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Abstract A new approach is introduced in this arti-
cle for describing and visualizing time series of curves,

where each curve has the particularity of being sub-

ject to changes in regime. For this purpose, the curves

are represented by a regression model including a la-
tent segmentation, and their temporal evolution is mod-

eled through a Gaussian random walk over low dimen-

sional factors of the regression coefficients. The result-

ing model is neither else than a particular state-space

model involving discrete and continuous latent vari-
ables, whose parameters are estimated across a sequence

of curves through a dedicated variational Expectation-

Maximization algorithm. The experimental study con-

ducted on simulated data and real time series of curves
has shown encouraging results in terms of visualization

of their temporal evolution anf forecasting.

Keywords Time series of curves · functional
data · visualization · mixture of regressions ·
segmentation · dynamic factor analysis · state-space

model · variational EM algorithm · variational

filtering · railway condition monitoring · forecasting

1 Introduction

Functional data or curve-valued data are becoming mo-

re and more frequent in many applicative fields includ-
ing demography (Hyndman and Ullah 2007), electricity
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(Ferraty and Vieu 2006), finance (Diebold and Li 2006;
Hays et al. 2012), meteorology (Besse et al. 2000) to

cite just a few examples. More particularly, this paper

is concerned with the issue of dimension reduction and

visualization of time series of curves. The application
which motivated this study concerns the monitoring

of the railway switches which enable trains to change

tracks at junctions. This task is accomplished by ana-

lyzing specific times series of curves, each curve being

the electric power consumed during a switch operation
whose duration is about 5 seconds. In this context, two

temporal aspects have to be taken into account in the

data representation: the time within curves due to their

functional nature and the time between curves which
stipulates that the curves are ordered.

Basically, since a time series of curves can be viewed

as a set of multivariate observations, it can be analyzed

through classical multivariate methods such as princi-

pal component analysis (PCA) (Pearson 1901; Jolliffe

2002), factor analysis (FA) (Lawley 1940) or mixture
of factor analyzers (McLachlan et al. 2003; Baek et al.

2010). But, even if these methods are able to repre-

sent multivariate data into a fewer dimensional space,

they are not designed to capture the temporal aspects
evoked previously. In particular, the same representa-

tion is obtained even after changing the order of time

of the data, which may make interpretation difficult.

One can use dynamic factor analysis (Molaneaar 1985;

Zuur et al. 2003), whose goal is to extract from a mul-
tivariate time series a lower dimensional time series.

Compared to PCA and FA, it constitutes a better al-

ternative for the curves temporal order to be considered

into the representation. Another alternative is the func-
tional principal component analysis (Ramsay and Sil-

verman 1997; Ferraty and Vieu 2006), which treats the

data not just as multivariate observations, but as the
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discretized values of smooth functions, and allows the

time within each curve to be taken into account. An ex-

tension of functional principal component analysis has

been developed by Gareth et al. (2000) to deal with

curves measured at irregular and sparse sets of time
points which can differ across curves. But again, even

if the temporal aspect within curves is taken into ac-

count, this is not the case of the order between curves.

To forecast demographic curves, Hyndman and Ullah
(2007) have adopted a two-step approach which consists

in first decomposing the curves into a spline basis func-

tion expansion and then fitting univariate time series

models such as autoregressive moving-average (ARMA)

models to each of the factors. Hays et al. (2012) have
recently introduced, within the context of yield curve

forecasting, an approach merging these two steps into a

single model which consists in a dynamic factor analysis

model with curve-valued factor loadings.

For our purposes, as the power consumption curves

to be analyzed are non linear and possibly made of

several regimes, a mixture of regression models, which

uses logistic functions to manage the transitions be-

tween regimes (Chamroukhi et al. 2009b) is exploited.
The proposed dynamic factor model then consists in al-

lowing the regression coefficients of the latter model to

evolve across the curves through dynamic latent factors.

This model can be formulated as a specific state-space
model (Shumway and Stoffer 2011; Kalman 1960) in-

volving discrete latent variables (to represent the regi-

mes within curves) and continuous latent variables (to

represent the dynamic across the curves). This latent

variable context enables parameter estimation via the
Expectation-Maximization (EM) algorithm within the

framework of variational approximations (Jordan et al.

1999; Beal 2003). Although this paper focused on spe-

cific time series of curves, the developed methodology
is quite general and can be applied to other functional

time series.

The paper is organized as follows. Section 2 briefly

recalls the dynamic factor analysis model and Section 3

gives an overview of the specific latent-segmentation re-
gression model used for modeling our power consump-

tion curves. Then, Section 4 introduces the proposed

dynamic factor analytic model for time series of curves

and its parameter estimation via a variational EM algo-
rithm. In Section 5, the proposed methodology is used

to analyze both sequences of synthetic curves and real

world sequences including power consumption curves

acquired from successive switch operations on the French

railway network.

Throughout this paper, the following notations will

be used. An observed time series of curves will be de-

noted by (x1, . . . ,xT ), where, ∀t = 1, . . . , T ,

xt = (xt1, . . . , xtS)
′ ∈ RS consists of S real values ob-

served over a regularly spaced time grid indexed by the

integers s = 1, . . . , S. The segments specific to the pro-

posed model will be indexed by k = 1, . . . ,K, where

K is the number of segments. To simplify the nota-
tions, the sums and products relative to subscripts t, s

and k will be written without indicating their limits of

variations. For instance,
∑

t,s will refer to
∑T

t=1

∑S

s=1,∑
t,s,k will refer to

∑T

t=1

∑S

s=1

∑K

k=1,
∑

k will refer to
∑K

k=1,
∏

t,s will refer to
∏T

t=1

∏S

s=1 and
∏

t will refer

to
∏T

t=1. Using the same convention, the abbreviations

∀t, s, k, ∀t, s, ∀s and ∀k will also be used. The transpose
of a matrix M will be denoted as M ′.

2 Review of dynamic factor analysis

Before addressing the methods specific to functional

data, this section briefly reviews dynamic factor analy-

sis (DFA) also known as common trend analysis, which
has its origins in both the fields of economics (Geweke

1977; Harvey 1989) and psychology (Molaneaar 1985).

The dynamic factor analysis model supposes that

the observed S-dimensional time series (xt)t=1,...,T de-

pends linearly on a q-dimensional (q ≪ S) series of

factors (f t)t=0,...,T distributed according to a Gaussian
random walk. It is defined by:

xt = Af t + b+ εt εt ∼ N (0,W ) ∀t, (1)

f t = f t−1 + ηt ηt ∼ N (0,V ) ∀t, (2)

where A is the S × q factor loadings matrix and b is

a S × 1 level vector. The random vectors εt ∈ RS and

ηt ∈ R
q are independent Gaussian noises with zero

mean and respective covariance matrices W and V .
The model also assumes that the initial factor f0 is

distributed, independently from εt and ηt, according

to the density N (µ0,V 0). From this formulation, the

dynamic factor analysis model can be seen as a general-

ization of the classical factor analysis model, where the
factors are supposed to evolve over time. This model is

also part of the more general framework of state-space

models (Shumway and Stoffer 2011), the particularity

of dynamic factor analysis being the assumption that
states have a lower dimension than observations.

For this model to be identifiable, the following re-
strictions, which impose q2 + q constraints on the pa-

rameters, are generally suggested (Harvey 1989; Bai

and Wang 2015): (i) matrix A = (Aij) satisfies Aij = 0

if j > i and the diagonal elements of its first q×q block
are strictly positive; (ii) V = Iq where Iq is the iden-

tity matrix in Rq; (iii) the first q elements of b are set

to 0.
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Direct optimization techniques were originally used

to estimate the set of parameters θ = {µ0,V 0,A, b,W }
of the dynamic factor model (Molaneaar 1985). How-

ever, due to the latent variables context of DFA, the

Expectation-Maximization (EM) algorithm (Dempster
et al. 1977; McLachlan and Krishnan 2008) provides an

efficient framework for parameter estimation. Inspired

by the general formulation introduced by

Shumway and Stofer (1982) for state space models, Zuur
et al. (2003) have proposed an Expectation Maximiza-

tion algorithm to estimate the parameter θ maximizing

the log-likelihood in the framework of a marine envi-

ronmental application. Once the parameters have been

estimated, the latent factors are recovered using the ex-
pectation:

f̂ t = E[f t|x1, . . . ,xT ; θ] ∀t, (3)

computed via Kalman filtering and smoothing recur-

sions (Shumway and Stofer 1982; Zuur et al. 2003).

3 Regressive modeling of curves with changes

in regime

This section is concerned with the issue of modeling
individual curves that may be subject to changes in

regime, a problem which is also known as time series

segmentation or change-point detection. We tackle this

problem using a polynomial regression mixture model
with time varying proportions. This model, so-called

“regression model with hidden logistic process” (RHLP),

was originally introduced in (Chamroukhi et al. 2009b)

within a maximum likelihood framework. It may be

noted that the changepoint detection problem can effi-
ciently be tackled using Gaussian processes as models

describing the temporal dependance within segments,

and Bayesian approaches for parameters and change-

point estimation (Fearnhead and Liu 2007; Saatçi et al.
2010; Garnett et al. 2010). Although the latter approach

has not been adopted in this article, it remains an effi-

cient alternative for online time series segmentation.

We start by describing the curves with changes in

regime specific to railway switch operations. Then, the
RHLP model initiated in (Chamroukhi et al. 2009b)

is succinctly recalled. Finally, its matrix formulation

is highlighted with a view to introducing our dynamic

factor analytic model.

3.1 Power consumption curve sequences acquired from

switch operations

As mentioned in the introduction, the main motivation

behind this study was the monitoring of the railway

switches that allow trains to change tracks at junc-

tions. A switch operation consists in moving laterally

some linked tapering rails (also known as points) into

one of two positions. In the case of the French high

speed lines, this operation is generally operated by an
electrical motor (380 Volts - alternative current).

The monitoring task is performed by temporally
analyzing sequences of electrical power consumption

curves acquired during switch operations. Each curve

is sampled at 100 Hz (100 points recorded per second)

and observed over about 5 seconds (about 500 points

per curve). Figure 1 shows a sequence of 50 power con-
sumption curves acquired during successive switch op-

erations.
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Fig. 1 Sequence of 50 power consumption curves acquired during
successive switch operations.

The specificity of the curves to be analyzed in this
context is that they are subject to various changes in

regime as a result of five successive mechanical move-

ments of the physical components associated with the

switch mechanism: motor activation, points unlocking,

points translation, points locking and friction (phase
where an additional effort is applied to ensure the lock-

ing).

The next section gives a general description of the

regression model with hidden segmentation, originally

introduced in (Chamroukhi et al. 2009b), for the model-

ing of a single curve xt(t = 1, . . . , T ) subject to changes

in regime.

3.2 Definition of the RHLP model

The regression model with hidden logistic process
(Chamroukhi et al. 2009b), so-called RHLP, assumes

that each individual observation xts of the curve xt fol-

lows one of K polynomial regression models associated
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to K regimes involved in the generation process of the

curve. Let us denote by zt = (zt1, . . . , ztS)
′ the hidden

random process associated to xt, with zts ∈ {1, . . . ,K},
which specifies the assignment of the xts to the differ-

ent (sub)regression models. It should be noticed that
the variable zts can equivalently be represented by the

vector of binary variables (ztsk)k=1,...,K , where ztsk = 1

if zts = k and ztsk = 0 otherwise. The RHLP model is

then defined as follows:

xts =
∑

k

ztsk (u
′
s βtk + σk εts) ∀t, s, (4)

zts ∼M(1;π1(s,α), . . . , πK(s,α)) ∀t, s, (5)

where εts is a random Gaussian noise with zero mean
and unit variance, us = (1, s, s2, . . . , sp)′ is the vector of

regressors associated to a p-th order polynomial, βtk ∈
R

p+1 and σk > 0 are respectively the coefficient vectors

and the noise standard deviation of the k-th polynomial
regression model.

To segment the time series xt into contiguous seg-
ments, which fulfills the requirements of our applica-

tion, the latent variables zts are supposed to be ran-

domly drawn according to the multinomial distribu-

tionM(1;π1(s,α), . . . , πK(s,α)), where the probabili-
ties πk(s,α) are defined as the logistic functions

πk(s,α) = P (ztsk = 1;α)

=
exp(αk0 + αk1 s)∑K

ℓ=1 exp(αℓ0 + αℓ1 s)
, (6)

with α = (αk0, αk1)k=1,...,K ∈ R2K . It should be no-

ticed that the logistic functions verify 0 < πk(s;α) < 1
and

∑K

k=1 πk(s;α) = 1. For the logistic function pa-

rameters to be identifiable, it is supposed that

(αK0, αK1) = (0, 0) (Jiang and Tanner 1999). There-

fore, in the rest of the paper, it will be assumed that
α ∈ R2K−2.

From the model formulation, it can be shown that
(xt1, . . . , xtS) is a sample independently distributed ac-

cording to the mixture density

P (xts; θt) =
∑

k

πk(s;α)N (xts;u
′
sβtk, σ

2
k), (7)

where θt = {α, σ2
1 , . . . , σ

2
K ,βt1, . . . ,βtK} is the param-

eter of the model.

Given a curve xt = (xt1, . . . , xtS)
′, the parame-

ter θt is estimated by maximizing the log-likelihood
logP (xt; θt) through the EM algorithm (Dempster et al.

1977) whose complete description can be found in

(Chamroukhi et al. 2009b,a). As an illustration, Fig-

ure 2 shows the “static” modeling provided by this ap-
proach on a power consumption curve, with K = 5

segments corresponding to the physical regimes, and a

polynomial order p = 3. This specific polynomial order

was found by the experts to be appropriated to rep-

resent the regimes involved in the power consumption

curves. On the upper graphic, the observed curve is dis-

played in gray and the estimated polynomial curves are

colored, the solid lines corresponding to the intervals
where logistic probabilities are greater than 0.8. The

bottom graphic corresponds to the estimated logistic

probabilities associated to the five components.

0 50 100 150 200 250 300 350 400 450

500

1000

1500

2000

X
ts

: 
P

o
w

e
r 

(W
a

tt
s
)

0 50 100 150 200 250 300 350 400 450
0

0.5

1

Time s

L
o

g
is

ti
c
 p

ro
b

a
b

ili
ti
e

s

Fig. 2 Regression model estimated from a power consumption
curve, with K = 5 segments and a polynomial order p = 3: (top)
the observed curve is displayed in gray and its estimated polyno-
mials are colored; (bottom) corresponding logistic probabilities

The next section describes the matrix formulation

of the RHLP model, that will be useful to introduce the

dynamic factor analytic extension of this model.

3.3 Matrix formulation of the model

The equivalent matrix formulation of the RHLP model,

in its homoscedastic version, that highlights the linear

relationship between xt and the complete set of regres-
sion coefficients βt = (β′

t1, . . . ,β
′
tK)′ is defined by

xt = g(zt)βt + σ εt, (8)

where g(zt) =
(
z̃t1U . . . z̃tKU

)
and εt ∼ N (0, IS) is

a Gaussian noise in RS , and where z̃tk(k = 1, . . . ,K)

and U are respectively the diagonal matrix and the

regression matrix defined by

z̃tk =



zt1k 0

. . .

0 ztSk


 and U =



u′
1
...
u′
S


 . (9)

From this matrix formulation, the homoscedastic ver-
sion of the RHLP model can be seen as a basic regres-

sion model whose design matrix g(zt) depends on the

latent segmentation zt.
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4 Dynamical factor modeling of a sequence of

curves with changes in regime

The dynamic factor analytic extension of the RHLP

model is introduced in this section, where we are in-

terested in modeling the temporal evolution of a se-

quence of curves. It consists in allowing the vector βt,

that concatenates the regression coefficients of the K

segments, to evolve across the curves through low di-

mensional dynamic factors. This kind of modeling is

therefore of great interest for data visualization.

In this section, we denote as (z1, . . . , zT ) the dis-

crete random processes associated to the sequence
(x1, . . . ,xT ), with zt = (zt1, . . . , ztS)

′, where zts ∈
{1, . . . ,K}.

4.1 Model definition

Based on the matrix formulation described in Section

3.3, the proposed dynamic factor model for a sequence

of curves is defined by the equations

xt = g(zt) · (Af t + b) + σ εt ∀t, (10)

f t = f t−1 + ηt ∀t, (11)

zts ∼M(1;π1(s,α), . . . , πK(s,α)) ∀t, s, (12)

where the initial factor f0 is considered here as a pa-
rameter, εt ∼ N (0, IS) and ηt ∼ N (0, Iq) are re-

spectively S-dimensional and q-dimensional Gaussian

noises, A is a K(p + 1) × q matrix and b is a

K(p+1)× 1 level vector. The q-dimensional latent fac-

tors f t generating the regression coefficients are sup-
posed to evolve over time according to a Gaussian ran-

dom walk with variance Iq. For identifiability purposes,

the matrix A′A is constrained to be diagonal and, as

suggested by Zuur et al. (2003), the estimates of
(f1, . . . ,fT ) are centered (see Section 5.2).

Although more general models such as ARMA mod-

els could have been used to describe the latent factors,

a Gaussian random walk was preferred in this study for

its simplicity and by the fact that no prior information

about the factors dynamic was available. As for the
model defined by Equations (4) and (5), we suppose

that the components zts(s = 1, . . . , S) of the random

process zt are independently generated from the multi-

nomial law M(1;π1(s,α), . . . , πK(s,α)), where the lo-
gistic functions πk(s,α) are those defined by Equation

(6). The set of parameters of this model will be denoted

by θ = {α,f0, b,A, σ2}.

It can be shown that conditionally on f t, xts is dis-

tributed according to the mixture of Gaussian densities

P (xts|f t; θ) =
∑

k

πk(s;α)×

N (xts;u
′
s (Akf t + bk), σ

2), (13)

and that, conditionally on f t−1, f t is distributed ac-

cording to the Gaussian density

P (f t|f t−1; θ) = N (f t;f t−1, Iq), (14)

where, ∀k = 1, . . . ,K, Ak and bk are respectively the
(p+1)× q matrix and (p+1)× 1 vector resulting from

the following block decompositions of A and b:

A =



A1

...

AK


 and b =



b1
...

bK


 .

Figure 3 shows the graphical representation of the

variables involved in the proposed model and their con-

ditional dependencies.

f1 f2 ft fT

x11 x21 xt1 xT1

x1s x2s xts xTs

x1S x2S xtS xTS

z11

z1s

z1S

z21

z2s

z2S

z t1

z ts

z tS

zT1

zTs

zTS

Fig. 3 Graphical representation of the proposed dynamic factor
analytic model for functional data; the observed variables are
displayed in gray and the discrete variables are the squared ones

4.2 A dynamic model with specific functional factor

loadings

The model described in Section 4.1 can also be regarded
as a dynamic factor model with specific functional fac-

tor loadings. For this purpose, let us observe that Equa-

tion (10) can be developed as

xts =

(
K∑

k=1

ztsku
′
sbk

)
+

q∑

j=1

ftj

(
K∑

k=1

ztsku
′
sakj

)
+σ εts,

where the ftj(j = 1, . . . , q) are the components of f t,
the εts(s = 1, . . . , S) are the components of εt and the

akj(j = 1, . . . , q) are the columns of the block Ak of

matrix A.
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Approximating each variable ztsk by its expectation

πk(s;α), which no longer depends on t, leads to the

following model:

xts = µ(s) +ϕ(s)′f t + σ εts ∀t, s, (15)

f t = f t−1 + ηt, ∀t, (16)

with ϕ(s) = (ϕ1(s), . . . , ϕq(s))
′, where

ϕj(s) =
∑

k

πk(s;α)u′
sakj ∀j = 1, . . . , q, (17)

µ(s) =
∑

k

πk(s;α)u′
sbk. (18)

This model corresponds to a functional dynamic factor

model as the one introduced by Hays et al. (2012) whose

loadings are sums of polynomials weighted by logistic
functions.

5 Parameter estimation

Given an observed curve sequence x = (x′
1, . . . ,x

′
T )

′,
the usual way to estimate the parameters of the pro-

posed dynamic factor model is to maximize the log-

likelihood criterion. Denoting the hidden sequences by

z = (z′
1, . . . , z

′
T )

′ and f = (f ′
1, . . . ,f

′
T )

′, this criterion

is written as:

L(θ) = logP (x; θ)

= log

(
∑

z

P (z; θ)

∫
P (x,f |z; θ)df

)
, (19)

which corresponds to the logarithm of a mixture of KTS

Gaussian components, each corresponding to a partic-

ular realization of the sequence z. Although this la-

tent variable model suggests using the EM algorithm

for parameter estimation, the direct application of this

algorithm is intractable. This is due to the fact that the
number of probabilities required by the E-step increases

exponentially with T and S. An alternative solution

would consist in evaluating the required posterior dis-

tributions using Monte Carlo Markov Chain (MCMC)
approaches (Neal 1993), but in this paper, we opted for

a variational method (Jordan et al. 1999; Beal 2003;

Blei and Lafferty 2006) which is computationally more

efficient than MCMC. It results in the maximization

of a lower bound of the log-likelihood L(θ) using an
EM-like algorithm.

5.1 Variational criterion

According to the variational approximation theory (Jor-
dan et al. 1999; Beal 2003), we maximize the lower

bound of the log-likelihood, defined by

F(Q, θ) = EQ

[
log

(
P (x,f , z; θ)

Q(z,f)

)]
, (20)

where Q denotes any probability distribution over the

hidden variables (z,f) and EQ[ · ] denotes the expec-

tation operator over these variables, with respect to

Q. Starting from an initial parameter θ(0), the EM al-

gorithm then consists in alternating the following two
steps until convergence (Neal and Hinton 1998):

– E-step : Q(c+1) = argmaxQF(Q, θ(c)),

– M-step : θ(c+1) = argmaxθ F(Q(c+1), θ).

Due to the multiple variables interactions of the pro-

posed model, some constraints are added to the dis-

tribution Q so that the maximization defined by the

E-step can be solved more easily. For our purposes, the
usual mean field approximation (Jordan et al. 1999;

Beal 2003), which postulates that the distribution Q

can be factorized independently over the latent vari-

ables, has been adopted. It has further been assumed
that the distribution of the continuous latent variables

f t is Gaussian. Consequently, the distribution Q can

be written as

Q(z,f) =
∏

t,s,k

(τtsk)
ztsk

∏

t

N (f t;µt,Σt), (21)

where the τtsk, which verify τtsk > 0 and
∑

k τtsk = 1,
are the expectations of the binary variables ztsk, and

the couples (µt,Σt) are the means and covariance ma-

trices of the continuous latent variables f t. Since the

distribution Q is entirely characterized by the three sets
of variational parameters τ = (τtsk)tsk, µ = (µt)t and

Σ = (Σt)t, the criterion F can be written as a function

of (τ ,µ,Σ, θ). As shown in Appendix A, this criterion

is given, up to an additive constant, by

F(τ ,µ,Σ, θ) =
∑

t,s,k

τtskAk(xts,µt,Σt, θ)

+
∑

t

B(µt−1,µt,Σt−1,Σt)

−
∑

t,s,k

τtsk log τtsk

+
1

2

∑

t

log det(Σt), (22)

with

Ak(xts,µt,Σt, θ) =

log
(
πk(s;α)N (xts;u

′
s (Akµt + bk), σ

2)
)

−
1

2σ2
(u′

sAkΣtA
′
kus) ∀t, s, k, (23)

and

B(µt−1,µt,Σt−1,Σt) = logN (µt;µt−1, Iq)

−
1

2

(
Tr(Σt) + Tr(Σt−1)

)
∀t, (24)
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by adopting the convention µ0 = f0 and Σ0 = 0.

5.2 Variational EM algorithm

Starting from an initial parameter θ(0), the proposed

variational EM algorithm consists in alternating the
following two steps until convergence of the criterion

F .

Variational E-step

Denoting by c the current iteration, this step consists

in solving the problem

(τ (c+1),µ(c+1),Σ(c+1)) = argmax
(τ ,µ,Σ)

F(τ ,µ,Σ, θ(c)),

which itself requires using a fixed point iterative pro-

cedure. In this article, we retain the strategy which con-

sists in starting from the variational parameters
(µ(c),Σ(c)) obtained at the previous iteration, and then

iterating the following three maximizations until con-

vergence:

τ (c+1) = argmaxτ F(τ ,µ
(c),Σ(c), θ(c)), (25)

µ(c+1) = argmaxµ F(τ
(c+1),µ,Σ(c), θ(c)), (26)

Σ(c+1) = argmaxΣ F(τ
(c+1),µ(c+1),Σ, θ(c)). (27)

This strategy gave good results in practice. It should

be noticed that, with this strategy, the algorithm has

to be initialized with the triplet (θ(0),µ(0),Σ(0)).

The maximization problem defined by Equation (25)
is solved, under the constraints

∑
k τtsk = 1, ∀t, s. The

method of Lagrange multipliers yields, ∀t, s, k,

τ
(c+1)
tsk =

exp
(
Ak(xts,µ

(c)
t ,Σ

(c)
t , θ(c))

)
∑

ℓ exp
(
Aℓ(xts,µ

(c)
t ,Σ

(c)
t , θ(c))

) . (28)

As shown in Appendix B, the sequence µ(c+1) veri-

fying Equation (26) is given by the following Forward-

Backward recursions:

– Forward: starting from Σ̃0 = 0 and µ̃0 = f
(c)
0 , com-

pute, for t = 1, . . . , T ,

Σ̃t =
[
D

(c+1)
t + (Iq + Σ̃t−1)

−1
]−1

, (29)

µ̃t = µ̃t−1 + Σ̃t

(
d
(c+1)
t −D

(c+1)
t µ̃t−1

)
, (30)

with

d
(c+1)
t =

1

σ2(c)

∑

s,k

τ
(c+1)
tsk A

(c)
k

′
us(xts − u′

sb
(c)
k ), (31)

D
(c+1)
t =

1

σ2(c)

∑

s,k

τ
(c+1)
tsk A

(c)
k

′
usu

′
s A

(c)
k . (32)

– Backward: starting from µ
(c+1)
T = µ̃T , compute ret-

rospectively, for t = T − 1, . . . , 1,

µ
(c+1)
t = µ̃t + J t

(
µ

(c+1)
t+1 − µ̃t

)
, (33)

with J t = Σ̃t(Iq + Σ̃t)
−1.

For reasons of identifiability of the initial latent fac-

tor, we adopt the strategy proposed by Zuur et al.

(2003) which consists, after performing the Forward-

Backward recursions, to center the sequence
(µ

(c+1)
1 , . . . ,µ

(c+1)
T ), by setting

µ
(c+1)
t ← µ

(c+1)
t −

1

T

∑

t

µ
(c+1)
t ∀t. (34)

This strategy, which works well in practice, has been

used conjointly with the updating of the initial latent

factor f
(c)
0 (M-step).

The maximization defined by Equation (27) can eas-

ily be solved by canceling the partial derivatives of F
with respect to each of the matrices Σt. We get

Σ
(c+1)
t =





(
2Iq +D

(c+1)
t

)−1

if t ≤ T − 1,
(
Iq +D

(c+1)
T

)−1

if t = T.
(35)

M-Step

This step consists in computing the parameter vector

θ(c+1) which maximizes F w.r.t. θ. This is done by

performing the following three maximizations:

f
(c+1)
0 = argmaxf0

F(τ (c+1),µ(c+1),Σ(c+1), θ), (36)

α(c+1) = argmaxαF(τ
(c+1),µ(c+1),Σ(c+1), θ), (37)

(A(c+1), b(c+1)) =

argmax(A,b) F(τ
(c+1),µ(c+1),Σ(c+1), θ), (38)

σ2(c+1)

= argmaxσ2 F(τ (c+1),µ(c+1),Σ(c+1), θ), (39)

detailed in Appendix C. It should be noticed that α(c+1)

is obtained through the well-known Iteratively Reweigh-
ted Least Squares (IRLS) algorithm (Green 1984) which

is equivalent to a Newton-Raphson algorithm.

Pseudo-code of the Variational EM algorithm

The main steps of the proposed variational EM proce-
dure are summarized in Algorithm 1 whose Matlab code

can be obtained from the following link:

http://allousame.free.fr/softwares/sfdfa/.
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Algorithm 1: Variational EM algorithm for seg-

mental functional dynamic factor analysis

Input: sequence of curves (x1, . . . ,xT ), number of
factors q, number or segments K, polynomial
order p, initial parameter θ(0), initial variational
parameters (µ(0),Σ(0))

c ← 0
repeat

E-step

Compute τ
(c+1)
tsk

∀t, s, k (Eq. 28)

Compute µ
(c+1)
t ∀t (Eq. 29-34)

Compute Σ
(c+1)
t ∀t (Eq. 35)

M-step

Compute f
(c+1)
0 (Eq. 68)

Compute α(c+1) (IRLS: Algo. 3)

Compute b
(c+1)
k

and A
(c+1)
k

∀k (Eq. 74,75)

Transform A(c+1), f
(c+1)
0 and µ(c+1) (Eq. 76-78)

Compute σ2(c+1)
(Eq. 79)

c ← c+ 1
until the variational criterion F converges;

Output: Parameter vector θ̂ and variational parameters
(τ̂ , Σ̂, µ̂)

Starting values

It is well known that EM-type algorithms converge to-

ward a local optimum of their objective function, which

depends on initial parameters. This is even more pro-
nounced for relatively large parameter sizes. To allow

our variational EM algorithm to converge toward a good

local optimum, several strategies were tested. Finally,

the following initialization strategy has been retained:

– the multivariate version of the RHLP approach is
jointly run on the curves (x1, . . . ,xT ); more specifi-

cally, this method allows common logistic regression

coefficients and variances to be estimated from these

curves;

– the initial parameters α and σ2 are respectively set
to the obtained logistic regression coefficients and

averaged variances;

– a joint segmentation of the curves (x1, . . . ,xT )

(along the time axis subscripted by s) is deduced
from the logistic functions πk( · ,α)(k = 1, . . . ,K);

for each curve xt (t = 1, . . . , T ), let βt ∈ R
K(d+1)

denote the regression coefficients concatenated over

the K segments;

– the parameters A and b are initialized by applying
a classical dynamic factor analysis with q factors on

the multivariate data set (β1, . . . ,βT );

– the variational parameters µt (t = 1, . . . , T ) are ini-

tialized as the estimated dynamic factors (see Equa-
tion (3)) and the initial factor f0 is set to µ1;

– finally, the variational parameters Σt (t = 1, . . . , T )

are initialized to the identity matrix.

5.3 Algorithmic complexity

The algorithmic complexity of the variational E-Step is

O(TSKq3p) which mainly comprises the computation

of the probabilities πk(s;α), the computation of the

densities N (xts;u
′
s(Akµt + bk), σ

2) and the inversion

of q × q matrices required by the Forward-Backward
recursions as well as for the updating of Σt. For its

part, the M step has a computational complexity of

O(IIRLSTSK
3p3q3), where IIRLS is the number of it-

erations of the IRLS loop. This complexity comprises
the inversion of a 2(K − 1) × 2(K − 1) matrix in the

IRLS algorithm, the inversion of a p× p matrix to up-

date bk and the inversion of a qp× qp matrix to update

Ak. Therefore, we can conclude that the proposed vari-

ational EM algorithm has a computational complexity
of order O(IEMIIRLSTSK

3p3q3), where IEM is the num-

ber of iterations required by the EM algorithm. From a

practical point of view, the computation time was found

reasonable for T ≤ 1000, S ≤ 1000 and K ≤ 10.

5.4 Model selection

The specification of the correct number of factors is a

central problem for any factor analytic approach. For

our model, in addition to the factor dimension, both the

number of segments and polynomial order have to be
specified. Simultaneously choosing the correct number

of segments and polynomial order remains a sensitive

issue. Indeed, given a small number of segments, a good

fitting of curves can be found using polynomials with a

relatively high degree. In the same way, given a small
polynomial degree, an accurate fitting can be found us-

ing a relatively high number of segments. We therefore

suggest setting manually the polynomial order to a rel-

atively small value (not exceeding 3) according to the
desired shape of the segments, and then focus the model

selection task on the number of factors q and the num-

ber of segments K. Within the framework of our dy-

namic mixture model, we propose using the following

approximation of the Bayesian Information Criterion
(BIC), where the log-likelihood is replaced by its lower

bound F :

BIC(K, q) ≈ −2F(τ̂ , µ̂, Σ̂, θ̂) + ν(K, q) log(TS), (40)

where the parameters (τ̂ , µ̂, Σ̂, θ̂) are those estimated

by the variational EM algorithm and ν(K, q) is the

number of free parameters of the model. In this model,
we have

ν(K, q) = K(d+ 1)(q + 1)−
1

2
q(q − 1) + 2K − 1, (41)

which can be decomposed as follows:
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Parameter Number of free parameters

α 2(K − 1)

A K(d+ 1)q − 1
2q(q − 1)

b K(d+ 1)

σ2 1

From a practical point of view, the variational EM algo-

rithm is run for K = 1, . . . ,Kmax and q = 1, . . . , qmax,

and the couple (K, q) which maximizes BIC is selected.

6 Uses of the model

Various uses of model can been made from the estimates

(τ̂ , µ̂, Σ̂, θ̂) provided by the variational EM algorithm.

These ones are given below.

6.1 Extracting low dimensional dynamic factors

The latent dynamic factors allowing the functional time

series to be represented onto a lower dimensional space

are estimated as follows:

f̂ t = µ̂t ∀t. (42)

As mentioned in Section 4.2, these factors can be asso-
ciated to specific functional loadings taking the form of

polynomial piecewise functions (see Equation (17)).

6.2 Extracting a joint segmentation from curves

A joint segmentation of the set of curves along the time

axis subscripted by s is derived by defining the k-th

segment (k = 1, . . . ,K) as follows:

Ek =
{
s ∈ [1;S] ; πk(s; α̂) ≥ πℓ(s; α̂) ∀ℓ 6= k

}
. (43)

6.3 Functional time series approximation

The functional time series is approximated (or denoised)
using the following formulae:

x̂ts =
∑

k

πk(s; α̂)u′
s(Âk µ̂t + b̂k) ∀t, s, (44)

which is the sum of the estimated polynomials weighted

by the logistic functions.

6.4 Variational filtering and prediction

Given the parameter vector θ̂, approximating the dis-

tribution of (zt,f t) conditionally on the observations

(x1, . . . ,xt) (filtering) and conditionally on the obser-

vations (x1, . . . ,xt−1) (prediction), is of great interest
in numerous applications involving real time process-

ing of data. The set of observations (x1, . . . ,xt) will be

denoted by x1:t in this section.

Filtering

According to the variational approach adopted in this
paper, we use, ∀t, the following approximation:

P (zt,f t|x1:t; θ̂) ≈ Qt(zt,f t)

=
∏

s,k

τztsktsk ×N (f t;mt,Ct), (45)

where Qt denotes the approximated distribution char-

acterized by the variational parameters mt, Ct and

τ t = (τtsk)sk. These ones are determined by minimizing

the Kullback-Leibler divergence between the true pos-
terior distribution and its approximation Qt, a problem

which is equivalent to maximizing the criterion Ft de-

fined by:

Ft(τ t,mt,Ct) = EQt

[
log

P (xt, zt,f t|x1:t−1; θ̂)

Qt(zt,f t)

]
. (46)

Similar calculations as those made for the E step of the

variational EM algorithm lead us to fixed point equa-

tions involving τ t, mt and Ct, which can be solved
using Algorithm 2. Within the framework of linear state

space models with time-varying measurement noise vari-

ance, a similar variational filtering algorithm has been

obtained by Sarkka and Nummenmaa (2009). In prac-

tice, the convergence of this algorithm is achieved in
less than 5 iterations.

Algorithm 2: Variational filtering

Input: Parameter θ, current observation xt = (xts)s,
previous estimates mt−1,Ct−1, with the
convention m0 = f0 and C0 = 0

Initialization

m
(0)
t = mt−1

C
(0)
t = Ct−1

c = 0

repeat

τ
(c+1)
tsk

∝ exp
(
Ak(xts,m

(c)
t ,C

(c)
t ,θ)

)
∀s, k

D
(c+1)
t = 1

σ2

∑
s,k

τ
(c+1)
tsk

Ak
′usu

′
s Ak

d
(c+1)
t = 1

σ2

∑
s,k

τ
(c+1)
tsk

Ak
′us(xts − u′

sbk)

C
(c+1)
t =

[
D

(c+1)
t + (Iq +Ct−1)−1

]−1

m
(c+1)
t = mt−1 +

C
(c+1)
t

(
d
(c+1)
t −D

(c+1)
t mt−1

)

c = c+ 1

until the variational criterion Ft converges;

Output: Variational parameters mt = m
(c)
t , Ct = C

(c)
t

and τ t = (τ(c)
tsk

)sk
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Prediction

Given the sequence (x1, . . . ,xt), one can be interested

in computing future values of both latent variables and

observations. From the variational approximation of the

filtering distribution (see Equation (45)), the follow-
ing one-step-ahead predictive distribution of the latent

variables can be deduced:

P (zt+1,f t+1|x1:t; θ̂) =
∏

s,k

πk(s; α̂)
zt+1,s,k×

N (f t+1;mt, Iq +Ct), (47)

where mt and Ct are given by Algorithm 2. The pre-

dictive distribution of the individual variables can then

be written as:

P (zt+1,s|x1:t; θ̂) =
∏

k

πk(s; α̂)
zt+1,s,k , (48)

P (f t+1|x1:t; θ̂) = N (f t+1;mt, I +Ct), (49)

P (xt+1,s|x1:t; θ̂) =
∑

k

πk(s; α̂)N (xts;

u′
s (Âkmt + b̂k), σ̂

2 + u′
s Âk(Iq +Ct)Â

′

kus). (50)

The following one-step-ahead forecasts can therefore be

deduced:

ẑt+1,s|t = argmax
k

E[zt+1,s,k|x1:t; θ̂]

= argmax
k

πk(s; α̂), (51)

f̂ t+1|t = E[f t+1|x1:t; θ̂]

= mt, (52)

x̂t+1,s|t = E[xt+1,s|x1:t; θ̂]

=
∑

k

πk(s; α̂)u′
s(Âk mt + b̂k), (53)

Although the main focus of this paper is descriptive, the

one-step-ahead forecasts will mainly be used to check

the predictive capabilities of the proposed dynamic mo-

del, as will be shown in the next section.

7 Experimental study

This section is devoted to the evaluation of the pro-

posed segmental functional dynamic factor analysis ap-

proach, implemented via the variational EM algorithm

described in Section 5, using simulated data and real
data. It will be called SFDFA in the following. Before

developing the experiments, the compared methods are

described.

7.1 Compared approaches and their dimensioning

Four approaches are compared in this article:

– DFA: the dynamic factor analysis approach descri-

bed in Section 2 and implemented via the EM algo-
rithm (Zuur et al. 2003). As this approach is directly

applied to the original sequence of curves (x1, . . . ,xT )

viewed as a sequence of T observations in R
S , we use

a diagonal covariance matrix W to reduce the num-

ber of parameters of the model. The number of free
parameters of this model can thus be written as

νDFA = S (q + 2)−
1

2
q(q − 1), (54)

which can be decomposed as follows:

Parameter Number of free parameters

A Sq − 1
2q(q − 1)

b S

W S

– FPCA: the functional principal component analysis

method (Ramsay and Silverman 1997), which repre-

sents data by smooth functions. It consists, in prac-

tice, in converting the observations into functional
objects (in this paper, we use the smoothing splines

approach and choose the smoothing constant min-

imizing the cross-validated sum of squared errors

(Gareth et al. 2000)) and then applying the princi-
pal component analysis method to the functions dis-

cretized on the temporal interval [1;S]. The number

of free parameters of FPCA, which is composed of

the principal components, is given by

νFPCA =
1

2
S(S + 1). (55)

– RHLP-PCA: a two-stage approach which consists in

the following steps:

(i) first, a joint segmentation of the curves

(x1, . . . ,xT ) into K segments found along the
time axis indexed by s is performed using the

multivariate version of RHLP. In this case, a

common logistic regression parameter vector α

is estimated for all the curves but each curve has

its own polynomial regression coefficients. For
each curve xt (t = 1, . . . , T ), let βt ∈ R

K(d+1)

denote the estimated d−th order polynomial re-

gression coefficients concatenated over the K seg-

ments.
(ii) then, PCA is performed on the sequence

(β1, . . . ,βT ) and the scores corresponding to the

first q factors are retained.
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This approach, which does not consider any dy-

namic between curves, can be regarded as a baseline.

Neglecting the number of parameters of step (i), the

number of free parameters required by RHLP-PCA

is given by

νRHLP−PCA =
1

2
K(p+ 1)[K(p+ 1) + 1]. (56)

– RHLP-DFA: a two-stage approach which differs from

the previous approach only in the second step where
PCA is replaced by DFA. Neglecting the number of

parameters of step (i), the number of free parame-

ters required by RHLP-DFA is given by

νRHLP−DFA = K(p+ 1)(q + 2)−
1

2
q(q − 1). (57)

– SFDFA: the segmental functional dynamic factor

analysis approach, which is proposed in the present

article, whose number of free parameters is

νSFDFA = K(p+1)(q+1)−
1

2
q(q−1)+2K−1. (58)

As K and q are supposed very small in comparison

with S and T , and p is supposed to be less than or equal
3, we have

νRHLP−DFA ≈ νSFDFA < νRHLP−PCA < νDFA < νFPCA.

Table 1 numerically illustrates the number of parame-
ters to be estimated by each of the five methods. It can

be seen that the segmentation used by SFDFA con-

tributes to substantially reduce its number of param-

eters. In this example, the number of parameters re-
quired by SFDFA is about 2 times smaller than that

of RHLP-PCA, 10 times smaller than that of DFA and

250 times smaller than that of FPCA.

Table 1 Numerical example illustrating the number of param-
eters to be estimated by the compared methods; the X symbol
indicates that S, K or p is not used for the computation of the
number of parameters

Method S q K p Numb. of free param.

DFA 200 2 X X 799

FPCA 200 2 X X 20100
SFDFA X 2 10 1 78

RHLP-PCA X 2 10 1 210
RHLP-DFA X 2 10 1 79

7.2 Simulations

The simulations developed here are designed to the

evaluation of the SFDFA approach using artificial time

series of curves whose parameters are known.

Data configurations

The following two configurations were used to generate

curve sequences:

– Configuration 1, which corresponds to the proposed
model with K = 3 linear segments per curve and

a sequence of bidimensional factors starting from

f0 = (0, 0)′. The chosen factor loading matrix and

level vector are

A =




−0.022 0.040

0.004 0.001
0.204 0.081

−0.001 0.000

−0.091 0.472

0.001 −0.002




b =




5.700

−0.107
1.520

−0.002
−7.967
0.065



.

The logistic regression parameters have been set to

α1 = (180,−2)′, α2 = (140,−1)′ and α3 = (0, 0)′,
so that the generated curves were subject to two

change points (the first one at time s = 40 and the

second one at time s = 140). The variance σ2 has

been set to 0.52.
– Configuration 2, under which the data are generated

according to the following dynamic factor model

with nonlinear functional factor loadings:

xts = ft1 sin
(2πs

S

)
+ ft2 cos

(2πs
S

)
+ εts (59)

ftj = ft−1 j + ηtj j = 1, 2, (60)

with

εts ∼ N (0, σ2) ηtj ∼ N (0, v2)

f01 = f02 = 0 σ = 0.5 v = 0.1.

For each configuration, 100 trajectories of T = 150

factors were generated, and for each trajectory, a se-

quences of T = 150 curves was simulated, each curve

consisting of S = 200 points. Each sequence was di-
vided into two parts: the first 100 curves were used

for parameter estimation and model selection (train-

ing sequences) while the last 50 curves (test sequences)

served to evaluate the predictive performances of the

compared models.

Figure 4 displays examples of curve sequences gen-

erated according to Configurations 1 and 2, and their

associated sequence of bidimensional factors. For each

configuration, it is clearly noticeable that the factors
generated according to the random walks form trajec-

tories into the Euclidean space. It can also be observed

that the curves generated according to Configuration 1,

which correspond to the SFDFA model, are subject to
the change points s = 40 and s = 140, while the curves

generated according to Configuration 2 do not present

any change point.
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Configuration 1 Configuration 2
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Fig. 4 Examples of curve sequences generated according to Con-
figuration 1 (left) and Configuration 2 (right), and their associ-
ated bi-dimensional factors; colors (from blue to red) indicate the
curves temporal ordering

Model selection

Before evaluating the relative performances of the five

compared methods, the optimal number of segments K
and factor dimension q of SFDFA were computed for

each training sequence, by running this method with

K varying from 1 to Kmax = 4 and q varying from

1 to qmax = 4, then selecting the couple (K, q) that
maximizes the BIC criterion defined by Equation (41).

The polynomial order was set to p = 1 (linear seg-

ments) for Configuration 1. For Configuration 2, we set

p = 2 (quadratic segments) due to the specific non-

linear nature of the simulated curves. We did not per-
form model selection for DFA, FPCA, RHLP-PCA and

RHLP-DFA. Table 2 gives, for the two configurations,

the average BIC value and selection rate for each cou-

ple (K, q) over the 100 random training sequences. For
Configuration 1, we obtain the smallest BIC value and

highest percentage of selection for (K, q) = (3, 2) which

is the true couple used for simulations. Although the

curve sequences generated according to Configuration 2

are not naturally made of segments, it can be seen that
the couple (K, q) = (3, 2) is selected in 72% of cases and

the couple (K, q) = (2, 2) is selected in 28% of cases,

a variability that can be attributed to the diversity of

the latent factors trajectories generated according to a
Gaussian random walk. Due to this variability, a part

of the sequences generated according to Configuration

2 appears to be well represented by K = 3 second or-

der polynomials, while the other part seems to be well

represented by K = 2 second order polynomials. Nev-

ertheless, the true number of factors q = 2 is recovered

for each Configuration.

Table 2 Average BIC value and selection rate for couples (K,q)

Configuration 1 Configuration 2

K q Select. rate (%) BIC Select. rate (%) BIC

1

1 0 72088.82 0 43715.92
2 0 72167.29 0 43063.66
3 0 72235.94 0 43139.08
4 0 72294.65 0 43207.75

2

1 0 43386.22 0 32043.04
2 0 43181.28 28 30335.25
3 0 43260.94 0 30422.44
4 0 43337.51 0 30510.08

3

1 0 30343.45 0 31467.42
2 100 29606.45 72 29723.94
3 0 29692.73 0 29837.76
4 0 29776.97 0 29956.97

4

1 0 30402.11 0 31537.51
2 0 29687.22 0 29821.72
3 0 29789.16 0 29957.02
4 0 29888.80 0 30086.12

Figure 5 displays the convergence of the variational

criterion on a curve sequence simulated according to

Configuration 1. As expected, the variational criterion

is strictly increasing: a rapid increasing is observed dur-
ing the first 30 iterations, which is followed by a slower

increasing until convergence. For the analyzed sequences,

convergence was generally achieved in less than 500 it-

erations.
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Fig. 5 Example of variational criterion obtained during the it-
erations of the proposed VEM algorithm
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Evaluation of the algorithms accuracy

Due to the dynamic nature of the proposed segmen-
tal dynamic factor model, the performances of DFA,

FPCA, RHLP-PCA, RHLP-DFA and SFDFA are com-

pared as regards the quality of prediction. Therefore,

the following two-stages procedure was adopted:

– First, the parameters of the four compared models
are estimated from the training sequences of curves

(x1, . . . ,xT ), with T = 100. For each sequence,

SFDFA, RHLP-PCA and RHLP-DFA are run with

the number of segments and number of factors ob-

tained for SFDFA using BIC. As shown in the pre-
vious analysis, (K, q) = (3, 2) for Configuration 1,

and (K, q) = (3, 2) or (K, q) = (2, 2) for Configura-

tion 2. The DFA and FPCA methods have been run

with q = 2 factors.
– Then, the performances in terms of forecasting are

evaluated on the remaining sequences

(xT+1, . . . ,xT+v), with v = 50, using the root mean

squared error (RMSE) and the mean absolute per-

centage error (MAPE) defined by

RMSE =

√√√√ 1

v × S

T+v−1∑

t=T

S∑

s=1

(
xt+1,s − x̂t+1,s|t

)2
, (61)

MAPE =
1

v × S

T+v−1∑

t=T

S∑

s=1

∣∣∣∣
xt+1,s − x̂t+1,s|t

xt+1,s

∣∣∣∣ , (62)

where x̂t+1,s|t denotes the one-step-ahead prediction of
xt+1,s|t given the previous data (x1, . . . ,xt). It should

be recalled that for SFDFA, x̂t+1,s|t is given by Equa-

tion (53), where mt is computed using Algorithm 2.

We start this algorithm from mt−1 = µT and Ct−1 =

ΣT . For DFA, the forecast x̂t+1,s|t is derived from the
Forward-Backward recursions (Zuur et al. 2003; Shumway

and Stoffer 2011). For the static models FPCA and

RHLP-PCA, we use a naïve approach which consists

in setting x̂t+1,s to the reconstructed value of xt,s.

Table 3 reports the average RMSE and MAPE crite-
ria and their standard deviations (in parentheses)

yielded by the five compared approaches. It can be

seen that SFDFA has the best performances for the

two data configurations. For Configuration 2 where the
curves are not naturally made of segments, poorer per-

formances are observed for RHLP-PCA and RHLP-

DFA, which can be attributed to their two-stage op-

erating mode.

In addition to providing the error between the origi-
nal sequences and its prediction, the joint segmentation

produced by SFDFA, RHLP-PCA and RHLP-DFA has

been evaluated. To this end, only the data generated

Table 3 RMSE and MAPE, averaged over the 100 simulated
series of curves, and their standard deviation (in parentheses)
obtained with the five compared algorithms

Method RMSE MAPE

config. 1 config. 2 config. 1 config. 2

FPCA 0.54(0.021) 0.54(0.022) 1.04(0.569) 1.61(0.949)
DFA 0.54(0.020) 0.54(0.023) 1.04(0.566) 1.61(0.924)

SFDFA 0.51(0.004) 0.51(0.005) 1.01(0.541) 1.59(0.818)
RHLP-PCA 0.52(0.022) 0.67(0.126) 1.04(0.677) 1.70(0.821)
RHLP-DFA 0.54(0.024) 0.63(0.099) 1.05(0.592) 1.69(0.911)

according to Configuration 1, for which the true seg-
mentation were known, have been used. As the evalua-

tion criterion, we use the percentage of time points of

the set {1, . . . , S} incorrectly assigned to the segments.

It should be recalled that the segmentation provided
by SFDFA, RHLP-PCA and RHLP-DFA are obtained

by maximizing the logistic probabilities which depends

only on the parameter vector α. Therefore, the pre-

dicted segmentation based on the test sequence is the

same as that derived from the training sequence. For
the same reasons, RHLP-PCA and RHLP-DFA provide

identical segmentations. The resulting average errors

are 1.13% for SFDFA and 1.73% for RHLP-PCA and

RHLP-DFA. Although these error rates are relatively
low, the best segmentation is obtained for SFDFA.

Figure 6 displays the estimated factors (µ̂t)t=1,...,100

and the one-step-ahead predictions (f̂ t+1|t)t=100,...,149

obtained with SFDFA, for the data shown in Figure

4. As it can be observed, the estimated factors are, up

to a rotation, visually very similar to the true factors.
The curves reconstructed from these factors are also dis-

played, where the dotted lines, which are derived from

the logistic probabilities, represent the boundary be-

tween the estimated segments.

Evaluation in terms of computation time

Table 4 reports the computation time in seconds for the

five compared approaches using a PC Desktop with a

3.5GHz Intel Xeon processor. Only the parameter esti-

mation phase is considered here. Not surprisingly, the
approaches based on the principal component analysis

(FPCA and RHLP-PCA) are computationally more ef-

ficient than the other approaches (DFA, SFDFA and

RHLP-DFA) whose computation time depends linearly
on the number of iterations required by their associated

EM algorithm. Nevertheless, SFDFA running times are

globally better than those of DFA and RHLP-DFA.
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Fig. 6 Factors (top) and curves (bottom) estimated by SFDFA
from the data of Figure 4; the factors (µ̂t)t=1,...,100 estimated
from the training sequences are plotted together with the one-
step-ahead predictions (f̂ t+1|t)t=100,...,149 which are computed
from the test sequence; the dotted lines represent the boundaries
between the estimated segments

Table 4 Computation time in seconds obtained with the five
compared algorithms

Method Computation time

configuration 1 configuration 2

FPCA 0.01 0.01
DFA 21.70 19.29

SFDFA 16.70 18.68
RHLP-PCA 0.10 0.06
RHLP-DFA 22.72 16.98

7.3 Real data

This section is concerned with the evaluation of SFDFA
using real functional time series. Although our main ob-

jective is to extract a few dynamic factors that accu-

rately describe these data while providing a joint seg-

mentation of the curves, the tasks of prediction and on-

line change point detection are also investigated. Only
the methods SFDFA, RHLP-PCA and RHLP-DFA,

which performs segmentation and dimensionality re-

duction, have been compared in this part.

Description of the data

Two power consumption curve sequences acquired from

two point machines are analyzed. Each sequence corre-

sponds to consecutive rail switch operations recorded
on the French high speed lines. The curve sequence A

is characterized by a low degradation while the curve

sequence B is characterized by three increasing levels

of degradation: without defect (from t = 1 to t = 75),

with critical defect (from t = 76 to t = 120) and fail-

ure (from t = 121 to t = 140). As already mentioned in

Section 3.1, the peculiarity of the studied curves is their

segmental aspect (five electromechanical regimes are in-
volved during a switch operation). The characteristics

of these sequences are the following:

– curve sequence A:

– length of the curve sequence: T = 873,

– number of points per curve: S = 450 (100 points
recorded per second).

– curve sequence B:

– length of the curve sequence: T = 140,

– number of points per curve: S = 552 (100 points

recorded per second),

These functional time series are displayed on Figure 7.

For sequence B, the three colors used (green, red, blue)

corresponds to the three classes of degradation.
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Fig. 7 Railway power consumption curve sequences A (top) and
B (bottom); for sequence B, the three colors correspond to three
classes of degradation; they indicate change points at times t =
76 and t = 121

Low dimensional representation and curve segmenta-

tion

Before comparing the low dimensional representation

obtained with SFDFA, RHLP-PPCA and RHLP-DFA
for curve sequences A and B, the optimal number of

factors q has been selected only for the SFDFA ap-

proach. To this end, the number of segments and the
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polynomial order has respectively been set to K = 5

and p = 3. As indicated in Section 3.2, these num-

bers correspond to the five regimes involved during a

switch operation and to the order found by the experts

to be well suited to the regimes involved in the power
consumption curves. The proposed variational EM al-

gorithm has therefore been run on sequences A and B

for q varying from 1 to 4, and then the value of q which

minimizes the BIC criterion has been chosen. According
to the BIC values reported on table 5, we retain q = 2

factors for sequence A and q = 4 factors for sequence B.

We therefore applied SFDFA, RHLP-PCA and RHLP-

DFA with (K = 5, p = 3, q = 2) for sequence A and

(K = 5, p = 3, q = 4) for sequence B.

Table 5 BIC criterion obtained with SFDFA for the two curve
sequences

Factors BIC

sequence A sequence B

1 3.70 × 106 6.83× 105

2 3.39 × 106 5.90× 105

3 3.52 × 106 5.77× 105

4 3.51 × 106 5.70× 105

The Bi-dimensional plots of Figure 8 show the fac-
tors estimated by the three compared approaches for

the two sequences. Since q = 4 factors have been esti-

mated for sequence B, we select the first and third fac-

tors for SFDFA and RHLP-DFA, and the second and
third factors for RHLP-PCA. These couples of factors

visually provided the best representation in terms of

classes separation. For curve sequence A, an evolution

of blue points towards red points is observed onto the

factors plots. This corresponds to a global growing ten-
dency of the power consumption, which was attributed

by the experts in the railway domain to an incipient lu-

brication defect. For curve sequence B, the representa-

tion provided by SFDFA shows a better discrimination
of classes, than that of its competitors RHLP-PCA and

RHLP-DFA.

Figure 9 displays the curves reconstructed by the
three methods, where the dotted lines, which are de-

rived from the logistic probabilities, represent the bound-

ary between the estimated segments. It was found that

the change points estimated by SFDFA for sequences

A and B better reflect the physical phases involved in
switch operations. In particular, SFDFA gives a better

estimation of the first, second and third change points.

Predictive accuracy

The predictive performances of SFDFA, RHLP-PCA

and RHLP-DFA have also been compared using the
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Fig. 8 Bi-dimensional representation of factors estimated by
SFDFA (top), RHLP-PCA (middle) and RHLP-DFA (bottom)
for the sequences A (left) and B (right)
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Fig. 9 Curves estimated by SFDFA (top), RHLP-PCA (middle)
and RHLP-DFA (bottom) for the sequences A (left) and B (right)
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RMSE and MAPE criteria defined by Equations (61)

and (62). These criteria have been calculated over the

last third of sequences A and B, which corresponds to

(T = 582, v = 290) for sequence A and (T = 94, v =

46) for sequence B. They are based on the parame-
ters and factors estimated by SFDFA, RHLP-PCA and

RHLP-DFA with (K = 5, p = 3, q = 2) for sequence

A and (K = 5, p = 3, q = 4) for sequence B, as previ-

ously shown. As reported in Table 6, the best perfor-
mances are obtained for the SFDFA approach. As for

the descriptive study, the RHLP-PCA approach per-

forms poorly, which can be attributed to the fact that

it does not take account the dynamic between curves.

Table 6 Predictive RMSE and MAPE criteria obtained for the
real data using SFDFA, RHLP-PCA and RHLP-DFA

Method RMSE MAPE

seq. A seq. B seq. A seq. B

SFDFA 7.01 46.84 1.66 6.90
RHLP-PCA 10.05 71.92 2.38 10.96
RHLP-DFA 10.05 68.70 2.17 9.83

Online defect detection

The task of online change point detection has also been

investigated using sequence B which includes three lev-
els of degradation. For this purpose, SFDFA, RHLP-

PCA and RHLP-DFA have first been estimated on the

initial two-thirds of sequence B (t = 1, . . . , 94) with

(K = 5, p = 3, q = 4), then the instantaneous forecast-

ing error

RMSE(t) =

√√√√ 1

S

S∑

s=1

(
xt,s − x̂t,s|t−1

)2
, (63)

has been computed online using the last third of the

sequence (t = 95, . . . , 140). It should be noticed that

the last third of sequence B only contains one change
point (t∗ = 121). Figure 10 displays the RMSE(t) cri-

terion obtained with the three compared approaches.

For each of the three methods, a jump is observed at

time t = 121. This one can easily be detected using an
adequate threshold. As it can also be seen, the lowest

errors are obtained with SFDFA before and after the

change point.

It should also be pointed out that a jump in the tem-

poral evolution of RMSE(t) alerts that the model is no
more adapted to the data. In this case, a re-estimation

of the model parameters using more recent data is re-

quired.
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Fig. 10 Forecasting error - RMSE(t) - as a fonction of time t

8 Conclusion

A dynamic factor model was introduced in this paper
for modeling, through a few factors, specific time series

of curves where each curve has the peculiarity of being

subject to changes in regime. This dynamic regression

model can be formulated as a state-space model involv-
ing discrete latent variables (to represent the regimes

within curves) and continuous latent variables (to rep-

resent the dynamic across the curves). Compared to

other factor analytic approaches such as dynamic factor

analysis and functional principal component analysis,
the proposed approach, called SFDFA, requires much

less parameters due to its latent segmentation.

Since the derivation of an exact EM algorithm max-

imizing the likelihood is computationally intractable,

we propose a variational EM algorithm maximizing a
lower bound of the log-likelihood. The E-step of the lat-

ter algorithm requires Forward-Backward recursions to

estimate the latent common factors, the estimation of

the parameters governing the joint segmentation (in the

M-step) being performed through the IRLS algorithm.

The experimental study conducted on simulated da-

ta and real time series of curves has shown encouraging

results in terms of functional time series modeling. The

extracted factors provide a descriptive tool for visual-

izing more easily the dynamic behind the curves. The
experimental study has also revealed that the proposed

model is exploitable for short term curve forecasting. In

this perspective, the using of more general models such

as ARMA may be useful to more accurately describe
the latent factors dynamic.

Although the present research was focused on curves

observed over the same time grid, it can easily be ex-

tended to curves with potentially different temporal
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discretization. This extension simply requires replacing

covariates us(s = 1, . . . , S) by curve-specific covariates

uts(s = 1, . . . , St, t = 1, . . . , T ), St being the number of

points of the curve xt.

Acknowledgements The authors wish to thank M. Marc An-
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vided.

Appendix A Derivation of the variational

criterion F

The variational criterion to be maximized is defined by

F(Q, θ) = EQ[logP (x,f , z; θ)]−EQ[logQ(z,f )] . (64)

where the log-likelihood logP (x, z,f ; θ) associated to

the complete data is given by:

logP (x, z,f ; θ) = log
(
P (z; θ)P (f ; θ)P (x|z,f ; θ)

)

=
∑

t,s,k

ztsk log πk(s;α) +
∑

t,s,k

ztsk×

logN (xts;u
′
s (Akf t + bk), σ

2)

+
∑

t

logN (f t;f t−1, Iq). (65)

and the logarithm of the distribution Q is given by:

logQ(z,f ) = log
( ∏

t,s,k

(τtsk)
ztsk

∏

t

N (f t;µt,Σt)
)

=
∑

t,s,k

ztsk log τtsk +
∑

t

logN (f t;f t−1, Iq). (66)

By observing that

EQ

[(
xts − u′

s(Akf t + bk)
)2]

=

(
xts − u′

s(Akµt + bk)
)2

+ u′
sAkΣtA

′
kus ∀t, s, k,

and

EQ

[(
f t − f t−1)

′(f t − f t−1)
]
=

(µt − µt−1)
′(µt − µt−1) + Tr(Σt) + Tr(Σt−1) ∀t,

it can be deduced that

F(τ ,µ,Σ, θ) =
∑

t,s,k

τtsk Ak(xts,µt,Σt, θ)

+
∑

t

B(µt−1,µt,Σt−1,Σt)

−
∑

t,s,k

τtsk log τtsk

+
1

2

∑

t

log det(Σt),

with

Ak(xts,µt,Σt, θ) =

log
(
πk(s;α)N (xts;u

′
s (Akµt + bk), σ

2)
)

−
1

2σ2
(u′

sAkΣtA
′
kus) ∀t, s, k,

and

B(µt−1,µt,Σt−1,Σt) = logN (µt;µt−1, Iq)

−
1

2

(
Tr(Σt) + Tr(Σt−1)

)
∀t,

where the convention µ0 = f0 and Σ0 = 0 is used.

Appendix B E-step: derivation of the

Forward-Backward recursions

By canceling the partial derivatives of F with respect
to each of the vectors µt, it can be verified that the

sequence µ(c+1) defined by equation (27) is the solution

of the following system of linear equations:





(
Σ

(c+1)
1

)−1

µ
(c+1)
1 − µ

(c+1)
2 = d

(c+1)
1 + f

(c)
0(

Σ
(c+1)
2

)−1

µ
(c+1)
2 − µ

(c+1)
1 − µ

(c+1)
3 = d

(c+1)
2

...(
Σ

(c+1)
T−1

)−1

µ
(c+1)
T−1 − µ

(c+1)
T−2 − µ

(c+1)
T = d

(c+1)
T−1(

Σ
(c+1)
T

)−1

µ
(c+1)
T − µ

(c+1)
T−1 = d

(c+1)
T ,

(67)

with

d
(c+1)
t =

1

σ2(c)

∑

s,k

τ
(c+1)
tsk A

(c)
k

′
us(xts − u′

sb
(c)
k ),

D
(c+1)
t =

1

σ2(c)

∑

s,k

τ
(c+1)
tsk A

(c)
k

′
usu

′
s A

(c)
k .

Solving such a linear system requires the inversion

of a block-tridiagonal matrix (Varah 1972) whose diag-

onal terms are the matrices (Σ
(c+1)
t )−1 and off-diagonal

terms are equal to the matrix −Iq. The solution com-

monly adopted is based on LU matrix decomposition

(Thomas 1949), which results in the following Forward-
Backward recursions:

– Forward: starting from Σ̃0 = 0 and µ̃0 = f
(c)
0 , com-

pute, for t = 1, . . . , T ,

Σ̃t =
[
D

(c+1)
t + (Iq + Σ̃t−1)

−1
]−1

,

µ̃t = µ̃t−1 + Σ̃t

(
d
(c+1)
t −D

(c+1)
t µ̃t−1

)
,
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with

d
(c+1)
t =

1

σ2(c)

∑

s,k

τ
(c+1)
tsk A

(c)
k

′
us(xts − u′

sb
(c)
k ),

D
(c+1)
t =

1

σ2(c)

∑

s,k

τ
(c+1)
tsk A

(c)
k

′
usu

′
s A

(c)
k .

– Backward: starting from µ
(c+1)
T = µ̃T , compute ret-

rospectively, for t = T − 1, . . . , 1,

µ
(c+1)
t = µ̃t + J t

(
µ
(c+1)
t+1 − µ̃t

)
,

with J t = Σ̃t(Iq + Σ̃t)
−1.

Appendix C M-step

C.1 Maximization of F with respect to f0

By canceling the partial derivative of F1 with respect

to f0, we get

f
(c+1)
0 = µ

(c+1)
1 . (68)

C.2 Maximization of F with respect to α

Maximizing F1 with respect to α is equivalent to solv-

ing the logistic regression problem

α(c+1) = argmax
α

∑

t,s,k

τ
(c+1)
tsk log πk(s;α). (69)

This maximization is therefore solved through the well

known Iteratively Reweighted Least Squares (IRLS) al-

gorithm (Green 1984) which is equivalent to a Newton-

Raphson algorithm. In order to describe this algorithm,
let

G(α) =
∑

t,s,k

τ
(c+1)
tsk log πk(s;α)

denote the quantity to be maximized. As shown in (Cham-

roukhi et al. 2009b,a), the first and second derivatives
of G can be written as:

g(α) =
(
gk(α)

)
1≤k≤K−1

, (70)

H(α) =
(
Hkℓ(α)

)
1≤k,ℓ≤K−1

, (71)

with

gk(α) =
∂G(α)

∂αk

=
∑

t,s

(
τ
(c+1)
tsk − πk(s;α)

)
us, (72)

Hkℓ(α) =
∂2G(α)

∂αk∂α
′
ℓ

= −T
∑

s

[
πk(s;α)

(
δkℓ − πℓ(s;α)

)]
usu

′
s, (73)

where δkℓ = 1 if k = ℓ and 0 otherwise.

Using these derivatives, the pseudo-code of the IRLS

procedure can therefore be summarized by Algorithm

3.

Algorithm 3: IRLS

Input: posterior probabilities (τ(c+1)
tsk

), threshold ε

α ← 0

repeat

gk ←
∑

t,s
(τ(c+1)

tsk
− πk(s;α))us

Hkℓ ← − T
∑

s
πk(s;α)(δkℓ − πℓ(s;α))usu

′
s

α ← α−H−1 g

until ‖g‖ < ε;

α(c+1) ← α

Output: logistic regression parameter α(c+1)

C.3 Maximization of F with respect to (Ak, bk)

This maximization problem cannot be solved in a closed
form but conditional maximizations, with respect to bk
and Ak, can be performed analytically. This kind of

approach, which just increases F1, results in a Gener-

alized EM algorithm (McLachlan and Krishnan 2008),
whose convergence properties are the same as those of

the EM algorithm. The resulting updating formulae are

the following:

b
(c+1)
k =

(
∑

t,s

τ
(c+1)
tsk usu

′
s

)−1

×

∑

t,s

τ
(c+1)
tsk us

(
xts − u′

sA
(c)
k µ

(c+1)
t

)
, (74)

vec
(
A

(c+1)
k

)
=

(
∑

t

τ
(c+1)
tsk

(
Σ

(c+1)
t + µ

(c+1)
t µ

(c+1)
t

′)
⊗ (usu

′
s)

)−1

×

(
∑

t,s

τ
(c+1)
tsk us(xts − u′

sb
(c+1)
k )µ

(c+1)
t

′

)
. (75)

where ⊗ is the Kroneker product and vec( · ) is the op-

erator that concatenates the columns of a matrix into

a vector. Once the matrices Ak (k = 1, . . . ,K) have
been estimated, the orthogonalization of the complete

matrix A is done as follows: we first perform the eigen-

value decomposition of the symmetric positive definite
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matrix A(c+1)′A(c+1); let P (c+1) denote the resulting

orthogonal matrix of eigenvectors; then we set

A(c+1) ← A(c+1)P (c+1) (76)

f
(c+1)
0 ← P (c+1)′f

(c+1)
0 (77)

µ
(c+1)
t ← P (c+1)′µ

(c+1)
t ∀t. (78)

It can easily be verified that the resulting matrix, which

satisfies the condition A(c+1)′A(c+1) = Iq, is diagonal.

C.4 Maximization of F with respect to σ2

Maximizing F1 with respect to the observations vari-
ance σ2 leads to

σ2(c+1)

=
1

TS

∑

t,s,k

τ
(c+1)
tsk ×

[
u′
sA

(c+1)
k Σ

(c+1)
t A

(c+1)
k

′
us

+
(
xts − u′

s(A
(c+1)
k µ

(c+1)
t + b

(c+1)
k )

)2 ]
· (79)
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