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A Mixture Regularized Rao-Blackwellized Particle
Filter for Terrain Positioning

Achille Murangira, Christian Musso, and Karim Dahia

Abstract—This study is concerned with the development
of a robust particle filtering algorithm tailored to the
problem of terrain aided positioning (TAP) via radar-
altimeter measurements. The Rao-Blackwellized Particle
Filter (RBPF) is a popular particle filtering algorithm for
TAP that takes advantage of the nature of the state-space
model by sampling particles in a subspace of the state
space, yielding more efficient estimators than the standard
particle filter.
Like most Monte Carlo filters, the standard RBPF uses
the transition kernel as the proposal distribution during
the particle update step. However, in contexts where the
likelihood function is peaky, this may be highly inefficient
since samples may fall in regions of low posterior proba-
bility. To address this issue, it is often advocated to use an
importance sampling density which takes into account the
latest observation. In a sequential importance sampling
context, an optimal importance density is available but
can only be easily sampled for specific state-space models,
which raises the question of how to design a proposal
density that is efficient, yet easy to sample from.
In this article, we propose a particle filtering importance
sampling method adapted to multimodal distributions.
It hinges on the use of a robust proposal density as
well as a cluster-based representation of the multimodal
posterior. This leads to a novel marginalized particle filter,
the regularized Rao-Blackwellized Particle Filter, that is
evaluated on a challenging terrain positioning application.

I. INTRODUCTION

INERTIAL NAVIGATION SYSTEMS (INS) are often

the main source of navigation data in aircraft since

they are autonomous and reliable. The aircraft position,

velocity, attitude and heading components are computed

by dead-reckoning. However, it is well known that

these components drift due to alignment error and the

accumulation of sensor errors over time. For certain

classes of INS, this drift can be inconsistent with the

navigation performance requirements. To ensure accurate

navigation, one or more aiding source can be used in

conjunction with the INS. A widespread aiding source

is the GPS (Global Positioning System) and in this

case, the GPS/INS sensor fusion can be performed with

an Extended Kalman Filter (EKF) or an Unscented

Kalman Filter (UKF). One drawback of this approach

is that the GPS can experience intentional jamming.

This is especially true of military grade aircraft. These

vehicles would use alternate aiding sources such as radar-

altimeters to ensure autonomous navigation [1]. A Radar-

altimeter provides ground clearance measurements along

the flight path enabling navigation by comparing accu-

mulated relative heights with a terrain elevation database.

This form of navigation is commonly termed Terrain

Aided Positioning (TAP).

In order to perform TAP/INS integration to estimate

the drift of all kinematic components, it’s necessary to

resort to non-linear filtering algorithms. The goal is to

approximate the probability density function (pdf) of a

state vector (INS error) given the sequence of ground-

clearance measurements accumulated up until the current

time step. Due to the multimodality of this posterior (at

least in the early stages of the INS update), methods

such as the EKF or the UKF are inefficient since the

Gaussian approximations are no longer relevant. Grid

based methods such as the Point Mass Filter (PMF, [2])

perform better than the EKF but are mostly suited to

estimating the position components only.

Particle filters (PF) [3] are an efficient solution to the

non-linear filtering problem since they can, in theory,

approximate any posterior density without any hypothe-

sis regarding the linearity of the process or observation

model or the Gaussian nature of process and observa-

tion noise. Moreover particle filters remain somewhat

tractable when the state dimension increases. In TAP,

the state vector may include attitude sensor bias com-

ponents additionally to position and velocity yielding a

dimension greater than 9.

The problem of TAP/INS integration using particle filters

can be addressed by a specific algorithm, the Rao-

Blackwellized Particle Filter (RBPF) otherwise known

as the Marginalized Particle Filter [4], [5]. This filter

takes advantage of the state-space model structure where,

conditionally to part of the state vector (the horizontal

position error component), the model is linear Gaussian.

As reported in [5], [4], compared to a standard particle

filter, less particles are needed to achieve similar perfor-

mance.
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In this paper, issues encountered when using particle

filtering algorithms such as the Regularized Particle

Filter (RPF) [6] or the Rao-Blackwellized Particle Filter

in the context of terrain aided positioning are addressed.

It is well known that standard particle filtering methods

struggle when the standard deviation of the measurement

noise is small w.r.t. the typical range of the observations.

The influence of the intensity of the observation noise

statistics on PF performance is not specific to TAP/INS

integration and has been reported in various applications

ranging from robot positioning [7] to target tracking [8]–

[10]. This is caused by a mismatch between the proposal

distribution used at the prediction step, and the likelihood

function. A small observation noise can thus cause the

likelihood function to be peaky and have little overlap

with the proposal density. From a filtering standpoint,

very few particles are significantly weighted, which can

lead to filter divergence despite the resampling step.

While the RBPF improves upon the standard particle

filter by sampling particles in a lower dimensional state

space, it can still suffer from the previous limitations

if the transition density is used as the proposal in the

prediction step.

Different approaches have been proposed in the par-

ticle filtering literature in order to design filters that

are more robust in the context of low observation

noise and/or peaky observation function. Most enhanced

particle filtering algorithms proceed by replacing the

usual transition kernel density with an approximation

of the optimal importance density (OID). For instance,

the particle filter with EKF proposal [11] proceeds by

local linearisation of the state-space model yielding. The

EKF proposal tends to perform well when the optimal

importance density is unimodal and the non-linearities

are moderate, conditions which are rarely met in terrain

positioning and many other applications.The contribution

of this paper is a novel particle filtering methodology

dealing with highly multimodal posterior. To this end,

we reconsider mixture particle filtering and its effi-

cient implementation through particle clustering. This

framework allows us to derive an importance sampling

method aimed at generating particles around the modes

of the posterior distribution in the event of a mismatch

between the transition density and the likelihood function

typically caused by low sensor noise. This proposal is

then used during the particle update step of a Rao-

Blackwellized Particle Filter. The paper’s outline is as

follows: Section II recalls the basics of particle filtering

and Rao-Blackwellization. We also describe mixture

modelling for PF via clustering for the sake of a practical

implementation of a particle filtering algorithm with a

mixture proposal; section III introduces the importance

sampling methodology and offers an analysis of the

influence of the choice of the covariance matrix on the

stability of the algorithm in case of a Gaussian proposal.

The resulting algorithm, the mixture Rao-Blackwellized

Particle Filter, is detailed at the end of this section.

Finally, in section IV, the resulting filter is compared to

standard PF algorithms in terms of mean squared error

and robustness to divergence, in typically challenging

settings.

II. THE RAO-BLACKWELLIZED PARTICLE FILTER

AND MIXTURE MODELS IN NON-LINEAR FILTERING

A. Bayesian estimation and particle filtering

Consider the following general state-space model:{
xk = fk (xk−1) + wk

yk = hk(xk) + vk
(1)

where k is the time index and {xk, k ≥ 0} is the

unobserved R
d valued discrete time process, d ≥ 1 and

{yk, k ≥ 0} is the sequence of observations. {wk, k ≥ 0}
and {vk, k ≥ 0} are respectively the process and mea-

surement noise sequences. The sequences {wk, k ≥ 0}
and {vk, k ≥ 0} are assumed i.i.d., mutually independent

and independent of x0.

The aim of sequential filtering is the recursive compu-

tation of the posterior density p(xk|y0:k) where y0:k =
{y0, . . . , yk}. This can be done in two steps:

• prediction:

p(xk|y0:k−1) =

∫
p(xk|xk−1)p(xk−1|y0:k−1)dxk−1

(2)

• correction:

p(xk|y0:k) = p(yk|xk)p(xk|y0:k−1)∫
p(yk|xk)p(xk|y0:k−1) dxk

(3)

It is generally assumed that w and v have known

probability density functions, which yields closed form

the transition p(xk|xk−1) and the likelihood p(yk|xk).
In the remainder, we will sometimes use the short hand

notation gk(xk) = p(yk|xk).
The idea of particle filtering is to approximate the

posterior distribution with a weighted sum of Dirac

measures:

p(xk|y0:k) ≈
N∑
i=1

ωi
kδxi

k
(4)

where δx denotes the the Dirac measure centered at

x and the xik, i = 1, . . . , N are the particles. The

importance weights {ωi
k}Ni=1 sum up to one. Particle

filtering algorithms stem from the Sequential Importance

Resampling (SIR) algorithm that recursively updates

the particle/weights systems [3]. Assuming a weighted
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particle set {xik−1, ω
i
k−1}Ni=1 is available at time k − 1,

the SIR computes the particle approximation at time k
through the following steps :

1) Particle update: sample xik ∼
iid

q̃(xik|xk−1, yk), i =

1, . . . , N where q̃ is suitably chosen proposal den-

sity

2) Weight update: compute ω̃i
k =

ωi
k−1

p(xi
k|xi

k−1)p(yk|xi
k)

q̃(xi
k|xi

k−1,yk)
and ωi

k = ω̃i
k∑N

j=1 ω̃
j
k

3) Resampling: sample with replacement N particles

x̃ik so that ∀j = 1, . . . , N , P(x̃ik = xjk) = ωi
k. Set

xik = x̃ik and ωi
k = 1

N

The resampling step avoids in principle the weight de-

generacy where after a few iterations, all but one particle

have negligible weight. It essentially discards particles

with low weight and duplicates those with high weight.

In practice, resampling is triggered by monitoring a

criterion such as the effective sample size:

Neff ≈ 1∑N
i=1(ω

i
k)

2
(5)

Resampling is triggered whenever Neff ≥ Nth where

Nth is a threshold between 0 and N .

B. The Rao-Blackwellized Particle Filter

The Rao-Blackwellized Particle Filter, or marginalized

particle filter, is an efficient implementation for con-

ditionally linear Gaussian models. It has been widely

used in several engineering applications such as aircraft

navigation [5], target tracking [12] and robot position-

ing [13]. For a general discussion regarding the algorithm

we refer the reader to [14], [15], [16] and [4].

Assume the state-space model takes the following form

:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk,1 = fk−1,1(xk−1,1) + Fk−1,1(xk−1,1)xk−1,2

+ Gk−1,1(xk−1,1)wk−1,1

xk,2 = fk−1,2(xk−1,1) + Fk−1,2(xk−1,1)xk−1,2

+ Gk−1,2(xk−1,1)wk−1,2

yk = hk(xk,1) +Hk(xk,1)xk,2 + vk
(6)

where xTk =
[
xTk,1, x

T
k,2

]
. xk,1 is the non-linear part of xk

and xk,2 the linear part. Assume that wk and vk are white

mutually independent Gaussian noises with respective

covariance Qk and Rk and such that

Qk =

(
Q11

k Q12
k

(Q12
k )T Q22

k

)

We also suppose that x0,2 ∼ N (x̄0,2, P0). The initial

density p(x0,1) for the non-linear substate is also known.

The RBPF proceeds by interleaving a Kalman filter that

updates the linear part and a particle filter that targets

the non-linear part. For a detailed derivation of the

algorithm, we refer the reader to [4] and only describe

the RBPF algorithm in appendix A.

C. Mixture particle filters

Mixture filtering [17], [18] is based on the use of a

mixture model for the posterior density, i.e. p(xk|y0:k)
is expressed as

p(xk|y0:k) =
M∑
j=1

αj,kpj(xk|y0:k) (7)

where M is the number of mixture components and

the mixture weights αj,k are positive and satisfy∑M
j=1 αj,k = 1.

The filter prediction step is performed according to

p(xk|y0:k−1) =

M∑
j=1

αj,k−1pj(xk|y0:k−1) (8)

where

pj(xk|y0:k−1) =

∫
p(xk|xk−1)pj(xk−1|y0:k−1)dxk−1

and the filter correction step involves both the update of

the mixture weights and the measurement update of the

mixture densities:

p(xk|y0:k) =
M∑
j=1

αj,kpj(xk|y0:k)

where

pj(xk|y0:k) = p(yk|xk)pj(xk|y0:k−1)∫
p(yk|xk)pj(xk|y0:k−1) dxk

(9)

and

αj,k =
αj,k−1pj(yk|y0:k−1)

M∑
l=1

αl,k−1pl(yk|y0:k−1)

(10)

Mixture particle filters are obtained by considering a set

of N particles {xik}Ni=1 and associated weights {ωi
k}Ni=1

so that each mixture component is targeted by a subset
of weights and particles. The particle approximation of

the posterior density is expressed as:

p(xk|y0:k) ≈
M∑
j=1

αj,k

∑
i∈Ij

ωi
kδxi

k
(11)

where Ij ⊆ {1, . . . , N} is the subset of particles

targeting the j-th mixture component pj(xk|y0:k) and∑
i∈Ij ω

i
k = 1. The {ωi

k, i ∈ Ij} are the intra-component

importance weights. The particle prediction step at time

k is identical to that of the SIR and consists in sampling
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N particles according to some proposal q̃(xk|xk−1, yk).
The measurement update steps involves the update of

the importance weights and the update of the mixture

weights :

• compute ω̃i
k = ωi

k−1
p(yk|xi

k)p(x
i
k|xi

k−1)

q̃(xi
k|xi

k−1,yk)

• for i = 1 ∈ Ij , ω
i
k = ω̃i

k∑
l∈Ij

ω̃l
k

• for j = 1, . . . ,M ,

αj,k ≈ αj,k−1w
+
j,k

M∑
p=1

αp,k−1w
+
p,k

(12)

where w+
j,k =

∑
i∈Ij ω̃

i
k

The main advantage of mixture particle filters is that

they are able to maintain multimodality longer than

standard particle filtering algorithms. Moreover, we have

demonstrated in a previous paper [19] that they allow a

more robust implementation of the regularization proce-

dure. Indeed, the standard regularized particle filter [6]

assumes a unimodal posterior which is not the case

when dealing with ambiguous measurements. Another

advantage which will be highlighted in the next section

is the possibility to use a different proposal for each

mixture component pj(xk|y0:k). This makes it easier to

adapt the sampling distribution to the particular shape of

pj(xk|y0:k).
Note that in practice, we wish to have one mixture

component per mode of the posterior density. Since the

number of modes may change with time as ambiguity

is progressively resolved, a clustering procedure may be

necessary to group together particles associated to the

same modes. In [17], the authors use the k-means algo-

rithm. In terrain navigation since the number of modes of

the posterior is usually unknown, we advocate the use of

the mean-shift clustering algorithm [19]. Denoting Mk

the number of modes at time k, the posterior is then

expressed as

p(xk|y0:k) =
Mk∑
j=1

αj,kpj(xk|y0:k) (13)

≈
Mk∑
j=1

αj,k

∑
i∈Ij,k

ωi
kδxi

k
(14)

where Ij,k ⊆ {1, . . . , N} is the set of particle index

targeting the component pj(xk|y0:k) at time k. At time

k+1, assuming that the number of components remains

identical,

p(xk+1|y0:k+1) ≈ p̂k+1|k+1 (15)

=

Mk∑
j=1

αj,k+1

∑
i∈Ij,k

ωi
k+1δxi

k+1
(16)

=

N∑
i=1

αc1(i),k+1ω
i
k+1δxi

k+1
(17)

where c1(i) = j if i ∈ Ij,k. In reality, each empirical

mixture component
∑

i∈Ij,k ω
i
k+1δxi

k+1
, j = 1, . . . ,Mk

may contain multiple modes or be merged with another

spatially close component (in particular Mk+1 > Mk is

possible). To account for this variation in the number of

modes, the posterior is expressed as a mixture of Mk+1

components as

p̂k+1|k+1 =

Mk+1∑
l=1

βl,k+1

∑
i∈Il,k+1

νik+1δxi
k+1

(18)

where
∑Mk+1

l=1 βl,k+1 = 1 ,
∑

i∈Ij,k+1
νik+1 = 1. Equation

(18) can be rewritten as

p̂k+1|k+1 =

N∑
i=1

βc2(j),k+1ν
j
k+1δxj

k+1
(19)

where c2(i) = l if i ∈ Il,k+1. It follows that (see [17]

for instance),

βl,k+1 =
∑

i∈Il,k+1

αc1(i),k+1ω
i
k+1 (20)

and

νik+1 =
αc1(i),k+1ω

i
k+1

βc2(i),k+1
(21)

III. AN IMPORTANCE SAMPLING METHOD FOR

MULTIMODAL DISTRIBUTIONS BASED ON POSTERIOR

MODES

As discussed in the introduction, choosing an adequate

proposal density is crucial for the robustness of the

filter, especially in challenging situations of interest,

namely when the observation noise is small or when the

observation function exhibits peakiness, more generally

when the Fisher information is high. Many alternate

importance sampling schemes involve some approxima-

tion of the optimal importance density (OID) at time

k, p(xk|xk−1, yk) such as the particle filter with EKF

proposal [11], the unscented particle filter [20] or the

progressive proposal particle filter [21]. In this work,

we take another perspective by using mixture modelling

and proposing a different importance distribution for

each mixture component pj(xk|y0:k). Each proposal is

centered on the maximum a posteriori of pj(xk|y0:k).
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It is well known that the proposal density should be

as close as possible in shape to the target density.

Since we assume each component pj(xk|y0:k) to be

unimodal, proximity can be achieved by centering the

proposal at the mode of pj . If the proposal is a Gaussian

density, the covariance can be chosen so as to match the

orientation and dispersion of pj(xk|y0:k). Choices of the

corresponding covariance will also be discussed in this

section.

In order to implement this importance sampling strategy,

it is necessary to determine, without excessive com-

putation overhead, the modes of the posterior density.

We have previously introduced [22] a method suitable

for partially linear models which will be detailed here

for the sake of clarity. We will also discuss some

issues related to the stability of the importance sampling

procedure, which will lead in particular, to robust choices

of the covariance matrix for Gaussian proposals. Finally,

a mixture Rao-Blackwellized Particle Filter using this

importance sampling strategy will be presented.

A. Standard importance sampling in Bayesian inference

Let X be a hidden state distributed according to a

density q and partially observed through a measurement

Y = h(X) + V where h is a non-linear observation

function and V is a measurement noise independent from

X .

Importance sampling targets posterior expectations of the

form

Ep(ϕ(X)) =

∫
Rd

ϕ(x)p(x|y)dx (22)

where p(x|y) = g(x)q(x)∫
g(x)q(x)dx

is the conditional density of

X given Y , ϕ is a real-valued measurable test function

of R
d, g is the likelihood function and Ep refers to

the expectation w.r.t. density p. In general, it is not

straightforward to sample from the posterior which is

one of the reasons for using importance sampling.

Let q̃ be a density whose support included that of ϕq.

The importance sampling (IS) density estimator of (22)

is given by

Ep(ϕ(X)) ≈
N∑
i=1

ωiϕ(xi) (23)

where xi ∼ q̃, i = 1, . . . , N are i.i.d. samples from q̃,

a so-called importance density. The importance weights

ωi are computed according to ωi = ω̃i
∑N

j=1 ω̃
j where ω̃i =

g(xi)q(xi)

q̃(xi)
.

If additionally,

• E(ϕ2(X)|Y ) < ∞

• E(ϕ2(X) q(X)
q̃(X) |Y ) < ∞

then the estimator (23) is unbiased and strongly con-

sistent [23]. Another indicator of importance sampling

performance which is of interest in this paper is the

asymptotic variance of the importance weights Vq̃ de-

fined by

Vq̃ =
1

N

⎛
⎜⎜⎜⎝

∫
Rd

g2(x)q2(x)

q̃(x)
dx

(∫
Rd

g(x)q(x)dx

)2 − 1

⎞
⎟⎟⎟⎠ (24)

(24) is a measure of IS performance [24] and will be

used as a criterion to design the importance density q̃.

Indeed, it is known (see [24] for example) that Vq̃ = 0
for q̃ = p(x|y) which would indicate that a good choice

of q̃ is one that is similar to p(x|y).
For a general mixture model p(x|y) = ∑M

j=1 αjpj(x|y)
where pj(x|y) = g(x)qj(x)∫

g(x)qj(x)dx
and qj is the prior den-

sity corresponding the j-th component, we may use a

different proposal for each component. In this case,

Ep(ϕ(X)|Y ) =

∫
ϕ(x)

M∑
j=1

αjpj(x|y)dx

=

M∑
j=1

αj

∫
ϕ(x)

g(x)qj(x)∫
g(z)qj(z)dz

dx

=

M∑
j=1

αj

Eq̃j

(
g(X)qj(X)ϕ(X)

q̃j(X)

)

Eq̃j

(
g(X)qj(X)

q̃j(X)

)

≈
M∑
j=1

αj

1
Nj

∑
i∈Ij ω̃

iϕ(xi)

1
Nj

∑
l∈Ij ω̃

l

≈
M∑
j=1

αj

∑
i∈Ij

ωiϕ(xi)

where xi, i ∈ Ij are i.i.d. samples from q̃j , ω
i = ω̃i

∑
l∈Ij

ωi

and Ij ⊆ {1, . . . , N} is the subset of samples targeting

the j-th mixture component as in section II-C and such

that |Ij | = Nj .

B. Designing the importance density

Given that we have indicated how to implement im-

portance sampling when targeting a mixture density,

we shall assume that the posterior is unimodal in this

subsection: if this is not the case then it suffices to

find a decomposition of the posterior into a mixture of

unimodal densities as outlined in III-A.

As argued previously, a general rule of thumb to design a

suitable importance density is to choose one that is close
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to the posterior. For instance, we can use a proposal q̃
centeredon an approximation of the conditional expecta-

tion E(X|Y ) and with covariance close to the posterior

covariance Cov(X|Y ). However, for this choice of q̃ we

must also ensure Vq̃ < ∞. In the sequel we study several

proposal densities, designed to match the posterior while

guaranteeing a finite estimation variance, as measured by

the asymptotic variance of the importance weights Vq̃.

These covariances will be candidates for the proposals

used in the mixture Rao-Blackwellized particle filter

introduced in III-D.

In order to approximate Cov(X|Y ) we use Laplace’s

method: this approach has been used in the context of

importance sampling in [25] and [9]. Laplace’s method

approaches the posterior covariance by the inverse of

the observed Fisher information matrix J evaluated at

the mode of p(x|y), while a first order approximation of

the posterior expectation is given by the mode of p(x|y).
E(X|Y ) = x̂∗ − F0(J(x̂

∗), J ′(x̂∗)) (25)

Cov(X|Y ) = J−1(x̂∗)−G0(J(x̂
∗), J ′(x̂∗), J ′′(x̂∗))

(26)

where x̂∗ = argmaxx∈Rd p(x|y) is the maximum a

posteriori (MAP) and

J(x) = −∂2 log g

∂x2
(x)− ∂2 log q

∂x2
(x) (27)

and F0 and G0 are given functions (see [9] for instance).

In the sequel, we only keep the first terms of expansions

(25) and (26), ie.

E(X|Y ) ≈ x̂∗

Cov(X|Y ) ≈ J−1(x̂∗)

Assuming a gaussian prior q with covariance P and

zero mean gaussian noise with covariance R, as will be

done subsequently, one can compute J as

J(x) = 2
[
∂2h
∂x2R−1 (y − h(x))−R−1

(
∂h
∂x

) (
∂h
∂x

)T ]
+ P−1

(28)

The assumption of a gaussian prior in a filtering setting

is somewhat reasonable since q is supposed unimodal

here.

Therefore, assuming we have an estimate for x̂∗, we

can use a Gaussian proposal density q̃ with mean x̂∗ and

covariance J−1(x̂∗). However, as pointed out in [22],

[23], this can lead to non-consistent importance sampling

estimates since the tails of the proposal may be lighter

than the tails of the posterior.

It is straightforward that whenever sup
x∈Rd

q(x)
q̃(x) < ∞, Vq̃

is automatically finite. Hence, assuming that the prior

q is Gaussian, one can choose a t-distribution centered

on the mode x̂∗, with a suitable scale matrix Σ with

ν > 2 degrees of freedom (d.o.f.). For ν > 2, the

covariance matrix of a variable distributed according to

the t-distribution with scale matrix Σ is equal to ν
ν−2Σ.

Therefore, to achieve a covariance equal to Laplace’s

approximation of Cov(X|Y ) ≈ J−1(x̂∗), one must set

the scale matrix to

Σ =
ν − 2

ν
J−1(x̂∗) (29)

The d.o.f. parameter ν tunes the fatness of the t-
distribution’s tail : lower values correspond to a fat tail

while higher ones lead to a lighter tail.

Let us now examine the choice of a Gaussian proposal

density q̃(x) = N (x; x̂∗,Σ) whose covariance Σ is

chosen under the constraint that Vq̃ < ∞.

Since sup
x∈Rd

q(x)
q̃(x) < ∞ ⇒ Vq̃ < ∞, one only needs to

find a matrix Σ such that sup q
q̃ < ∞. The following

proposition provides such a matrix.

Proposition 1. Let P−1 = DTD be the Choleski
decomposition of P−1. If the largest eigenvalue of
D−TΣ−1D−1 is smaller than 1, then q

q̃ is bounded from
above and Vq̃ is finite.

Proof. See appendix B.

This proposition gives us a practical way of designing

Gaussian proposals with covariance Σ that yield consis-

tent importance sampling estimates.

We have previously proposed in [22] a covariance Σ.

While giving good results in simulations, there was no

guarantee that the asymptotic variance would be finite.

This choice is obtained by rotating the ellipsoid of

the prior covariance P along the principal axes of the

ellipsoid of the Laplace approximation of the posterior

covariance. More precisely, this covariance is defined by

Prot
�
= EJΛPE

T
J (30)

where EJ la the matrix of eigenvectors of Ĵ−1 =
J−1(x̂∗) and ΛP the matrix of eigenvalues of P . In [22],

we have found that setting Σ = Prot in the proposal

q̃(x) = N (x; x̂∗,Σ), could, in some cases, yield a

lower estimation error compared to the use of the prior

covariance Σ = P .

Still, to ensure that the variance of the asymptotic

weights Vq̃ remains finite, we may set Σ = sProt where

s > 0 and find the smallest s such that Vq̃ < ∞ .

According to the previous proposition, we only need to

determine

inf{s > 0 | λmax(
1

s
D−TP−1

rotD
−1) < 1}

where λmax(B) is the largest eigenvalue of matrix B
when it exists. Hence, for all s > s∗, Vq̃ < ∞ where s∗
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is defined as

s∗ = λmax(D
−TP−1

rotD
−1) (31)

Finally, we may also seek a value Σ that is close to the

Laplace approximation of the posterior covariance, while

also ensuring that Vq̃ is finite. Since the latter constraint

is met whenever Σ−P > 0 (cf. lemma 1), we can solve

the following optimization problem :

minimise ‖Σ− Ĵ−1‖2F such that Σ− P > 0

where ‖ · ‖F is the Frobenius norm. The minimizer may

be obtained via (see proof in appendix C)

ΣF =
1

2
(Ĵ−1 + P +H) + κId (32)

where κ is a small positive constant, U and H are

such that Ĵ−1 − P = UH , UTU = I and Id is the

d dimensional identity matrix.

Up until now, we have two different choices for the

covariance of the Gaussian proposal density. Each one of

them tries to be close to the posterior covariance while

guaranteeing stable importance sampling estimates, in

the sense that the asymptotic variance of the importance

weights remains finite :

• Σ = s∗Prot as defined by (30) and (31). This

essentially consists in rotating the prior covariance

P along the principal axes of the Laplace approxi-

mation of the posterior covariance, denoted Ĵ−1.

• Σ = ΣF as defined by (62).

Of course, as outlined in section III-A, it remains possi-

ble to use a Student t-distribution density centered on the

mode of the posterior and with scale matrix proportional

to Ĵ−1 (or Prot). As a summary, we have plotted in figure

1 the 99% confidence ellipsoids of each covariance/scale

matrix associated to the different Gaussian or t-density

proposals centeredon the MAP:

1) Laplace approximation of the posterior covariance:

Ĵ−1

2) prior covariance with rotation along posterior co-

variance main direction: Prot

3) scaled rotated prior covariance: s∗Prot (achieves

finite variance)

4) closest covariance matrix to Ĵ−1 for the Frobenius

norm: ΣF (achieves finite variance)

These ellipsoids have equation

(x− x̂∗)TΣ−1(x− x̂∗) = χ2
2,.99

where χ2
2,.99 is the 0.99 quantile of the Chi-squared

distribution with 2 degrees of freedom. This illustration

assumes a Gaussian prior with covariance P . The first

choice is not new and has been widely used in the

P

J−1

s∗Prot

Prot

ΣF

Fig. 1. 99% confidence ellipsoids associated to covariance matrix
P , J−1, Prot, s

∗Prot and ΣF

particle filtering literature, while the second one has been

introduced in a previous paper [22] and the next two

have been introduced in this paper. The main take away

from this figure is that all ellipsoids are aligned with the

ellipsoid corresponding to the Gaussian approximation

of the posterior which is given by Ĵ−1. However, as

argued previously, the size of the covariance should be

sufficient to guarantee consistent estimation as attested

by the greater areas covered by the proposal ellipsoids.

C. Efficient MAP approximation for partially linear
models

In accordance to the previous, section we assume a

static setting where the posterior density is unimodal.

We wish to compute the mode of the posterior density

defined as

x̂∗ = argmax
x∈Rd

p(x|y) = argmax
x∈Rd

g(x)q(x) (33)

When dealing with a multimodal density p(x|y), we will

assume that a finite mixture representation p(x|y) =∑M
j=1 αjpj(x|y) is available where each pj(x|y) is

assumed unimodal with unknown modes. Hence the

problem of localizing all the modes of the full posterior

consists in finding the mode of each individual mixture

component.

Most filtering applications (target tracking, data assimila-

tion, etc.) deal with high-dimensional state-vectors there-

fore deriving an exact or an approximate expression (33)

is a non-trivial task. We have previously proposed [22]

and we detail further a methodology suited for partially

linear and Gaussian observation models, i.e. models

where the observation equation takes the following form

:

y = Ax2 − h(x1) + v (34)

where x1 and x2 are sub-vectors of x, i.e. x = [xT1 , x
T
2 ]

T ,

h a non-linear function of x1 and A a matrix independent

of x. Radar-altimeter observations can be modelled by
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such an equation, and more generally, any observation

model where only a substate x1 of the state-vector affects

the measurement function.

We suggested in [22] a method to reduce the opti-

mization dimension by assuming that the prior density

q is Gaussian with mean μ and covariance matrix P .

The impact of this hypothesis will be discussed in the

following section. We also assume the likelihood g to be

a zero mean Gaussian density with covariance R.

Let μ = (μT
1 , μ

T
2 )

T and P =

(
P11 P12

P21 P22

)
. We showed

in [22] that the maximization can be performed in two

steps :

• find x̂∗1 = argminx1
(x1 − μ1)

TP−1
11 (x1 − μ1) +

Γ(x1)
• set x̂∗2 = γ(x̂∗1) and (x̂∗)T = [x∗1, x∗2]

where Γ and γ are non-linear functions of x1 defined by

Γ(x1) = [y + h(x1)−Aγ(x1)]R
−1 [y + h(x1)−Aγ(x1)]

T

+ [γ(x1)− E1(x2)]P
−1
2|1 [γ(x1)− E1(x2)]

T

γ(x1) = Ω
[
ATR−1 (y + h(x1)) + P−1

2|1E1(x2)
]

Ω =
(
ATR−1A+ P−1

2|1
)−1

and

E1(x2) = E(x2|x1) = E(x2) + P21P
−1
11 (x1 − E(x1))

= μ2 + P21P
−1
11 (x1 − μ1)

Likewise, P2|1 = P22 − P21P
−1
11 P12 is the covariance of

x2 given x1.

D. Adaptive importance sampling in a multimodal filter-
ing setting

In the previous subsections, we have reviewed and

suggested possible methods for designing proposal

densities based on local modes of the posterior in a

static setting. We also recalled a method for approximate

MAP computation developed in a previous paper. These

methods can be extended to a filtering context where

we deal with multimodal posterior.

In accordance to the previous notations, the observa-

tion model is assumed partially linear and is expressed

as

yk = Akxk,2 − hnk(xk,1) + vk (35)

where vk ∼ N (0, R) and Ak is matrix independent of

xk. The state vector is decomposed into its linear part

xk,2 and its non-linear part xk,1, xk =
[
xTk,1, x

T
k,2

]T
while hnk is a non-linear function of xTk,1.

To deal with multimodal posterior densities, we resort

to a mixture representation of the posterior as in section

II-C, i.e.:

p(xk|y0:k) =
M∑
j=1

αj,kpj(xk|y0:k)

where
∑M

j=1 αj,k = 1 and

p(xk|y0:k) = gk(xk)p(xk|y0:k−1)∫
gk(xk)p(xk|y0:k−1) dxk

(36)

where we recall that gk is the likelihood function at

time k. Now, assume a particle approximation of the

predictive density p(xk|y0:k−1) is available.

p(xk|y0:k−1) ≈
M∑
j=1

αj,k−1

∑
i∈Ij

ωi
k−1δxi

k|k−1
(37)

where xik|k−1 ∼ p(xk|xik−1) are i.i.d. samples. Recall

p(xk|y0:k) =

M∑
j=1

αj,k−1gk(xk)pj(xk|y0:k−1)

M∑
l=1

αl,k−1

∫
gk(xk)pl(xk|y0:k−1) dxk

Obtaining an approximation of p(xk|y0:k) through im-

portance sampling requires sampling particles xik accord-

ing to some suitable proposal as well as computing the

importance weights {ωi
k}Ni=1 and the mixture weights

{αj,k}Mj=1. As suggested previously, a different impor-

tance density q̃j may be used for each mixture compo-

nent pj(xk|y0:k). Note that, in the context of filtering,

the prior q is the predictive density pj(xk|y0:k−1).
Let us introduce Mk importance densities q̃j , each cen-

tered on the mode of pj(xk|y0:k). When using Gaussian

densities, q̃j(xk) = ϕ(xk|x̂∗j,k,Σj,k) where ϕ(·|m,Θ)
denotes the multivariate normal density with mean m
and covariance matrix Θ. The covariance Σj,k of the

proposal can be chosen as described in subsection III-B.

This scheme requires the computation of Mk modes

{x̂∗j,k}Mk

j=1 defined by

x̂∗j,k = argmax
xk∈Rd

gk(xk)pj(xk|y0:k−1) (38)

We obtain these modes by using the method detailed

in subsection III-C. It is then necessary to work out

a Gaussian approximation for the predictive density

pj(xk|y0:k−1), which is assumed unimodal, by using for

instance the sample mean and sample covariance defined

respectively as

x̄j,k|k−1 =
∑

i∈Ij,k−1

ωi
k−1x

i
k (39)
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and

P̂j,k|k−1 =
∑

i∈Ij,k−1

ωi
k−1(x

i
k − x̄j,k|k−1)(x

i
k − x̄j,k|k−1)

T

(40)

This Gaussian approximation is also used to work out

the covariance of the proposal Σj,k.

Once parameters for the current proposal q̃j are de-

rived, we first obtain particles {xik}Ni=1 by sampling for

each mixture component of index j, Nj samples xik ∼ q̃j ,
i ∈ Ij,k. Hence, the particle weights read :

• ω̃i
k = ωi

k−1
gk(xi

k)pj(xi
k|y0:k−1)

q̃(xi
k)

• ωi
k = ω̃i

k∑
l∈Ij

ω̃l
k

Notice that in order to compute the importance

weights it is necessary to evaluate pj(x
i
k|y0:k−1), the

predictive density for each sampled particle. A pos-

sibility is to use the approximation pj(x
i
k|y0:k−1) ≈∑

l∈Ij ω
l
k−1p(x

i
k|xlk−1). However, this requires O(N2)

operations, which can be costly for online applications.

As an alternative, we use a Gaussian approximation

for the predictive density pj(xk|y0:k−1) which is readily

available since it is also used for the approximate mode

computation. In this case the particle weight update

becomes

ω̃i
k = ωi

k−1

gk(x
i
k)ϕ(x

i
k|x̂∗j,k,Σj,k)

q̃(xik)
(41)

ωi
k =

ω̃i
k∑

l∈Ij ω̃
l
k

∀i ∈ Ij,k (42)

This approach has the disadvantage that the particle

estimate is no longer consistent. However, simulations

on a TAP/INS integration and on a range/bearings based

target tracking scenario have suggested good filter be-

haviour.

It remains to compute the mixture weights {αj,k}Mj=1.

According to (10),

αj,k =

αj,k−1

∫
gk(xk)pj(xk|y0:k−1) dxk

∑M
l=1 αl,k−1

∫
gk(xk)pl(xk|y0:k−1) dxk

(43)

Importance sampling based on the proposal q̃j can be

used to work out the integrals in the numerator and the

denominator which yields the following mixture weight

estimate:

αj,k ≈

αj,k−1

Nj

∑
i∈Ij,k−1

ω̃i
k

∑M
l=1

αl,k−1

Nl

∑
i∈Il,k−1

ω̃i
k

(44)

The general IS approach taken here is similar to the

Gaussian approximation of the optimal importance den-

sity [11], which is, in a sequential importance sampling

framework, equal to p(xk|xk−1, yk). However, the main

difference is that the mode of the OID p(xk|xik−1, yk)
has to be computed for each particle which makes

this method more computationally intensive, unless a

straightforward expression for these modes is available.

It is also necessary to evaluate the inverse of Hessian of

the log-likelihood N times ; this can be time consuming

whenever the evaluation of the observation function per

particle is more costly than other standard particle filter

operations (random variable generation, resampling).

To limit the algorithm’s computing cost, we can

choose to use the importance sampling only when de-

tecting excessive variance in the particle weights. We

monitor the effective sample size (ESS) for each mixture

component represented by a cluster of weighted particles

and trigger importance sampling only when the ESS

falls significantly below the resampling threshold. The

rationale is that when the mismatch between the pre-

dictive density pj(xk|y0:k−1) and the likelihood gk(xk)
isn’t too high, resampling/regularization can suffice to

avoid filter divergence. Therefore, we only trigger the

MAP computation and importance sampling only in the

event of very low ESS. More specifically, let N j
eff be the

ESS of the particle approximation of p̂j =
∑

i∈Ij,k ω
i
kδxi

k

of pj(xk|y0:k) where the particles xik and associated

weights are computed by using the transition density as

the proposal. N j
eff is computed similarly to (5):

N j
eff ≈ 1∑Nj

i=1(ω
i
k)

2
(45)

The threshold Nth,MAP for triggering importance sam-

pling is defined as a fraction ζ ∈ [0, 1] of the resampling

threshold Nth, i.e.

Nth,MAP = ζNth (46)

Low values of ζ imply a moderate use of importance

sampling (that is, only in cases of severe weight degen-

eracy) while higher ones lead to a more frequent use.

Let us observe that the formula for the mixture weight

update when using MAP based importance sampling

for every mixture component measurement update (see

equation (44)) is different from the case where IS is not

systematically triggered. In the latter case, the following

formula (47) should be used:

αj,k =
αj,k−1βj,k∑M
l=1 αl,k−1βl,k

(47)
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where

βj,k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i∈Ij,k−1

ωi
k−1gk(x

i
k) if

N j
eff

Nj
≤ Nth,MAP

1
Nj

∑
i∈Ij,k−1

gk(x
i
k)pj(x

i
k|y0:k−1)

q̃j(xik)
otherwise

(48)

Let us now detail the mixture Rao-Blackwellized

particle filter algorithm using MAP based importance

sampling. In the standard Rao-Blackwellized particle

filter (see Algorithm 1), the Kalman filter measurement

update is done after the particle measurement update

and the resampling step. However, in our importance

sampling strategy, the mixture component posterior den-

sity of the entire state xk = [xTk,1, x
T
k,2]

T , pj(xk|y0:k)
is obtained. This entails that the Kalman measurement

update and the particle measurement update cannot be

split into different stages separated by the resampling

step if we mix the adaptive importance sampling scheme

in a standard RBPF framework. The solution is then to

have a variable indexMAPj that equals 1 if importance

sampling is triggered for the j-th mixture component and

equals 0 otherwise. In the event where indexMAPj = 1,

we only need to compute the covariance matrix Pk

during the Kalman measurement update step while the

computation of the updated means x̂ik,2, i = 1, . . . , N is

not performed since it is already carried out at the im-

portance sampling stage. The resulting algorithm, called

MRBPF-MAP, is outlined in appendix D.

IV. PERFORMANCE EVALUATION

In this section, we study the performance of the

MRBPF-MAP algorithm (Mixture Rao-Blackwellized

Particle Filter with MAP aide proposal), in a context

of low process and observation noise. As mentioned

in the introduction, this can impact negatively standard

particle filters as the prediction step using the transition

kernel may sample particles in low probability regions

of the state-space. We consider the problem of TAP/INS

integration via particle filtering methods and compare

our algorithm with standard filters used in terrain naviga-

tion applications. Performance indicators such as RMSE

(Root Mean Squared Error) and percentage of non-

divergent tracks are presented.

A. Motion and observation model

We consider an aircraft equipped with an Inertial

Navigation System (INS). The accumulation of sensor

errors in the rate gyros and in the accelerometers is

responsible for the drift in the position, velocity and

attitude component. letting k be the time index, we

denote
[
λ̃ φ̃ z̃ ṽn ṽe ṽd

]T
k

the vector comprising

the inertial latitude, longitude and altitude as well as

the north (n), east (e) and down (d) components of the

velocity components in the navigation frame.

We wish to estimate the drift vector xk defined as

the metric error between the true position and velocity

coordinates and their inertial equivalent and expressed in

the navigation frame. It is shown in [26] that the drift

can be accurately modelled by a linear model according

to

xk+1 = Fxk +Gkwk

where

F =

(
I3 ΔI3
03 I3

)
Gk =

(
Δ2

2 I3
ΔI3

)
(49)

Δ is the sampling period and wk ∼ N (0, Q) is white

Gaussian noise.

The aircraft is equipped with a DTED (Digital Terrain

Elevation Data) with 3 arc seconds accuracy (≈ 100
m), which enables a matching with the reconstructed

elevation profile from altimeter measurements. Let yk
be the observation delivered by the radar-altimeter and

let hDTED(λ, φ) be the digital terrain elevation func-

tion which maps a latitude λ and longitude φ to the

corresponding terrain elevation hDTED(λ, φ). Then the

ground clearance yk is modelled according to

yk = z̃k − xk,3

− hDTED

⎛
⎝λ̃+

xk,1
Rλ̃ + z̃k

, φ̃k +
xk,2(

Rφ̃ + z̃k

)
cos λ̃k

⎞
⎠

+ vk (50)

where vk is an additive white Gaussian noise with

standard deviation σv. This simple model does not take

into account possible biases or altitude-dependent errors

and is used to generate altimeter measurements at a

frequency of 10 Hz. Rλ̃ and Rφ̃ are respectively the

north and east radius and are defined as

Rλ̃ = a
1− e2

(1− e2 sin2(λ̃))3/2
(51)

Rφ̃ =
a

(1− e2 sin2(λ̃))1/2
(52)

a = 6378137m, b = 6356752.3m are the earth’s

ellipsoid semi major axis and semi minor axis as defined

by the World Geodetic System (WGS 84), while e =√
b(a−b)

a is the eccentricity. The true aircraft trajectory

is a straight line with near constant velocity as shown in

figure 2 and an altitude of 2923 m.
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Fig. 2. Aircraft trajectory (a) and terrain elevation profile (b)

B. Simulation settings and numerical results

We compare hereafter, the performance of the RBPF,

the MRBPF and MRBPF-MAP in a challenging setting.

The initial drift x0 is assumed to follow a zero-mean

Gaussian distribution with covariance

P INS
0 = diag(10002, 10002, 1002, 32, 32, 12)

all units being in m or m.s−1 where appropriate. This

initial uncertainty is simply obtained by integration of

the INS sensor errors from an initially known position,

and during a given time interval, after which INS/TAP

integration starts. The INS sensor errors are modelled by

a Gauss-Markov type bias term plus a white Gaussian

noise as in [5]:

• accelerometer bias standard deviation/correlation

period: σa = 3× 10−5m.s−2, τa = 60 s
• accelerometer wide band Gaussian noise noise

st.dev. σwa = 5× 10−4m.s−2

• gyrometer bias st.dev/correlation period : σa =
10−6 rad.s−1, τg = 60 s

• gyrometer wide band Gaussian noise noise st.dev.

σwg = 1.7× 10−4 π
180 rad.s

−1

The radar-altimeter noise standard deviation is set to

two different values σv = 5m and σv = 15m. Given

the initial uncertainty and the nature of the elevation

data, σv = 5m corresponds to very informative mea-

surements and proves in practical simulations to be a

challenging noise setting. The baseline value σv = 15m
corresponds to medium level noise similar to the work

[5]. Additionally, for the state dynamics, we considered

Q = diag
(
12 12 0.012

)
which gives rather low

process noise, which is another source of difficulty for

particle filters as particles tend to be stranded in the same

regions limiting their ability to explore the state-space.

The filter parameters were set as follows:

• NRBPF = 4000 particles for the RBPF

• NMRBPF = 4000 particles for the MRBPF

• NMRBPF−MAP = 3000 particles for the MRBPF-

MAP

• resampling threshold : Nth = N
3 where N is the

number of particles

• threshold for cluster elimination αmin = 10−20

The different number of particles between the MRBPF-

MAP and the other algorithms ensures a similar

computational load between all algorithms. To obtain

a mixture representation for the particle cloud, a

mean-shift algorithm was used as in [22]. Moreover,

the modes were located as described in III-C by using

a non-linear conjugate gradient optimization algorithm.

To reduce the algorithmic complexity associated to this

mode search, MAP based estimation is only carried out

when 20 or less modes are detected by the clustering

routine. For this choice of parameters, the computing

cost of the MRBPF-MAP is approximately twice that

of the RBPF.

a) Influence of the modified proposal: First, we

focus on the impact of a MAP based proposal compared

with the sole use of a mixture representation (MRBPF

algorithm) and with the standard RBPF algorithm. In

this analysis, the chosen proposal is a Gaussian density,

with covariance matrix equal to Prot (see (30)). For each

algorithm, we have computed the RMSE for the non-

divergent tracks by carrying out 200 filter runs as well

as the percentage of non-divergent tracks. A filter run is

said to be non-divergent if the final estimate x̂n is inside

the 99% confidence ellipsoid associated to the Gaussian

distribution centered on the true state with covariance the

empirical covariance P̂n given by the particle cloud. The

posterior Cramer-Rao lower bound (PCRB) [27] is also

worked out for this model to assess filtering efficiency.
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TABLE I
INFLUENCE OF THE MODIFIED PROPOSAL: PERCENTAGE OF NON

DIVERGENT TRACKS

σv = 5 σv = 15

RBPF 69 80

MRBPF 71 81

MRBPF-MAP 79 90

Note that when the posterior is multimodal, this bound

is not tight hence the large gap between the filter RMSE

and the PCRB usually observed in the first few iterations.

As can be seen in figures 3 and 4 which correspond to a

very informative measurements setting, the RMSE given

by the MRBPF-MAP, which uses a proposal centered

around the posterior modes, is significantly lower for

a good portion of the trajectory, especially for the

position components the state vector. In the baseline

setting (increased measurement noise), it appears that

the improvement in mean squared error yielded by the

MRBPF-MAP is less significant (see fig. 5 and 6). The

percentage of non-divergent tracks for both sensor noise

levels is displayed in table I. The results indicate both a

gain in robustness (fewer divergent tracks) and accuracy

for the MRBPF-MAP compared to the standard Rao-

Blackwellized Particle filter (RBPF) and its adaptation

(MRBPF) in a multimodal setting.

b) Influence of the covariance matrix in the MAP
based proposal: Second, let us examine the choice of the

covariance of the proposal density q̃ that is used locally

in each mixture distribution. To this end, we have used

either a Gaussian density or a Student t-density proposal

with scale matrix proportional to the target posterior

covariance Σ, as explained in section III. Here, three

different implementations of the MRBPF-MAP using

different target posterior covariance Σ are compared :

• MRBPF-MAP 1: this algorithm uses for each mix-

ture component, a Gaussian proposal centered on

the MAP and with covariance Σ = Prot

• MRBPF-MAP 2: this algorithm uses a Gaussian

proposal with covariance Σ = ΣF

• MRBPF-MAP 3: this version uses a t-density pro-

posal with ν = 8 degrees of freedom. For each

component, the proposal covariance is Σ = Ĵ−1

computed via the Laplace approximation given by

(26) and (28), where R = σ2
v . As discussed in

previous sections, the use of a Gaussian proposal

with covariance Σ = Ĵ−1 can potentially lead to

infinite variance for the importance sampling esti-

mator, whereas the t-Student density theoretically

avoids this pitfall.

TABLE II
INFLUENCE OF PROPOSAL’S COVARIANCE MATRIX: PERCENTAGE

OF NON DIVERGENT TRACKS

σv = 5 σv = 15

MRBPF-MAP 1 79 90

MRBPF-MAP 2 81 93

MRBPF-MAP 3 82 92

RBPF 69 80

As in the previous case study the number of particles

is set to 3000 for the three versions of the algorithm.

There is no change in other particle filtering parameters.

The percentages of non-divergent tracks for each version

of the MRBPF-MAP is shown in table II. The use of

the student density in conjunction with covariances ΣF

or Σ = Ĵ−1 improves the percentage of non-divergent

tracks in both sensor noise situations. However, as can

be seen in figures 7 and 8 which correspond to σv = 5m,

there is no significant difference in terms of RMSE. For

σv = 15m (not shown here), the same observation holds.

We therefore conclude that the covariance matrix used

is of moderate importance in this particular case.

V. CONCLUSION

This paper introduces and discusses a practical impor-

tance sampling procedure in case of state-space models

with informative and ambiguous measurements. The mo-

tivation is essentially terrain navigation but the algorithm

we have presented can be used in other applications

with similar characteristics (multimodality and/or low

observation noise) such as target tracking or gravity

gradiometer navigation. We have proposed a mixture

proposal density whose components are centered on the

modes of the posterior distribution. This is different from

the use of a proxy to the optimal importance density in

the sequential importance sampling/resampling frame-

work, since in the latter, the proposal density depends

on the locations of the particles at the previous time step

and its parameters have to be computed as many times as

there are particles. In contrast, the proposed methodology

only requires the approximation of the modes of the

posterior which is a priori less time consuming than

computing the mode of the OID for each particle.

We have recalled an efficient method for maximum a

posteriori approximation in cases of interest, i.e. when

the likelihood function is a function of a smaller part

of the state vector. The ensuing mixture proposal lends

itself to the mixture particle filtering framework which

is convenient when dealing with multimodality. We have

then combined this importance sampling procedure with
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the Mixture Rao-Blackwellized Particle Filter. Moreover,

we have proposed several choices for the covariance

matrix as an additional parameter of the importance

density. These are based on an approximation of the

mixture component posterior covariance which ensures

that the importance sampling asymptotic variance re-

mains finite. We have compared the mixture RBPF

with mode based importance sampling, with the simple

mixture RBPF and the standard RBPF in a terrain aided

positioning scenario. We considered both a challenging

setting consisting in very accurate measurements as well

as more usual situation with a higher variance of the

additive noise. In both situations, it was found that the

use of the mode based mixture in the mixture RBPF

yielded less divergent tracks. In the case of a low sensor

noise, the filter accuracy in terms of mean squared

error was also greatly improved. The effect of different

covariance matrices used in the proposal density was also

investigated and it was found to have moderate effect

in the positioning application. However, we believe it

can have a higher impact in other applications where the

measurement is not as ambiguous since the difference in

shape and orientation between the posterior and the pre-

dictive distribution at a given time step may be important

since, in that case, one single measurement carries noisy

but near-complete information about the hidden state.

Overall, this implementation of a mixture particle filter

is an alternative to the auxiliary particle filter in cases

where it is difficult to give an appropriate approximation

of the predictive likelihood, a step necessary to compute

the auxiliary weights : for instance, strategies that fit a

Gaussian distribution may fail when dealing with multi-

modal distributions. In the same way, the MRBPF avoids

linearizations such as in the particle filter with EKF

proposal that can yield an unstable filter whenever the

measurement function is highly non-linear. Nevertheless,

care must be taken when the number of modes in the

posterior is unknown and high as the clustering step can

be time consuming since non-parametric techniques (e.g.

the mean-shift algorithm) have to be used.
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Fig. 4. σv = 5m: RMSE of the velocity drift estimates ; red line :
Posterior Cramer-Rao bound (PCRB)
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Fig. 6. σv = 15m: RMSE of the velocity drift estimates ; red line
: Posterior Cramer-Rao bound (PCRB)
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APPENDIX A

RBPF ALGORITHM

Algorithm 1 : Rao-Blackwellized Particle Filter

for i = 1, . . . , N

• sample xi
0,1 ∼ p(x0,1)

• set xi
0|−1,2 = x̄0,2 and P i

0|−1 = P0

end for
for k = 1, 2, . . .

• [Particle measurement update] compute ω̃i
k = ωi

k−1p(yk|xi
k,1, y0:k−1)

where

p(yk|xi
k,1, y0:k−1) = N

(
hk(x

i
k,1) +HT

k (x
i
k,1)x̂

i
k|k−1,2, Hk(x

i
k,1)P

i
k|k−1H

T
k (x

i
k,1) +Rk

)
(53)

• let ωi
k =

ω̃i
k∑

j=1N ω̃j
k

, i = 1, . . . , N

• compute Neff according to (5)

• [Resampling] if Neff < Nth resample the particle system

• [Kalman filter update] for i = 1, . . . , N , compute x̂i
k,2 and P i

k according to:

x̂i
k,2 = x̂i

k|k−1,2 +Ki
k(yk − hk(x

i
k,1)−HT

k (x
i
k,1)x̂

i
k|k−1,2) (54)

P i
k = P i

k|k−1 −Ki
kM

i
k(K

i
k)

T (55)

where

M i
k = Hk(x

i
k,1)P

i
k|k−1H

T
k (x

i
k,1) +Rk

Ki
k = P i

k|k−1H
T
k (x

i
k,1)(M

i
k)

−1

• [Particle filter time update] for i = 1, . . . , N , sample xi
k+1,1 ∼ p(xk+1,1|xi

0:k,1, y0:k)
where p(xk+1,1|xi

0:k,1, y0:k) is the Gaussian density

N (
fk+1,1(xk,1) + Fk+1,1(xk,1)x̂k,2, Fk+1,1Pk(Fk+1,1)

T +Gk+1,1Q
11
k+1(Gk+1,1)

T
)

(56)

• [Kalman filter time update] for i = 1, . . . , N , compute x̂i
k+1|k,2 and P i

k+1|k

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̂i
k+1|k,2 = F̄k−1,2x̂

i
k,2 +Gk,2(Q

21
k )T (Gk,1Q

11
k )−1zik+1,1 + fk,2(x

i
k,1)

+ Li
k(z

i
k,1 −Ak,1x̂

i
k,2)

P i
k|k−1 = F̄k,2P

i
k(F̄k,2)

T +Gk,2Q̄k22(Gk,2)
T − Li

kN
i
kL

i,T
k

N i
k = Fk,1P

i
k(Fk,1)

T +Gk,1Q
11
k (Gk,1)

T

Li
k = F̄k,2P

i
k(Fk,1)

T (N i
k)

−1

(57)

where {
zk,1 = xk+1,1 − fk,1(xk,1)
zk,2 = yk − hk(xk,1)

and {
F̄k,2 = Fk,2 −Gk,2(Q

21
k )T (Gk,1Q

11
k )−1Fk,1

Q̄22
k = Q22

k − (Q21
k )T (Q11

k )−1Q21
k

end for
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APPENDIX B

PROOF OF PROPOSITION 1

Lemma 1. Assume the prior q is a Gaussian density with mean μ and covariance P . Then if Σ− P is positive definite then
sup
x∈Rd

q(x)
q̃(x) < ∞ and Vq̃ is finite.

The proof is readily obtained by working out the log ratio log q(x)
q̃(x) and is omitted here for brevity. Since a sufficient condition

for finite asymptotic variance of the importance weights is given by Σ− P > 0, let us characterize this inequality . First, this

is equivalent to P−1 − Σ−1 > 0.

Σ−1 − P−1 < 0 ⇔ xT (Σ−1 − P−1)x < 0 ∀x ∈ R
d \ {0} ⇔ sup

x∈Rd\{0}

xTΣ−1x

xTP−1x
< 1 (58)

Let P−1 = DTD be the Choleski decomposition of P−1 where D is an upper triangular matrix. Let C = D−TΣ−1D−1

where D−T = (D−1)T . Then,
xTΣ−1x

xTP−1x
=

xTDTCDx

xTDTDx

Setting y = Dx,
xTΣ−1x

xTP−1x
=

yTCy

yT y

yields

sup
x∈Rd\{0}

xTΣ−1x

xTP−1x
< 1 ⇔ sup

y∈Rd\{0}

yTCy

yT y
< 1 (59)

It is a well known result ( [28, p. 176]) that the supremum of the Rayleigh quotient yTCy
yT y

equals the largest eigenvalue of C.

APPENDIX C

PROOF: NEAREST SYMMETRIC POSITIVE DEFINITE MATRIX SATISFYING FINITE IMPORTANCE WEIGHTS

ASYMPTOTIC VARIANCE

Recall the optimization problem

minimise ‖Σ− Ĵ−1‖2F such that Σ− P > 0

The minimizer may be obtained thanks to Higham’s theorem.

Theorem 1 (N. Higham [29]). Let A a real symmetric matrix. The following optimization problem:

minimise ‖X −A‖2F s.t. X ≥ 0

has a unique solution X∗ defined by

X∗ =
1

2
(A+H) (60)

where H is a symmetric positive semidefinite matrix such that A = UH where UTU = I . A = UH is the polar decomposition
of A.

Noticing that ‖Σ− Ĵ−1‖2F = ‖(Σ− P )− (Ĵ−1 − P )‖2F , we have

min
Σ−P≥0

‖Σ− Ĵ−1‖2F = min
X≥0

‖X − (Ĵ−1 − P )‖2F

Let XF = argminX≥0 ‖X − (Ĵ−1 − P )‖F . Then according to Higham’s theorem,

XF =
1

2
(Ĵ−1 − P +H)

where U and H are such that Ĵ−1 − P = UH and UTU = I . It follows that

ΣF =
1

2
(Ĵ−1 + P +H) (61)

Note that the initial goal was to minimise ‖Σ− Ĵ−1‖2F subject to Σ−P > 0 while the above minimizer satisfies the constraint

Σ− P ≥ 0. Therefore, to satisfy the positive definite constraint, one may consider the matrix

ΣF =
1

2
(Ĵ−1 + P +H) + κId
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where κ is a small positive constant and Id is the d dimensional identity matrix. Formula (61) requires the derivation of H
which can be obtained as outlined in [29] as follows: Let Ĵ−1−P = ZΛ̃ZT be the orthogonal diagonalization of the symmetric

real matrix Ĵ−1 − P , where Λ̃ = diag(λ1, . . . , λd) is the diagonal eigenvalue matrix and ZZT = I . Then setting

Λ̃+ = diag(max(0, λ̃1), . . . ,max(0, λ̃d))

entails

ΣF = ZΛ̃+Z
T + P (62)

APPENDIX D

MRBPF-MAP ALGORITHM

Algorithm 2: MRBPF-MAP

if k = 0

• sample xi
0,1 ∼ p(x0,1), i = 1, . . . , N

• set xi
0,2 = x̄0,2 and P i

0 = P̄0

end if
if k = 1, . . . , n,

• [Particle time update] draw xi
k|k−1,1 ∼ p(xn

k |xn
0:k−1, y0:k−1) (cf. (56)), i = 1, . . . , N . Set ωi

k|k−1 = ωi
k−1, i = 1, . . . , N .

• [Kalman filter time update] for i = 1, . . . , N , compute x̂i
k|k−1,2 and P i

k|k−1 according to (57).

• [Clustering] Cluster the particle set into Mk clusters Cj,k using meanshift clustering for instance with bandwidth parameter

hMS .

[C ′
j,k, I

′
j,k] = meanshiftClustering({xi

k}Ni=1, {ωi
k}Ni=1,K, hMS)

• [Particle measurement update] Compute the unnormalized weights ω̃i
k = ωi

k−1p(yk|xi
k,1, y0:k−1), i = 1, . . . , N where

the likelihood p(yk|xi
k,1, y0:k−1) is given by (53).

• [Importance sampling] for j = 1, . . . ,Mk

– βj =
∑

i∈Ij,k
ω̃i
k

– ωi
k =

ω̃i
k

βj
, i ∈ Ij,k

– compute N j
eff according to (45)

– indexMAPj = 0
– if N j

eff/Nj ≤ Nth,MAP

∗ set x̄j
k|k−1,1 =

∑
i∈Ij,k

ωi
k|k−1x

i
k|k−1,1

∗ set x̄j
k|k−1,2 =

∑
i∈Ij,k

ωi
k|k−1x

i
k|k−1,2

∗ set P̂ 11
j,k|k−1 =

∑
i∈Ij,k

ωi
k|k−1(x

i
k|k−1,1 − x̄j

k|k−1,1)(x
i
k|k−1,1 − x̄j

k|k−1,1)
T

∗ set P̂ 22
j,k|k−1 =

∑
i∈Ij,k

(
P i
k|k−1 + ωi

k|k−1(x
i
k|k−1,2 − x̄j

k|k−1,2)(x
i
k|k−1,2 − x̄j

k|k−1,2)
T
)

∗ set P̂ 12
j,k|k−1 =

∑
i∈Ij,k

ωi
k|k−1(x

i
k|k−1,1 − x̄j

k|k−1,1)(x
i
k|k−1,2 − x̄j

k|k−1,2)
T

∗ set

P̂j,k|k−1 =

⎛
⎝ P̂ 11

j,k|k−1 P̂ 12
j,k|k−1(

P̂ 12
j,k|k−1

)T

P̂ 22
j,k|k−1

⎞
⎠

and x̄j,k|k−1 =

[(
x̄j
k|k−1,1

)T (
x̄j
k|k−1,2

)T
]T

.

∗ let qj(x) = ϕ(x|x̄j,k|k−1, P̂j,k|k−1) be the Gaussian approximation of the prior of the j-th component.

∗ compute x̂∗
j,k = argmaxxk∈Rd gk(xk)qj(xk) as outlined in section III-C.

∗ set q̃j(x) = ϕ(x|x̂∗
j ,Σ

∗
j ) where Σ∗

j = P̂j,k|k−1, Σ∗
j = Prot or Σ∗

j = ΣF (see (32))

∗ draw Nj i.i.d. samples ξi ∼ q̃j , i ∈ Ij,k and Nj = Card(Ij,k)

∗ set xi
k,1 = ξi1 and xi

k,2 = ξi2 where ξi =

[
ξi1
ξi2

]
.

∗ compute ω̃i
k and ωi

k according to (42)

∗ set βj,k = 1
Nj

∑
i∈Ij,k

ω̃i
k

∗ indexMAPj = 1

• for j = 1, . . . ,Mk, compute αj,k as a function of {αj,k−1}1≤j≤Mk−1
and {βj,k−1}1≤j≤Mk−1

using equation (47)
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• Compute the weighted average of the non-linear substate x̂k,1 =
∑Mk

j=1

∑
i∈Ij,k

ωi
kx

i
k,1.

• [Resampling] let j = 1.

while j ≤ Mk

– if αj,k < αmin remove the cluster Cj,k and sample Nj new particles according to the empirical mixture distribution

with weights
αl,k∑

r �=j αr,k
, l �= j

– else

∗ compute N j
eff according to (45)

∗ if
Nj

eff

Nj
< Nth resample the particle cloud of the current cluster. Additional local regularization may be performed

as described in [19]

∗ j = j + 1

• [Kalman measurement update]
• compute P i

k according to (55).

– for j = 1, . . . ,Mk

∗ if indexMAPj = 0, compute x̂l,i
k , i ∈ Ij,k using (54)

• work out the posterior mean of the linear substate x̂k,2 =
∑Mk

j=1

∑
i∈Ij,k

ωi
kx

i
k,2

end for
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Troyes under the supervision of Igor Nikiforov
in 2014. He carried his research in particle
filtering and INS technology at ONERA from
2014 to 2013. From 2014 to october 2015, he

was a postdoctoral researcher at IFPEN, a French research institute
in energy, transport and environment.

Christian Musso Christian Musso received a
Ph.D. in applied mathematics from the Uni-
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