J. Allman, F. Miezin, and E. Mcguinness, Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons, Ann. Rev. Neurosci, vol.8, pp.407-430, 1985.

R. Almeida, J. Barbosa, C. , and A. , Neural circuit basis of visuospatial working memory precision: a computational and behavioral study, J. Neurophysiol, vol.114, pp.1806-1818, 2015.

S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol. Cybern, vol.27, pp.77-87, 1977.

R. W. Anderson, E. L. Keller, N. J. Gandhi, and S. Das, , 1998.

K. Arai, E. L. Keller, and J. A. Edelman, A spatio-temporal neural network model of saccade generation, Neural Networks 1993 IEEE International Conference on, pp.70-74, 1993.

K. Arai, E. L. Keller, and J. A. Edelman, Two-dimensional neural network model of the primate saccadic system, Neural Netw, vol.7, pp.1115-1135, 1994.

M. Behan and N. M. Kime, Intrinsic circuitry in the deep layers of the cat superior colliculus, Vis. Neurosci, vol.13, pp.1031-1042, 1996.

R. Boch, B. Fischer, and E. Ramsperger, Express-saccades of the monkey: reaction times versus intensity, size, duration, and eccentricity of their targets, Exp. Brain Res, vol.55, pp.223-231, 1984.

A. Bompas and P. Sumner, Saccadic inhibition reveals the timing of automatic and voluntary signals in the human brain, J. Neurosci, vol.31, pp.12501-12512, 2011.

L. Bretzner and T. Lindeberg, Feature tracking with automatic selection of spatial scales, Comput. Vis. Image Underst, vol.71, pp.385-392, 1998.

N. Brunel and M. C. Van-rossum, Quantitative investigations of electrical nerve excitation treated as polarization, Biol. Cybern, vol.97, pp.341-349, 2007.

A. Compte, N. Brunel, P. S. Goldman-rakic, W. , and X. J. , Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model, Cereb. Cortex, vol.10, pp.910-923, 2000.

J. A. Edelman and E. L. Keller, Dependence on target configuration of express saccade-related activity in the primate superior colliculus, J. Neurophysiol, vol.80, pp.1407-1426, 1998.

W. Erlhagen and E. Bicho, The dynamic neural field approach to cognitive robotics, J. Neural Eng, vol.3, p.36, 2006.

J. M. Findlay, Global visual processing for saccadic eye movements, Vis. Res, vol.22, pp.1033-1045, 1982.

P. W. Glimcher and D. L. Sparks, Representation of averaging saccades in the superior colliculus of the monkey, Exp. Brain Res, vol.95, pp.429-435, 1993.

M. E. Goldberg and R. H. Wurtz, Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons, J. Neurophysiol, vol.35, pp.542-559, 1972.

D. Goodman and R. Brette, Brian: a simulator for spiking neural networks in python, Front. Neuroinform, vol.2, p.5, 2008.

D. F. Goodman and R. Brette, The brian simulator, Front. Neurosci, vol.3, pp.192-197, 2009.

A. Guillaume, P. , and D. , Gaze shifts evoked by electrical stimulation of the superior colliculus in the head-unrestrained cat. I. Effect of the locus and of the parameters of stimulation, Eur. J. Neurosci, vol.14, pp.1331-1344, 2001.

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol, vol.117, pp.500-544, 1952.

D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture of monkey striate cortex, J. Physiol, vol.195, pp.215-243, 1968.

G. Indiveri, E. Chicca, D. , and R. J. , Artificial cognitive systems: from VLSI networks of spiking neurons to neuromorphic cognition, Cogn. Comput, vol.1, pp.119-127, 2009.

T. Isa, Intrinsic processing in the mammalian superior colliculus, Curr. Opin. Neurobiol, vol.12, pp.668-677, 2002.

T. Isa and W. C. Hall, Exploring the superior colliculus in vitro, J. Neurophysiol, vol.102, pp.2581-2593, 2009.

K. Kang, M. Shelley, and H. Sompolinsky, Mexican hats and pinwheels in visual cortex, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.2848-2853, 2003.

H. A. Katnani and N. J. Gandhi, Order of operations for decoding superior colliculus activity for saccade generation, J. Neurophysiol, vol.106, pp.1250-1259, 2011.

C. Koch and S. Ullman, Shifts in selective visual attention: towards the underlying neural circuitry, Matters of Intelligence, pp.115-141, 1985.

H. Kong, H. C. Akakin, and S. E. Sarma, A generalized Laplacian of Gaussian filter for blob detection and its applications, IEEE Trans. Cybern, vol.43, pp.1719-1733, 2013.

K. Kopecz, Saccadic reaction times in gap/overlap paradigms: a model based on integration of intentional and visual information on neural, dynamic fields, Vision Res, vol.35, pp.2911-2925, 1995.

K. Kopecz and G. Schöner, Saccadic motor planning by integrating visual information and pre-information on neural dynamic fields, Biol. Cybern, vol.73, pp.49-60, 1995.

R. J. Krauzlis, D. Liston, and C. D. Carello, Target selection and the superior colliculus: goals, choices and hypotheses, Vision Res, vol.44, pp.1445-1451, 2004.

L. Lapicque, recherches quantitatives sur l'excitation electrique des nerfs traitee comme une polarization, J. Physiol. Pathol. Gen, vol.9, pp.620-635, 1907.

P. Lee and W. C. Hall, An in vitro study of horizontal connections in the intermediate layer of the superior colliculus, J. Neurosci, vol.26, pp.4763-4768, 2006.

C. Lo, L. Boucher, M. Paré, J. D. Schall, W. et al., Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model, J. Neurosci, vol.29, pp.9059-9071, 2009.

D. G. Lowe, Object recognition from local scale-invariant features, " in Computer Vision, The Proceedings of the Seventh IEEE International Conference on, vol.2, pp.1150-1157, 1999.

R. A. Marino, T. P. Trappenberg, M. Dorris, and D. P. Munoz, Spatial interactions in the superior colliculus predict saccade behavior in a neural field model, J. Cogn. Neurosci, vol.24, pp.315-336, 2012.

J. T. Mcilwain, Lateral spread of neural excitation during microstimulation in intermediate gray layer of cat's superior colliculus, J. Neurophysiol, vol.47, pp.167-178, 1982.

M. Meeter, S. Van-der-stigchel, and J. Theeuwes, A competitive integration model of exogenous and endogenous eye movements, Biol. Cybern, vol.102, pp.271-291, 2010.

M. A. Meredith and A. S. Ramoa, Intrinsic circuitry of the superior colliculus: pharmacophysiological identification of horizontally oriented inhibitory interneurons, J. Neurophysiol, vol.79, pp.1597-1602, 1998.

S. Millner, A. Grübl, K. Meier, J. Schemmel, and M. Schwartz, A VLSI Implementation of the Adaptive Exponential Integrate-and-Fire Neuron Model, pp.1642-1650, 2010.

J. Morén, T. Shibata, and K. Doya, Toward a spiking-neuron model of the oculomotor system, From Animals to Animats, vol.11, pp.104-113, 2010.

J. Morén, T. Shibata, and K. Doya, The mechanism of saccade motor pattern generation investigated by a large-scale spiking neuron model of the superior colliculus, PLoS ONE, vol.8, p.57134, 2013.

D. P. Munoz, Commentary: saccadic eye movements: overview of neural circuitry, Prog. Brain Res, vol.140, pp.89-96, 2002.
DOI : 10.1016/s0079-6123(02)40044-1

D. P. Munoz, I. , and P. J. , Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus, J. Neurophysiol, vol.79, pp.1193-1209, 1998.

P. Phongphanphanee, R. A. Marino, K. Kaneda, Y. Yanagawa, D. P. Munoz et al., Distinct local circuit properties of the superficial and intermediate layers of the rodent superior colliculus, Euro. J. Neurosci, vol.40, pp.2329-2343, 2014.

C. J. Ploner, F. Ostendorf, D. , and S. , Target size modulates saccadic eye movements in humans, Behav. Neurosci, vol.118, pp.237-242, 2004.
DOI : 10.1037/0735-7044.118.1.237

M. Richter, Y. Sandamirskaya, and G. Schoner, A robotic architecture for action selection and behavioral organization inspired by human cognition, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.2457-2464, 2012.
DOI : 10.1109/iros.2012.6386153

D. A. Robinson, Eye movements evoked by collicular stimulation in the alert monkey, Vision Res, vol.12, pp.1795-1808, 1972.
DOI : 10.1016/0042-6989(72)90070-3

R. N. Sachdev, M. R. Krause, and J. A. Mazer, Surround suppression and sparse coding in visual and barrel cortices, Front. Neural Circuits, vol.6, p.43, 2012.
DOI : 10.3389/fncir.2012.00043

URL : https://www.frontiersin.org/articles/10.3389/fncir.2012.00043/pdf

Y. Sandamirskaya, Dynamic neural fields as a step toward cognitive neuromorphic architectures, Front. Neurosci, vol.7, p.276, 2014.
DOI : 10.3389/fnins.2013.00276

URL : https://www.frontiersin.org/articles/10.3389/fnins.2013.00276/pdf

M. P. Sceniak, D. L. Ringach, M. J. Hawken, and R. Shapley, Contrast's effect on spatial summation by macaque V1 neurons, Nat. Neurosci, vol.2, pp.733-739, 1999.
DOI : 10.1038/11197

P. H. Schiller and M. Stryker, Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey, J. Neurophysiol, vol.35, pp.915-924, 1972.

L. Schwabe, K. Obermayer, A. Angelucci, and P. C. Bressloff, The role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model, J. Neurosci, vol.26, pp.9117-9129, 2006.

P. Sèries, J. Lorenceau, and Y. Frégnac, The 'silent' surround of V1 receptive fields: theory and experiments, J. Physiol. Paris, vol.97, pp.453-474, 2003.

M. N. Shadlen and W. T. Newsome, The variable discharge of cortical neurons: implications for connectivity, computation, and information coding, J. Neurosci, vol.18, pp.3870-3896, 1998.

D. L. Sparks, Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus, Physiol. Rev, vol.66, pp.118-171, 1986.

D. L. Sparks, The brainstem control of saccadic eye movements, Nat. Rev. Neurosci, vol.3, pp.952-964, 2002.

D. L. Sparks, R. Holland, G. , and B. L. , Size and distribution of movement fields in the monkey superior colliculus, Brain Res, vol.113, pp.21-34, 1976.

M. W. Spratling, Predictive coding as a model of response properties in cortical area V1, J. Neurosci, vol.30, pp.3531-3543, 2010.

C. Tandonnet, D. Massendari, and F. Vitu, When larger visual distractors become less disruptive: behavioral evidence for lateral inhibition in saccade generation, J. Vision, vol.12, p.2, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00693926

C. Tandonnet and F. Vitu, Stimulus properties and saccade metrics: when local features are more critical than global features, Behav. Neurosci, vol.127, p.121, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00861081

T. P. Trappenberg, M. C. Dorris, D. P. Munoz, and R. M. Klein, A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus, J. Cogn. Neurosci, vol.13, pp.256-271, 2001.

S. Van-der-stigchel, J. Heeman, and T. C. Nijboer, Averaging is not everything: the saccade global effect weakens with increasing stimulus size, Vision Res, vol.62, pp.108-115, 2012.

C. R. Vokoun, X. Huang, M. B. Jackson, and M. A. Basso, Response normalization in the superficial layers of the superior colliculus as a possible mechanism for saccadic averaging, J. Neurosci, vol.34, pp.7976-7987, 2014.

L. Wang, R. Sarnaik, K. Rangarajan, X. Liu, C. et al., Visual receptive field properties of neurons in the superficial superior colliculus of the mouse, J. Neurosci, vol.30, pp.16573-16584, 2010.

Z. Wang, W. Kruijne, and J. Theeuwes, Lateral interactions in the superior colliculus produce saccade deviation in a neural field model, Vision Res, vol.62, pp.66-74, 2012.

Z. Wang and J. Theeuwes, Distractor evoked deviations of saccade trajectory are modulated by fixation activity in the superior colliculus: computational and behavioral evidence, PLoS ONE, vol.9, p.116382, 2014.

C. Wilimzig, S. Schneider, and G. Schöner, The time course of saccadic decision making: dynamic field theory, Neural Netw, vol.19, pp.1059-1074, 2006.

C. Zeng, Y. Li, L. , and C. , Center-surround Interaction with adaptive inhibition: a computational model for contour detection, Neuroimage, vol.55, pp.49-66, 2011.

, Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

. Copyright-©-;-mégardon, . Tandonnet, and G. Sumner, This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, 2015.