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Abstract : I give a resolution of the Navier-Stokes [2] equation by using the series of Fourier.

Résumé: Je donne une résolution de l'équation de Navier-Stokes [2] par les séries de Fourier.
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I . Introduction 

The Navier–Stokes equations is considered to be the first step to understanding the
elusive phenomenon of turbulence, the  Clay Mathematics Institute in May 2000 made this
problem [2] one of its seven Millennium Prize problems  in mathematics. 

In this article I will prove that the Navier-Stokes equation have a solutions and I 
will give techniques to resolve this beautiful equation.

The Navier-Stokes equation, established in the nineteenth century by the French
Navier and the British Stokes. It is an equation that describes the velocity field of a fluid.
More specifically, it is a differential equation whose velocity field is unknown.

The Navier-Stokes equation is also used to predict the weather, the oceans simulate,
optimize aircraft wings ...

Knowing that a link between the Boltzmann equation and the Navier-Stokes equation
was established,   by studying the latter problem, I found that for to solve it we can reduce the
problem of  the heat-equation which  is known can  be  solved by several methods : one of the
first methods of solving the heat-equation was proposed by Joseph Fourier in his  treatise
analytical Theory of heat [1] in 1822 .

After giving a specific solutions to the Navier-Stokes equation,  I will  demonstrate
how to find all solutions of this equation if they exist, and I give the necessary and sufficient
conditions for their existence.

mailto:msghiar21@gmail.com
https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
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It will be seen in a remark that if the turbulence function is negligible, then the fluid will
tend to behave like an ideal gas.

II. Recall, notations and definitions

Here are the Navier-Stokes equation: 

ρ( ∂u
∂ t

+(u .∇u ))=−∇ p+μ∇2
u

div u=0
 

 Where  u is the velocity field,  p is the pressure ,the density of the fluid , and  μ  its
viscosity.

And :

∇=( ∂
∂x1

,…,
∂

∂xn
)

(u .∇u )=∑
1

n

ui
∂u
∂ x i

∇2u=∑
1

n
∂2u
∂x i

2

div u=∑
1

n
∂u
∂ x i

In the following, by dividing by ρ  ,  the Navier-Stokes equations is of the form :

∂u
∂ t

+(u .∇u )=α ∇ p+β∇2u

div u=0

III- Existence of  the solutions for the  Navier-Stokes equation : 

On each axis i, try to find the  solutions of the form :
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∂u i

∂ t
+(ui

∂ui

∂ x i
)=α

∂ pi

∂ xi

+ β
∂2u i

∂ xi
2

This is equivalent to:

∂u i

∂ t
+

∂( 1
2
ui

2 −α pi)
∂x i

=β
∂2 ui

∂ x i
2

 

If ui is a solution of the equation :

∂u i

∂ t
=β

∂2ui

∂x i
2

Such solutions  ui exist because the equation is analogous to the heat-equation which is
resolvable by the Fourier series [1].

If pi is such  
1
2

ui
2−α pi=f i (t ) , then 

∂( 1
2
ui

2
−α pi)

∂x i

=0
, and  the equation  is solved.

We do the same for all axes i until  i=n−1 .

For the axe i=n  :

Let be un=−∑
1

n−1

ui . 

We  have   :  
∂un

∂ t
=β

∂2un

∂ xi
2 ,  and  if  pn is  such   

1
2

un
2−α pn=f n (t ) ,  then
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∂( 1
2
un

2 −α pn)
∂xn

=0
, and the equation is solved for the axe n.

It is clear that if  e i is the  vector for  the axes i, then u=∑
1

n

u ie i is one solution of  the

Naviers-Stokes  equation if div u=0 .

Else, to have  div u=0 , we take  ui of the form :

ui=e
β t+(∑

1

n

xi)
,∀ i∈ {1,…,n−1 }

So we have solutions of the Navier-Stokes equation.

IV- Necessary  conditions :

Any solution (u , p ) of the Navier-Stokes equation verifies that :

ui
2−α pi=f i (t ) , ∀ i∈ {1,…,n }

Indeed : 

If  (u , p ) is a solution of the  Navier-Stokes  equation , we must have  :

∂u i

∂ t
+

∂( 1
2
ui

2
−α p i)

∂x i

=β
∂2 ui

∂ x i
2

Therefore :
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−
∂ui

∂ t
=

∂( 1
2
ui

2 −α pi−β
∂u i

∂x i
)

∂x i

And :

−∂x i

∂ui

∂ t
=∂ (1

2
ui

2−α pi −β
∂ui

∂ x i
)

When the fluid flows in one direction, then the space-time flows in the opposite direction
with the same speed value:

We deduce that : 

−ui ∂ui=∂ (1
2

ui
2−α pi−β

∂ui

∂ x i
)

Therefore : 

0=∂(ui
2 −α p i−β

∂ui

∂x i
)

And : 

ui
2−α pi −β

∂ui

∂ xi

=f i (t )

So :

∑
1

n

ui
2 −α p i− β

∂ui

∂x i

=f (t )
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And consequently  ∑
1

n

ui
2 −α p i=g (t ) because div u=0 .

We deduce therefore that :

ui
2−α pi=hi (t ) ,∀ i∈ {1,…,n } because :   ∀ i∈ {1,…,n } , ui

2−α pi=li (x i , t ) ,  and we must

have  
∂ (ui

2−α pi )
∂ x j

=0∀ j∈ {1,…,n } .

V- Conclusion :

Theorem: 
The  Navier-stokes  equation have a  solution,  Moreover, any solution (u, p) must check:

ui
2−α pi= f i (t ) and   

∂u i

∂ t
=β

∂2ui

∂x i
2 ,  ∀ i∈ {1,…,n } .  where   u=∑

1

n

ui ei and

p=∑
1

n

pi e i .

Conversely any pair  (n, p) satisfying these conditions  with  div u=0 is solution of the
Navier-Stokes equation.

Remarks : 

1- We note in the above equations the dependence between pressure, density, speed vector
fields and viscosity

2-   By  dividing  by   α  in  the  equation   ui
2−α pi=f i (t ) we  deduce  that :

ρ ui
2− p i=ρ f i (t ) where 

1
α
=ρ is the density of the fluid.

Let's ρ=
m
V

, we will have : mu i
²−Vpi=mf i (t ) .

And the equation mu i
²−Vpi=mf i ( t ) is linking energy, mass, pressure, temperature, volume

and time ... This may not be surprising since a link between the Boltzmann equation and the
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Navier-Stokes has been established.

When  f i (t )   tends to  0,  we will have  mu i
²≃Vp i , there is therefore a tendency towards

the law of an ideal gas, and the function f i (t ) can be regarded as a turbulent function.
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