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Abstract

Shadows constitute a major issue for various remote sensing applications, from un-
mixing and anomaly detection to image segmentation and classification. It is particularly
problematic in urban areas, characterized by a high heterogeneity in terms of both relief,
with the presence of numerous tall buildings, and materials, which implies that a single
shadow can hide a wide variety of different objects. Shadow induces a strong weakening
of the signal which can lead, in the context of a classification process, to the creation of
a parasit shadow class for unsupervised cases, or to an increase of class variability for
supervised ones. This paper introduces a new classification algorithm where sunlit and
shadowed pixels are processed separately. Using a shadow mask, sunlit pixels are isolated
and classified using a SVM or a Kmeans algorithm. Then, a centroid is processed for
each classe and used by a spectral angle mapper (SAM) method to classify the shadowed
pixels. This approach showed promissing results, especially in an unsupervised context.

1 Introduction

When shadows are omnipresent in an image, a de-shadowing preprocessing step is highly
recommended in order to improve the classification results. Shadow processing is usually
separated into two phases : shadow detection and shadow compensation. Adeline et al. [1]
proposed a very exhaustive taxonomy on shadow detection methods, which are classified in
four categories including property-based, model-based, physics-based and machine learning
methods. As for the shadow compensation phase, Li and al. [2] have identified two kinds
of methods, those that focus on the intensity domain [3, 4, 5] and those working in the
gradient domain [6]. However, these methods either rely on a prior manual selection of
paired regions, are imprecise when the shadowed areas are composed of a wide variety of
materials or tend to alter significantly the non-shadowed areas. Moreover, they have been
widely tested on natural multispectral images and rarely on aerial hyperspectral data, where
the distance between the sensor and the target can be very important and imply distorsion
and absorption effects from the atmosphere and reflection effects from the surrounding 3D
structure. Yet, a third categorie of shadow compensation method, more suited to aerial
images, can be considered. Indeed, a few atmospheric correction methods, which aim to
process a reflectance image through an inverse radiative transfer equation, take shadows into
account. The ICARE [7] algorithm can correct both hard shadows, casted by tall objects,
and vague shadows, induced by slope orientations, using a precise 3D model of the observed
scene. However this algorithm is very expensive in terms of computation time and requires
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a digital elevation model of the scene which is not always available. Then, Chen et al. [8]
introduced a faster and simpler method able to compute reflectance in shadow areas using
only a radiance image and the atmospheric and viewing conditions, by approximating some
of the radiative terms involved in the inversion.

Usually, shadow compensation and classification are two distinct processes. A shadow-
free image is produced by the first step, and then processed by regular a classification
algorithm, which can leads to misclassification when the shadowed areas aren’t perfectly
compensated. In this paper, we propose a new hybrid method where sunlit and shadowed
pixels are classified sequentially in order to overcome the flaws of the shadow compensation
step. First, an hyperspectral adaptation of the Chen et al. [8] empirical method is intro-
duced. Then our hybrid classification approache is detailed, followed by a discussion on the
classification results.

2 Empirical reflectance processing method

This preprocessing step aim to compute for each pixel a reflectance value, unitless and
wavelength-dependant, representing the effectiveness of a material in reflecting radiant en-
ergy. The method we chose in this study is an empirical algorithm introduced by Chen et
al. [8]. The main asset of this algorithme is its ability to take shadows into account, which
implies that it can be considered as a proper shadow compensation method. Assuming a
lambertian hypothesis and for given illumination conditions, the reflectance can be expressed
as :

ρ =
π × (Rtot −Renv −Ratm)

(Idir + Idif + Icoup + Irefl)× τ↑dir
(1)

where Rtot is the radiance value received by the sensor. Renv is the portion of Rtot due to
the neighborhood of the target pixel and Ratm the one scattered by the atmosphere to the
tagert withour interacting with the ground. Idir, Idif , Icoup and Irefl are portions of the
overall irradiance striking the target pixel. Idir stands for the photons coming directly from
the top of atmosphere, Idif for those which are scattered at least once by the atmosphere,
Icoup for those which make at least one round trip between the ground and the atmosphere
and Irefl for those which are reflected by the environment before hitting the ground. Finally,

τ↑dir is the direct upward transmission. All these terms are pixel dependant except for Idir,

Idif , Ratm and τ↑dir which are constant for the whole scene. In the original algorithm, these
constant terms were computed by the radiative transfert processing software 6S [9] but we
chose to replace it by MODTRAN [10], more suited to hyperspectral data due to its better
spectral resolution.

As a first step of the algorithm, a shadow mask is processed using an automatic shadow
detection method introduced by Nagao et al. [11], which was pointed fot its efficiency by
Adeline et al. [1]. The mask is obtained by applying an automatic histogram thresholding
to the following combination of bands :

Rcomb =
2Rλr +Rλg +Rλb + 2Rλnir

6
(2)

where Rλr , Rλg , Rλb and Rλnir
are respectively the radiance values associated to the red,

green, blue and near infrared channels of an image. In order to discriminate water from
shadows, a final step has been added where the detected shadow pixels are thresholded a
second time, only on the green channel which showed the best ability for this discrimination.
Shadowed and sunlit pixels are then processed separately. In sunlit areas, Idir and Idif
constitute most of the irradiance received by a pixel. We consider then that the coupling
and reflective terms can be neglected. In shadow areas, there is no direct irradiance and
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Figure 1: Comparison between a shadow and a sunlit reflectance spectrum obtained with
two correction algorithms : COCHISE and the empirical method

(a) Original luminance im-
age

(b) Reflectance image ob-
tained with the empirical
method

Figure 2: Benefits of the empirical atmospheric correction method

the coupling term is also put aside. Therefore, the total irradiance is reduced to a diffuse
and a reflective term. However in this case, because of the proximity of buildings, the
diffuse irradiance is weighted by a skyview factor αsky. Using a DEM of the downtown
of Toulouse, France, we observed that the shadowed areas of this kind of environment are
mainly composed of narrow streets and half-opened areas, and that skyview factors belong
to [0.45, 0.65]. A mean value of 0.55 is then chosen. As for the reflected irradiance, it is
processed as the sum of direct and diffuse irradiances weighted by an attenuation factor κ
and a hypothetical mean reflectance of the scene ρ̄ :

Irefl = κ× (Idir + Idif )× ρ̄ (3)

Chen et al. [8] recommend to set κ at 0.2 for cluttered urban environment and 0 for
suburban areas. As our data focus on the downtown of Toulouse, only the first value will be
used. For ρ̄, a combination of several urban materials (concrete, asphalt, tile and vegetation)
gathered from spectral libraries is used. At this point, only one radiative term remains, the
environment radiance Renv. Contrary to S, it is not a direct outpout of MODTRAN, si it
needs to be computed iteratively as follows :
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Figure 3: Sun/shadow classification

Renv,t =
τ↑diff · Itot · ρ̌t

1− ρ̌t · S
(4)

ρt =
π(Rtot −Renv,t −Ratm)

I ′tot × τ
↑
dir

(5)

where

ρ̌t+1 =

∫∫
(u,v)∈V (x,y)

ρt(u, v) · du · dv (6)

is the mean reflectance spectrum associated to the neighborhood of the target for the iter-
ation t + 1 and ρ̌0 = ρ̄. τ↑diff , the diffuse upward transmission and S, the spherical albedo,
are processed by MODTRAN. Usually, two iterations of the process suffice to reach the con-
vergence. The graphic on figure 1 shows four spectra corresponding to two vegetation pixels
(one in the shadow and the other in the sun light) and two atmospheric correction methods,
the studied empirical reflectance processing method and COCHISE [12], an approach which
doesn’t take shadows into account. For the empirical method, the reflectance spectra of the
shadowed spectrum is slightly weaker than that of the sunlit spectrum, but the shape of
a vegetation spectrum is still easily recognizable. This is not the case for the COCHISE
approach, where the shadowed spectrum is strongly flattened. The benefits of the empiral
method can also be noted by comparing a luminance image and a reflectance image on the
figure 2. However, we can see that the shadow areas are not perfectly corrected, which is
why they have to be taken into account in the classification process.

3 Sun/shadow classification method

In order to complement the empirical atmospheric correction method, we propose a solution
implying a sequential process (cf. figure 3) where sunlit and shadow pixels are classified
separately. Using the shadow mask described in section 2, the sunlit pixels are isolated and
classified through a Kmeans or a SVM algorithm, with a number of classes C fixed by the
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SVM SSVM KM SSKM

OA 89.2% 95.1% 80.9% 94.7%

Kappa 0.86 0.93 0.75 0.93

Table 1: Overall accuracies and Kappa for the four classification methods

user. Then, the cendroids of each class are preserved and used as input for the classification
of shadow pixels. In this case, a spectral angle mapper (SAM) classification has been chosen
for its ability to focus on the shape of spectra, which remain globally similar for a pair of
pixels associated to the same material, even if one is located in a sunlit area and the other
in a shadow area. For each pixel p and each centroid µi, i ∈ [1, C], a SAM value is processed
as follow :

SAM(p, µ) = cos−1


B∑
b=1

p(b)µ(b)√
B∑
b=1

p(b)2

√
B∑
b=1

µ(b)2

 (7)

where B is the number of bands of the image. The class chosen for pixel p is the one
minimizing the spectral angle mapper between p and its representative centroid. It should
be noted that for this method to be efficient, the same classes must be present in both sunlit
and shadow areas.

4 Results

The classification algorithm is applied on a section of a dataset acquired during the Umbra
campaign over the downtown of Toulouse (cf. figure 4a). Two Hyspex hyperspectral sensors
have been used in order to cover a wavelengths interval starting from 0.4µm to 2.5µm, with
a spatial resolution of 1.7m. The noisy bands located at the extremities of the spectrum or
in the middle of water vapor absorption bands (centered on 0.94, 1.1, 1.38 and 1.87µm) have
been removed, resulting in a set of 255 bands. Four classification approach have been applied
to the image : a support vector machine algorithm (SVM), a K-means (KM), and our new
method with a SVM (SS-SVM) and a K-means (SS-KM) for the sunlit pixels classification.
This latter is applied on the whole set of 255 bands but to process shadowed pixels, we used
only the hundred first bands since after 0.9µm, shadowed areas are too noisy. Five classes
have been considered : Vegetation (green), water (blue), tile (orange), asphalt (black) and
gravel (white). The results on figure 4 show that the SVM and KM methods don’t work
well in shadow areas, where most pixels are classified as asphalt. The two sun/shadow
classifications on the other hand manage to discriminate water and vegetation pixels even in
the shadow. The only issue remains in gravel and asphalt classes which still present strong
confusions. The improvement induced by the sun/shadow approach is also observable in
the increase of overall accuracies from simple SVM and K-means to sun/shadow SVM and
K-means (cf. table 1).

5 Conclusion

A new sun/shadow approach have been introduced for the classification of hyperspectral
data. This method involve several preprocessing steps, including an atmospheric correction
algorithm and the creation of a shadow mask, before classifying sunlit and shadowed pixels
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(a) RGB image (b) Shadow sub-areas (c) SVM

(d) Sun/shadow SVM (e) Kmeans (f) Sun/shadow Kmeans

Figure 4: Classification results obtained on four points of interest in the image

successively. Depending on the chosen algorithm for the classification of sunlit pixels, the
method can either supervised (SVM) or unsupervised (K-means). In either cases, it appears
that taking shadows into account in the classification process can strongly improve its accu-
racy. Therefore, this approach is a good complement to shadow compensation techniques,
especially in a hyperspectral context where these latter are still rare and perfectible.
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