved
in its approximation, had he been asked that question directly and all
on its own, and not in what appeared to be for him an emotionally
charged - thus easily biased - context, such as when involved in writing
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his mentioned book ...

Now the amusing fact is that in modern mathematics, both methods
may be used, namely, one in which the result of the infinite limiting
process does in no way whatsoever depend on any specific features
of the finite sets involved, or alternatively, in the way suggested by
Jaynes.
And all of such choices depend on what is called the different topolog-
ical or other yet more general structures on the sets whose elements
are involved in the respective limiting type processes.

A typical and possibly somewhat wider known such example is in Non-
standard Analysis, where for instance the famous novelty of infinites-
imals is obtained precisely with a method recalling that of Jaynes.

However, still today,
√

2 - as a usual real number - is supposed to have
one and only one value. And then, that value cannot and does not
in any way depend on particular finite features of the infinite limiting
processes supposed to be giving

√
2.

Coming back, however, to the foundational desiderata regarding “prob-
abilities” mentioned in (2.1), (2.14) and (2.15), one is supposed to have
some real number p ∈ [0, 1] which is expected to be equal with, or at
least approximate better and better, some other real number ρ ∈ [0, 1]
...
And then, one may say that we are in the same kind of situation as
mentioned above concerning

√
2, a situation when we are looking for a

result which should not depend on one or another particular algorithm
used in its computation ...

Here perhaps, it would be appropriate to recall the way Jaynes deals
with the celebrated Bertrand Paradoxes in Probability, [4, pp. 386].
Together with quite a few others, he also suggest a resolution of these
paradoxes. However, none of those listed who suggested such solu-
tions, including Jaynes himself, seem to be aware that one important
possibility which all of them overlook may be precisely the fact that
the mentioned paradoxes are related to the shaky foundations of usual
theories of “probabilities” ...
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However, in order to close on a positive note which, no doubt, the
many various outstanding features of the mentioned book of Jaynes
fully deserve, let us recall as well the following passage from it, in
section 10.7, entitled “But what about quantum theory ?”, on pages
327-329 :

“... Those who cling to a belief in the existence of ‘phys-
ical probabilities’ may react to the above arguments by
pointing to quantum theory, in which physical probabilities
appear to express the most fundamental laws of physics.
Therefore let us explain why this is another case of circu-
lar reasoning. We need to understand that present quan-
tum theory uses entirely different standards of logic than
does the rest of science. In biology or medicine, if we
note that an effect E (for example, muscle contraction,
phototropism, digestion of protein) does not occur unless
a condition C (nerve impulse, light, pepsin) is present, it
seems natural to infer that C is a necessary causative agent
for E. Most of what is known in all fields of science has re-
sulted from following up this kind of reasoning. But sup-
pose that condition C does not always lead to effect E;
what further inferences should a scientist draw? At this
point, the reasoning formats of biology and quantum the-
ory diverge sharply. In the biological sciences, one takes it
for granted that in addition to C there must be some other
causative factor F, not yet identified. One searches for it,
tracking down the assumed cause by a process of elimina-
tion of possibilities that is sometimes extremely tedious.
But persistence pays off; over and over again, medically
important and intellectually impressive success has been
achieved, the conjectured unknown causative factor being
finally identified as a definite chemical compound. Most
enzymes, vitamins, viruses, and other biologically active
substances owe their discovery to this reasoning process.
In quantum theory, one does not reason in this way. Con-
sider, for example, the photoelectric effect (we shine light
on a metal surface and find that electrons are ejected from
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it). The experimental fact is that the electrons do not ap-
pear unless light is present. So light must be a causative
factor. But light does not always produce ejected electrons;
even though the light from a unimode laser is present with
absolutely steady amplitude, the electrons appear only at
particular times that are not determined by any known
parameters of the light. Why then do we not draw the ob-
vious inference, that in addition to the light there must be
a second causative factor, still unidentified, and the physi-
cist’s job is to search for it?
What is done in quantum theory today is just the oppo-
site; when no cause is apparent one simply postulates that
no cause exists ergo, the laws of physics are indetermin-
istic and can be expressed only in probability form. The
central dogma is that the light determines not whether a
photoelectron will appear, but only the probability that it
will appear. The mathematical formalism of present quan-
tum theory incomplete in the same way that our present
knowledge is incomplete - does not even provide the vo-
cabulary in which one could ask a question about the real
cause of an event. Biologists have a mechanistic picture of
the world because, being trained to believe in causes, they
continue to use the full power of their brains to search
for them - and so they find them. Quantum physicists
have only probability laws because for two generations we
have been indoctrinated not to believe in causes - and so
we have stopped looking for them. Indeed, any attempt to
search for the causes of microphenomena is met with scorn
and a charge of professional incompetence and ‘obsolete
mechanistic materialism’. Therefore, to explain the inde-
terminacy in current quantum theory we need not suppose
there is any indeterminacy in Nature; the mental attitude
of quantum physicists is already sufficient to guarantee it.
This point also needs to be stressed, because most people
who have not studied quantum theory on the full technical
level are incredulous when told that it does not concern it-
self with causes; and, indeed, it does not even recognize the
notion of physical reality. The currently taught interpreta-
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tion of the mathematics is due to Niels Bohr, who directed
the Institute for Theoretical Physics in Copenhagen; there-
fore it has come to be called ‘The Copenhagen interpre-
tation’. As Bohr stressed repeatedly in his writings and
lectures, present quantum theory can answer only ques-
tions of the form: ‘If this experiment is performed, what
are the possible results and their probabilities?’ It can-
not, as a matter of principle, answer any question of the
form: ‘What is really happening when ...?’ Again, the
mathematical formalism of present quantum theory, like
Orwellian newspeak, does not even provide the vocabu-
lary in which one could ask such a question. These points
have been explained in some detail by Jaynes (1986d, 1989,
1990a, 1992a). We suggest, then, that those who try to
justify the concept of ‘physical probability’ by pointing to
quantum theory are entrapped in circular reasoning, not
basically different from that noted above with coins and
bridge hands. Probabilities in present quantum theory ex-
press the incompleteness of human knowledge just as truly
as did those in classical statistical mechanics; only its ori-
gin is different.
Here, there is a striking similarity to the position of the
parapsychologists Soal and Bateman (1954), discussed in
Chapter 5.
They suggest that to seek a physical explanation of para-
psychological phenomena is a regression to the quaint and
reprehensible materialism of Thomas Huxley. Our impres-
sion is that by 1954 the views of Huxley in biology were in a
position of complete triumph over vitalism, supernatural-
ism, or any other anti-materialistic teachings; for example,
the long mysterious immune mechanism was at last un-
derstood, and the mechanism of DNA replication had just
been discovered. In both cases the phenomena could be
described in ‘mechanistic’ terms so simple and straightfor-
ward - templates, geometrical fit, etc. - that they would
be understood immediately in a machine shop. In classical
statistical mechanics, probability distributions represented
our ignorance of the true microscopic coordinates - igno-
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rance that was avoidable in principle but unavoidable in
practice, but which did not prevent us from predicting re-
producible phenomena, just because those phenomena are
independent of the microscopic details. In current quan-
tum theory, probabilities express our own ignorance due
to our failure to search for the real causes of physical phe-
nomena; and, worse, our failure even to think seriously
about the problem. This ignorance may be unavoidable in
practice, but in our present state of knowledge we do not
know whether it is unavoidable in principle; the central
dogma simply asserts this, and draws the conclusion that
belief in causes, and searching for them, is philosophically
naive. If everybody accepted this and abided by it, no fur-
ther advances in understanding of physical law would ever
be made; indeed, no such advance has been made since
the 1927 Solvay Congress in which this mentality became
solidified into physics. But it seems to us that this atti-
tude places a premium on stupidity; to lack the ingenuity
to think of a rational physical explanation is to support
the supernatural view. To many people, these ideas are
almost impossible to comprehend because they are so rad-
ically different from what we have all been taught from
childhood.Therefore, let us show how just the same situ-
ation could have happened in coin tossing, had classical
physicists used the same standards of logic that are now
used in quantum theory ...”
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