A continuum damage model applied to high temperature fatigue lifetime prediction of a martensitic tool steel

Abstract : High temperature operational conditions of hot work tool steels induce several thermomechanical loads. Depending on the processes, (i.e: forging, die casting or extrusion), stress, strain, strain rate and temperature levels applied on the material are nevertheless very different. Thus, lifetime prediction models need to be able to take into account a broad range of working conditions. In this paper, a non-isothermal continuum damage model is identified for a widely used hot work tool steel AISI H11 (X38CrMoV5) with a nominal hardness of 47 HRc. This investigation is based on an extensive high temperature low cycle fatigue data base performed under strain rate controlled conditions with and without dwell times in the temperature range 300 • C-600 • C. As analysis of experimental results does not reveal significant time dependent damage mechanisms, only a fatigue damage component was activated in the model formulation. After normalization, all fatigue results are defined on a master Woehler curve defined by a non-linear damage model, which allows the parameter identification. Last, a validation stage of the model is performed from thermomechanical fatigue tests. Keywords continuum damage mechanics; tempered martensitic steels; Woehler curve; fatigue life prediction; high temperature fatigue.
Liste complète des métadonnées

Contributeur : Velay Vincent <>
Soumis le : mercredi 19 octobre 2016 - 21:55:22
Dernière modification le : jeudi 7 février 2019 - 12:09:29


Fichiers produits par l'(les) auteur(s)



Vincent Velay, Gérard Bernhart, Denis Delagnes, Luc Penazzi. A continuum damage model applied to high temperature fatigue lifetime prediction of a martensitic tool steel. Fatigue and Fracture of Engineering Materials and Structures, Wiley-Blackwell, 2005, 28 (11), pp.1009-1023. 〈10.1111/j.1460-2695.2005.00939.x〉. 〈hal-01384443〉



Consultations de la notice


Téléchargements de fichiers