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Abstract—The rational bacterial strain design is a major chal-
lenge in synthetic biology. This paper deals with the optimization
of a bacterial strain for specific processes taking place in a
bioreactor. Such problems are namely maximizing the growth and
the production of a product of interest. First, a model combining
the internal behavior of the cells with a bioreactor environment is
developed assuming mass balance and biological constraints. This
model assumes that the production of proteins can be controlled.
The problem is then solved with constant optimization variables
and returns an optimal strategy for synthetic strains.

Keywords: System Biology, Bioprocess Optimization, Bac-
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I. INTRODUCTION

Bioengineering is the application of engineering techniques

to biological systems. Biological systems and in particular

micro-organisms like bacteria have become a new way to

produce interest chemical product. Growing micro-organisms

in a bioreactor fed with glucose is common [1], [2] and the

challenge is now to design new bacterial strains with better

behavior for practical applications [3], [4], [5], [6]. Biologists

have usually created synthetic cell strains which are more

efficient, more resistant, faster to reproduce, etc., by trial and

error approaches. This procedure is time consuming, expensive

and does not guarantee any optimality, except the fact that they

are proved by experiments.

Among others, the difficulty to anticipate the behavior of

the obtained cells and the lack of property in the supposed

optimality are reasons why we need to model cells. The goal

is to model cellular behavior of a process in a bioreactor and

then to use optimization techniques to describe how would

perform a better strain. It is fundamental to understand and

predict internal behavior of cells in order, then, to design

strains optimized according to a given criterion in a given

context. Besides, the coupling with a model of bioreactor

directly includes the strain design in an application context

and allows a point of view different from a pure theoretical

or general one, under laboratory conditions.

There are plenty of models for cellular behavior [7], [8], [9],

[10]. Steady-state models under constraints [7], [8] are very

accurate and can return faithful cellular fluxes values of in-

ternal species. Unfortunately, the trade-off between prediction

capacity and simplicity turns these models to be very complex

to use and to connect to bioreactor models for example.

Indeed, they describe well the wild cells, but if we want to

design a new strain and compare it to the natural one, the

change would be difficult to interpret.

As a matter of fact, to model both the bioreactor and the

intracellular state, the idea developed in this paper is to keep

the same approach as those faithful steady-state models, i.e.

(i) focus on biological main species, (ii) arise biological con-

straints, and couple it with a dynamical model describing the

evolution of internal concentrations. Optimization techniques

can then be used on this comprehensible representation to

determine optimized strains.

This paper is organized as follows: Section II gives a de-

scription of an internal cell model and biological components

integrated in this model. Section III presents two optimization

problems, namely the improvement of growth and production

maximization of the product of interest and the constraints

to add in order to represent at best the biological behavior

of the cells. Section IV starts by setting the numerical and

computational details and then presents the solutions found for

two optimization problems. Section V gives some conclusions

and perspectives.

II. CELL DESCRIPTION AND PROCESS MODELING

This work focuses on processes in batch reactors (i.e. no

addition or removal of culture media), in finite time horizon,

exclusively. This choice was motivated by the simplicity of

the expressions in terms of concentration variation and of the

derived optimization problem.

A cell is considered to be an entity with a fixed volume

vbact and composed of different kinds of proteins, ribosomes,

internal substrate and metabolites. The reactor has a constant

volume Vreact and contains external substrate, the bacteria

colony and a product of interest produced by the cells. The

total volume of bacteria, denoted Vpop(t), equals the number

of bacteria Npop(t) multiplied by a unitary volume vbact.
In this paper, the bacteria and culture medium are assumed

homogeneous.

A. Mass Balance Equations

nξ(t) denotes the amount and [ξ](t) the concentration of

species ξ at time t. If ξ is internal to the cell, then

[ξint](t) =
nξint

(t)

Vpop(t)
(1)
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Otherwise, if ξ is external, then

[ξext](t) =
nξext

(t)

Vreact
(2)

Hence, the time derivatives are given by:

d[ξint]

dt
(t) =

1

Vpop(t)
× dnξint

dt
(t)− [ξint](t)

Vpop(t)
× dVpop

dt
(t) (3)

and
d[ξext]

dt
(t) =

1

Vreact

dnξext

dt
(t) (4)

The second term of the right hand side of (3) is due to

the growth of the colony. In fact, the specific growth rate μ
is defined as the logarithmic time derivative of the bacteria

population:

μ(t)
Δ
=

1

Npop(t)

dNpop

dt
(t) =

1

Vpop(t)

dVpop

dt
(t) (5)

Macroscopically, this term is often replaced by an empirical

Monod or Haldane expression [1]. With such an expression,

the growth rate only depends on external parameters, namely

the external substrate concentration. In this paper, μ will

depend on concentrations of cell internal compounds.

Denoting q the material flows for the whole colony, ex-

pressed in number of molecules per hour, the time derivatives

of amounts are given by:

dnξ

dt
(t) = ±qexchanged(t) + qproduced(t)− qconsumed(t) (6)

Those fluxes are global to the colony and the same for each

bacterium of the colony. Thus, they can be expressed per

bacterium. In addition, assuming that the medium is uniform,

they can be normalized by the volume of a cell and in this

way be defined per unit of volume:

ν(t) =
q(t)

vbactNpop(t)
=

q(t)

Vpop(t)
(7)

with ν(t) expressed in mole per liter per hour.

Keeping these notations, (6) becomes

1

Vpop(t)

dnξ

dt
(t) = ±νexchanged(t)+νproduced(t)−νconsumed(t)

(8)

To summarize equations (3), (4), (5) and (8),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[ξint]

dt
(t) =± νξint

exchanged(t) + νξint

produced(t)

− νξint

consumed(t)− μ(t)[ξint](t)

d[ξext]

dt
(t) =

(
± νξext

exchanged(t) + νξext

produced(t)

− νξext

consumed(t)
)
× Vpop(t)

Vreact

(9)

The time dependence is further omitted to simplify notations.

B. Cell internal model and dynamics

1) Resource Balance Analysis Approach: This work is

based on the Resource Balance Analysis (RBA) [8] philosophy

for the cell internal phenomena modeling and understanding.

The RBA approach gives a description of the inner behavior

of the cell in steady-state, using a constraints approach easily

reducible and adaptable to a bioprocess perspective. From the

cells point of view, steady-state means the internal concentra-

tions are constant as well as the growth rate. As a consequence,

the overall population growth is exponential.

While respecting all the stoichiometric constraints due to mass

balance in the cell, a cell has to (i) produce enough metabolic

precursors, macrocomponents, and internal compounds, re-

specting the mass conservation, (ii) maintain the rate of protein

production high enough to ensure the production of neces-

sary protein, (iii) limit its internal mass. Respecting theses

constraints, the RBA model finds the optimal repartition of

resources between the different cellular processes, especially

metabolic pathways and the ribosome concentration in the cell

ensuring the highest growth rate in steady-state.

In this paper, we kept the intrinsic constraints while reducing

the model dimension. Simplifications come from gathering

biological elements into ”pools”. The concentrations variations

are expressed as fluxes and these fluxes are subject to con-

straints. As said in the introduction, the goal is to obtain a

modestly sized model which permits better comprehension.

The pools are presented in Fig. 1 and in the following

subsections, and the constraints are defined in paragraph III-B

of the Optimization Section. The figure 1 also sums up the

exchanges between pools, where the notations will be defined

hereafter.

Fig. 1. General representation of the bioreactor and exchanges between
species

2) Metabolic Precursors: First of all, there is an internal

substrate pool, denoted Sin, gathering the metabolic precursors

necessary to build bigger elements in the cell (as for example

macrocomponents or proteins). Outside the cells, the substrate

is denoted Sext and the stoichiometry between Sin and Sext is

exactly one. It assumes there is no entrance cost for elements.

Thus the mass balance is:

Sext
νimport−→ Sin (10)



Remark: the ATP (Adenosine triphosphate), the free amino

acids and other tiny elements are all in this pool.

3) Metabolites & Macrocomponents Synthesis: XP denotes

an external chemical species of interest produced by the cells.

One mole of Sin can proceed αP mole of XP , leading to:

Sin

νXP−→ αP .XP (11)

XB is the pool of all the internal elements XBi different from

the ribosomes, the proteins, and whose concentration cannot

vary much around the nominal value. There are two categories:

the heavy macro components (the DNA, the membrane, the

cell wall) that are a few but really heavy in equivalent amino

acids and all the metabolites (the intermediates and products

of metabolism) which are very numerous but much more

lightweight in equivalent amino acids. The stoichiometry is

given by the αBi and summed up as follows:

Sin

νXB−→
∑
i

αBi
.XBi

= αB .XB (12)

4) Protein & Ribosomes Synthesis: The fluxes (10), (11)

and (12) are catalyzed by enzymes eB , eP and eT . All these

enzymes are produced by ribosomes eR and consuming a

specific amount of Sin. We pose that 1 mole of Sin produces

αei mole of ei.
eB is the pool of enzymes involved in the whole metabolic

network of the cell synthesizing XB . Their production is

modeled by:

Sin

νeB−→ αeB .eB (13)

eP are the enzymes producing (from Sin) and excreting XP

outside the cell. They are produced from Sin as:

Sin

νeP−→ αeP .eP (14)

eT are the membranous proteins. Among them, a constant

proportion is responsible for the substrate import inside the

cell. The reaction scheme is:

Sin

νeT−→ αeT .eT (15)

eR are the ribosomes. They follow the same production

process as proteins. They are considered as big proteins, 30

times bigger than other proteins in equivalent amino acids [11].

As other proteins, their production is modeled as:

Sin

νeR−→ αeR .eR (16)

C. Fluxes Expressions & Overall Dynamics

All fluxes expressions are based on a common structure:

the concentration of the enzymes which catalyze the reaction

multiplied by an efficiency. The formulation of this term

differs for the different reactions.

For the import, the efficiency saturates with the external sub-

strate concentration and the internal substrate concentration.

The catalysts are a proportion of membranous enzymes eT .

Then, denoting rimp the ratio of proteins causing the import

of S among all the membranous proteins, and with vT , KT

and KS three constants, the import flux formula is:

νimport =
rimpvT [Sext]

[Sext] +KT (1 + [Sin]/KS)
× [eT ] (17)

The efficiencies for the production of XB and XP depend

on the concentration of internal substrate. Hence, mass action

laws appear:

{
νXB

= kB [Sin]× [eB ]

νXP
= kP [Sin]× [eP ]

(18)

The enzymes and ribosomes production fluxes are catalyzed

by ribosomes. The efficiencies depend on the internal substrate

concentration and are controlled by the genes expressions level

uei . When uei is high, the production of ei is important. These

are the inputs of the system. They are positive and bounded

by a maximum value, uMAX .

Hence, the production flux of enzymes and ribosomes are:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

νeB = ueB [Sin]× [eR]

νeP = ueP [Sin]× [eR]

νeT = ueT [Sin]× [eR]

νeR = ueR [Sin]× [eR]

(19)

Consequently, from (9), fluxes expressions (17), (18) and

(19), and growth rate (5), the dynamics of the bioreactor can

be expressed with 9 state variables as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙[Sin] =
rimpvT [Sext][eT ]

[Sext] +KT (1 + [Sin]/KS)

− kP [eP ][Sin]− kB [eB ][Sin]

−
∑

B,P,T,R

uei [eR][Sin]− μ[Sin]

˙[eB ] = αeBueB [eR][Sin]− μ[eB ]

˙[eP ] = αeP ueP [eR][Sin]− μ[eP ]

˙[eT ] = αeT ueT [eR][Sin]− μ[eT ]

˙[eR] = αeRueR [eR][Sin]− μ[eR]

˙[XB ] = αBkB [eB ][Sin]− μ[XB ]

˙[Sext] = − rimpvT [Sext][eT ]

[Sext] +KT (1 + [Sin]/KS)
× Vpop

Vreact

˙[XP ] = αP kP [eP ][Sin]× Vpop

Vreact

V̇pop = μ× Vpop

(20)

As previously said, these dynamics need biological constraints

to fully characterize the problem.

Remarks: the problem can easily be generalized to more

metabolic pathways, other internal reactions and other internal

substrates, by reproducing the previous patterns of equations.



D. Growth Rate depending on Density Constraint

In this model, the bacteria are supposed to duplicate con-

tinuously, without perturbation on the enzymes action. The

duplication is motivated by the regulation of the internal

density. When the internal mass increases, the cell divides and

the total volume rises, so that the mass per cell (the density)

remains constant.

1) Cell Density: The intracellular mass is expressed in

equivalent amino acids and the density D is expressed in

equivalent amino acids per unit of volume.

The metabolites and the internal substrate mass is negligible

with respect to the proteins and ribosomes one. It simplifies

the expression as only the proteins and ribosomes contributions

are taken into consideration in the mass. Thus, the density is

defined as:

D =

∑
B,P,T,R

aaeinei

Vpop
=

∑
B,P,T,R

aaei [ei] (21)

where aaξ is the equivalent mass of chemical species ξ in

amino acids.

The membranous proteins and the cytosolic ones are all

counted for the ”internal density” without distinguishing mem-

branous and cytosolic densities.

2) Density regulation: Time derivative of the density in (21)

leads to:

Ḋ =
∑

B,P,T,R

aaei
˙[ei] (22)

From (20), it comes:

Ḋ =
∑

B,P,T,R

aaei

(
ueiαei [eR][Sin]− μ[ei]

)
(23)

and thus,

Ḋ =
∑

B,P,T,R

(
aaeiαeiuei

)
[eR][Sin]− μD (24)

In the literature, the density is observed to be constant in

steady-state [12]. Here, the density is supposed to be around

a constant value Dd. The evolution of D is supposed to be

given by a first-order dynamics with characteristic time τD
small compared to characteristic times of enzymes dynamics,

thus,

Ḋ = − 1

τD
(D −Dd) (25)

Hence, from (24)-(25), the volume growth regulates the den-

sity and induce a growth rate equal to:

μ =
[eR][Sin]

D

∑
B,P,T,R

(
aaeiαeiuei

)
+

1

τD
(1− Dd

D
) (26)

with D given by (21).

μ depends on the inputs uei and on the state variables, i.e. the

four [ei] and [Sin].

III. OPTIMIZATION

A. Optimization Problems

In this paper, the objective is to determine the optimal genes

expressions uei , that maximize either the final bacteria volume

or the XP produced. The problem is, thus, as follows:

max
ueB

,ueP
,ueT

,ueR

J

subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ≤ ueB , ueP , ueT , ueR ≤ uMAX

dynamics (20)

growth rate (26)

biological constraints(32)

(27)

The criterion J is either Vpop(t = tf ), or [XP ](t = tf ),
depending on the considered objective. The inputs uei are

assumed constant along all the culture duration.

Biological constraints that are included are detailed hereafter.

B. Biological Constraints

1) Translation: The translation of messengers RNA into

proteins involves ribosomes and thus the global production

flux of proteins cannot exceed what the ribosomes can pro-

duce. In fact, with kT the ribosome efficiency, a ribosome

efficiency constraint can be given by (28). Note that there is

no competition between the genes. This assumption is very

simplistic and reflects the absence of messengers RNA in this

model. ∑
B,P,T,R

νei ≤ kT [eR] (28)

From [13], the ribosome efficiency depends only on the growth

rate as follows:

kT (μ) = vkT

μ

KkT
+ μ

(29)

The two constants vkT
and KkT

can be computed using data

from [13].

In addition, with (19), the translation constraint is rewritten

as:

[Sin]
∑

B,P,T,R

uei ≤ vkT

μ

KkT
+ μ

(30)

2) Metabolism Constraints: As mentioned in II-B, XB

gathers all the internal elements (macrocomponents and

metabolites) whose concentration is crucial for the cell sur-

vival.

A metabolism constraint consists in the control of [XB ] around

its initial value XB0. A cell is assumed to be viable as long as

the metabolites and the macrocomponents are present in the

cell around a given concentration. This given concentration

is the initial one and the tolerance is a specific ratio. In this

paper, an arbitrary tolerance of 10% is chosen, leading to:

∀t, 0.9 ≤ [XB ](t)

XB0

≤ 1.1 (31)

Indeed, as in [7], the composition of macrocomponents

(DNA, cell wall, membrane, etc.) does not change with growth

rate.



3) Constraints Summary: Biological constraints impose 2

bounds on state variables and 1 constraint linking command

variables and states. These constraints are summarized below:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[XB ] ≤ 1.1×XB0

[XB ] ≥ 0.9×XB0

[Sin]
∑

B,P,T,R

uei ≤ vkT

μ

KkT
+ μ

(32)

with μ defined in (26). These constraints are added to problem

(27).

IV. SIMULATION RESULTS

A. Numerical and Computation Details

The initial states for the cell composition are given by the

RBA Model [11] in Table I and the reactor initial states are

provided in Table II. All parameters values can be found in

Table III [11]. gCDW denotes gram of Cell Dry Weight, it is

the common way to measure micro-organisms population in

constraint-based models and thus cellular volumes of bacteria.

aa unit stands for equivalent amino acids. In order to consider

TABLE I
INITIAL STATE VALUES [11]

mM.g−1
CDW (mM aa.g−1

CDW)

[Sin]0 0.1484 (0.1187)
[eB ]0 9.0.10−3 (3.24)
[eP ]0 0 (0)
[eT ]0 4.8.10−3 (1.728)
[eR]0 7.07.10−5 (0.7141)
[XB ]0 2.15.10−2 (0.1281)

TABLE II
INITIAL REACTOR STATE

[Sext]0 20 mM
[XP ]0 0 mM
Vreac 10 L
Vpop0 0.045 gCDW

the same orders of magnitude, the states variables are normal-

ized with the number of equivalent amino acids per molecule

of each chemical species (right column of Table I).

In problem (27), equations (20), (26) and (32) are discretized

with an explicit Euler method with 0.001h sampling time.

The four optimal uei are then determined using a Sequential

Quadratic Programming algorithm [14] (SQP, by means of

Matlab fmincon function) adding state constraints to ensure

concentration positivity. The algorithm is initialized by the

wild case (defined hereafter in section IV-B).

TABLE III
PARAMETERS VALUES USED BY THE SOLVER [11]

Notation Value (Unit)

vT 370× 3600 (h−1)
rimp 0.01
KT 0.8 (mmol.L−1)
KS 1 (mmol.L−1)
kB 12× 3600 (h−1)
kP 12× 3600 (h−1)
aaeB 360 (aa)
aaeP 360 (aa)
aaeT 360 (aa)
aaeR 10100 (aa)
aaSin

0.8 (aa)
aaXB

5.97 (aa)
aaXP

1 (aa)

Notation Value (Unit)
τD 2/60 (h)

Dd 5.682 (aa.g−1
CDW )

vkT
27× 3600 (aa)

KkT
0.5 (aa.h−1)

αeB 2.2.10−3

αeP 2.2.10−3

αeT 2.2.10−3

αeR 9.5.10−5

αB 1.67.10−4

αP 0.8

TABLE IV
AFFINITIES OF THE WILD CASE, THE OPTIMUM OF THE PROBLEM (27)

WITH THE OPTIMUM FOUND

Wild max(V ) pb. max([XP ]) pb.
ueB 186 300 (58%) 108 400 (51%) 81 800 (36%)
ueP 0 (0%) 0 (0%) 31 600 (14%)
ueT 99 380 (31%) 74 950 (35%) 86 500 (37%)
ueR 33 880 (11%) 30 970 (14%) 30 000 (13%)∑
uei 319 560 (100%) 214 320 (100%) 229 900 (100%)
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Fig. 2. In dotted turquoise, max Xp. In dashed blue max V. In solid red,
wild. Green crossed lines in XB(t) represent constraint (31).

B. Optimal solutions

Hereinafter, the wild case denotes the cell with inputs

computed to keep the enzymes concentration constant. These

inputs are supposed to be the natural resource allocation in a

genetically non-modified cell. In fact, the concentrations of

enzymes are constant in steady-state and the RBA model gives

the initial condition as steady-state values for exponential

growth. Computing uwild
ei is as simple as setting all the time

derivatives to zero in (20).

Optimization results are summarized in the table IV. The

ratio over the
∑

P,B,R,T

uei are bracketed.

The evolution of the internal and external concentrations is

given in Fig. 2. It compares the evolution of 3 cases: (i) wild

strains, (ii) strains optimized for growth, (iii) strains optimized

for production.



C. Interpretation
Comparing the strains maximizing the final state volume

with the wild cells, we can see that there is not much difference

at the final point. The benefit is of 5%, but the strategy is

different. Instead of a quasi constant growth rate, decreasing

with the external substrate exhaust as in the wild case, the

designed strain tries to save resources at the beginning and has

a bell-curved growth rate evolution. This curve ends exactly

at zero, as the cells manage to consume all the external and

internal substrates at final time.

However, the cells maximizing the growth shall end up in

bad shape as they do not have any internal resource to go on

producing enzymes. This model does not include any cellular

process for maintenance. Consequently, since the cell does not

spend any cellular resources for maintenance, the optimal cells

have no internal resources at final state.

Concerning the strain maximizing the product of interest

production, we can see that the growing strategy is similar to

the one maximizing the volume. The cells grow and produce

XP simultaneously.

In both optimized cases, the fraction of resources ueT /
∑

uei

is greater than in the wild case and ueR/
∑

uei is also greater,

while the total amount of resources is lower. It reflects a storing

strategy for the cell. In fact, less ressources are used to produce

enzymes. The growth rate is lower at the begnning of the

simulation but reaches an higher value than the wild strain at

mid-simulation leading to higher final biomass.

An interesting point to notice is that the sum of all inputs

is much smaller in designed strains than in wild one. The

translation constraint is not saturated in both modified strains

compared to the wild one.

Indeed, the ratio
uej∑
uei

is more significant for the concentra-

tions evolutions than the absolute value uei . In fact, the inputs

are related to the resources allocation in the different proteins

production. The sum of the inputs is the total allocation and

is, thus, closely linked to the growth rate. The ratios represent

the relative repartition of the resources between biomass,

product of interest synthesis, import and ribosome synthesis.

Hence, same ratios correspond approximately to same cellular

strategy, with different growth rates.

Inputs of enzymes devoted to metabolic networks and product

of interest synthesis are approximately half of the total inputs

in both cases. It looks like the maximizing volume strain is

not constrained that much with time and has enough time to

consume efficiently its resources even with having supplement

resources to produce XP . The difference is then that the strain

optimized for the production does not manage to consume all

the substrate as opposed to the maximizing volume strain.

V. CONCLUSION & PERSPECTIVES

In this paper, we propose a simple model coupling a

macro-description of bioreactor to the intracellular scale

of microorganisms. Using this new model of bioreactor,

we investigated the optimal strategies of resource allocation

between internal cellular processes maximizing the production

of biomass or of a compound of interest. The model leads to

an explicit expression of bacterial growth rate with respect to

internal biological mechanisms instead of using the standard

Monod relation.

Further work will consider model validation on experimen-

tal data. Other operating modes for the bioreactor like fed-

batch are also still to be explored and tested. Indeed, by

reconciling the infracellular and macroscopic scales, we can

optimize simultaneously complex strategies of genetic modi-

fications of bacterial strains (uei ) and of bioreactor control

(feed rate).

Biologically, uei is related to the cost of messenger RNAs

(mRNAs) coding for the protein ei. It aggregates all the

gene transcription process (synthesis of the mRNA from the

DNA sequence, the mRNA will further be translated by

ribosomes into proteins). The biological realization of the op-

timal trajectory uei remains obviously a biological challenge.

However, our model could drive the biological implementation

of synthetic uei .
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